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1 Introduction

Regressions in macroeconomics and finance typically involve explanatory variables and/or error
variables that exhibit serial dependence. It is well-known that standard regression theory does
not apply to such settings. Appropriate asymptotic theory for time series regression has been
developed and is routinely applied in practice; for example, see Hannan (1970) or White (1984).
Over the last decade, however, the literature has shown that the finite sample properties of
standard (or normal theory) methods are often lacking in practice; a common phenomenon is that
confidence intervals undercover and that hypothesis tests overreject. We focus on the construction
of confidence intervals in the remainder of the paper; however, the ideas also apply to hypothesis
tests.

A number of recent proposals have been made to construct confidence intervals that exhibit im-
proved coverage accuracy. The two most common proposals, arguably, are prewhitening (Andrews
and Mohanan, 1992; Newey and West, 1994) and block bootstrapping. To achieve asymptotic
refinements based on the block bootstrap, it is important to use a studentization. In the general
context of smooth functionals of sample means, this importance was pointed out by Davison and
Hall (1993) and Götze and Künsch (1996). Lahiri (1996) established asymptotic refinements of an
appropriate studentized bootstrap M -estimator, though he considered the case of fixed covariates.
Hall and Horowitz (1996) and Andrews (2001) established asymptotic refinements of the block
bootstrap for studentized statistics in the more general framework of GMM estimators, though
they used somewhat restrictive dependence conditions.

Nevertheless, it seems that the (studentized) block bootstrap has not found wide approval of
practitioners yet. As Horowitz (2001) puts it: “There are also unresolved problems in applying
the bootstrap to a stationary, weakly dependent data generating process (DGP) when . . . a model
that reduces the DGP to random sampling from a distribution is unavailable. The block bootstrap
is the best-known method for implementing the bootstrap in such situations, but the performance
of the block bootstrap in Monte Carlo experiments has been disappointing.” We believe that a
major contribution to this negative point of view has been the almost complete neglect in the
relevant literature of the choice of the block size in practice. Since this choice can have a dramatic
effect on the finite-sample properties, few practitioners should be willing to use the block bootstrap
without any guidance as how to select the block size.

We discuss how to implement the studentized block bootstrap in the context of time series
regressions. By detailing the approach and offering a concrete suggestion for the choice of the block
size, we provide a useful method that is safe to apply in practice. In addition, it is mentioned that
when two-sided confidence intervals are to be constructed, one should employ symmetric intervals
as opposed to equal-tailed intervals, since the former tend to enjoy better coverage properties.

The remainder of the paper is organized as follows. Section 2 presents the model and the
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inference problem. Section 3 reviews the normal theory. Section 4 discusses the bootstrap and
details how to studentize in the context of time series regressions. Section 5 summarizes some
asymptotic theory. Section 6 addresses the choice of the block size, which is an important model
parameter. Section 7 considers finite-sample performance by means of a simulation study. Finally,
Section 8 summarizes the findings. All tables appear in Section 9 at the end of the paper.

2 The Model

We consider the standard regression model

yt = X ′tβ + εt, t = 1, . . . , T

where β ∈ RI p is the unknown regression parameter and (X ′t, εt)
′ is a weakly dependent, stationary

sequence. The ordinary least squares (OLS) estimator for β is given by

β̂T =

(
T∑
t=1

XtX
′
t

)−1 T∑
t=1

Xtyt

A critical assumption to ensure its consistency is E(Xtεt) = 0, t = 1, . . . , T, that is, the regressors
are uncorrelated with the error term. This assumption is typically implied by economic consid-
erations, such as a rational expectation model. Under certain regularity conditions, the OLS
estimator β̂T will have an asymptotic normal distribution. We do not consider any nonstandard
asymptotics, such as unit root regressions.

