Paper #635
- Título:
- Improved nonparametric confidence intervals in time series regressions
- Autores:
- Joseph P. Romano y Michael Wolf
- Fecha:
- Julio 2002
- Resumen:
- Condence intervals in econometric time series regressions suffer from notorious coverage problems. This is especially true when the dependence in the data is noticeable and sample sizes are small to moderate, as is often the case in empirical studies. This paper suggests using the studentized block bootstrap and discusses practical issues, such as the choice of the block size. A particular data-dependent method is proposed to automate the method. As a side note, it is pointed out that symmetric confidence intervals are preferred over equal-tailed ones, since they exhibit improved coverage accuracy. The improvements in small sample performance are supported by a simulation study.
- Palabras clave:
- Bootstrap, confidence intervals, studentization, time series regressions, prewhitening
- Códigos JEL:
- C14, C15, C22, C32
- Área de investigación:
- Estadística, Econometría y Métodos Cuantitativos
- Publicado en:
- Journal of Nonparametric Statistics, Volume 18, Number 2, February 2006, pp. 199-214
Descargar el paper en formato PDF