Interest focuses on constructing confidence intervals for a real-valued parameter θ = a′β, where
a is a fixed and known p×1 vector. Quite often θ will simply be a particular regression coefficient
βi of interest. The restriction to real-valued parameters is made mainly to give a natural setting
for the construction of confidence intervals. But other scenarios could be considered as well. For
example, one might be interested in testing a general linear constraint of the form Rβ, where R is
a fixed and known j×p matrix. The method proposed can be easily adapted to testing problems;
see Remark 4.1.

3 Normal Theory

Under nonrestrictive regularity conditions,
√
T (β̂T −β) L=⇒ N(0,Σ), where Σ is a positive-definite

p × p matrix and L=⇒ denotes convergence in distribution (or convergence in law). This implies√
T (a′β̂T − θ)

L=⇒ N(0, a′Σa), which would allow one to construct an asymptotic normal theory
confidence interval for θ if Σ were known. Unfortunately, Σ depends on the unknown underly-
ing probability mechanism. The standard way of making inference is therefore to consistently
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estimate the limiting covariance matrix Σ by an estimator Σ̂T and to pretend the distribution of√
T (a′β̂T − θ) is given by N(0, a′Σ̂Ta), that is, to use the plug-in principle. As is well-known,

Σ = lim
T→∞

(
1
T

T∑
t=1

XtX
′
t

)−1
1
T

T∑
s=1

T∑
t=1

EεsXs(εtXt)′
(

1
T

T∑
t=1

XtX
′
t

)−1

Since the series {Xt} is observed, consistent estimation of Σ only requires a consistent estimator
of

JT ≡
1
T

T∑
s=1

T∑
t=1

E
[
εsXs(εtXt)′

]
The most popular approach to estimate JT is by means of a kernel technique. In practice this
involves choosing a real-valued kernel function k(·) and bandwidth ST . The kernel k(·) typically
satisfies the three conditions k(0) = 1, k(·) is continuous at 0, and limx→±∞ k(x) = 0. For more
details on kernel estimation and a number of popular kernels, see Priestley (1981, Chapter 6) or
Andrews (1991), among others. For related approaches and earlier references, see Robinson and
Velasco (1997) and Den Haan and Levin (1997).

An important feature of a kernel is its characteristic exponent 1 ≤ q ≤ ∞, determined by the
smoothness of the kernel at the origin. Note that the bigger q, the smaller is the asymptotic bias
of a kernel variance estimator; on the other hand, only kernels with q ≤ 2 yield estimates that are
guaranteed to be positive semi-definite in finite samples. Most of the commonly used kernels have
q = 2, such as the Parzen, Tukey-Hanning, and Quadratic-Spectral (QS) kernels, but exceptions
do exist. For example, the Bartlett kernel has q = 1 and the Truncated kernel has q =∞. For a
broader discussion on this issue, see Priestley (1981, Chapter 6) for example.

Once a particular kernel k(·) has been chosen for application, one must pick the bandwidth ST .
Several automatic methods, based on various asymptotic optimality criteria, are available to this
end; for example, see Andrews (1991) and Newey and West (1994). Note that the ‘optimal’
bandwidth generally depends on the underlying stochastic mechanism generating the data, the
choice of the kernel k(·), and the sample size T .

Denote the kernel estimator of JT by ĴT . The kernel estimator of Σ is then defined as

Σ̂T =

(
1
T

T∑
t=1

XtX
′
t

)−1

ĴT

(
1
T

T∑
t=1

XtX
′
t

)−1

Finally, the kernel estimator of the limiting variance a′Σa of θ̂T is given by

σ̂2
T ≡ a′Σ̂Ta (1)

and one can construct normal theory confidence intervals based on this estimator.

Unfortunately, normal theory intervals often work unsatisfactorily in small samples, especially
when the dependence structure of the underlying data is strong; again, see Andrews (1991) and
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Newey and West (1994). The method of prewhitening, dating back to Press and Tukey (1956), has
been suggested. For details the reader is referred to Priestley (1981, Chapter 7) and Andrews and
Monahan (1992), among others. According to empirical studies in Andrews and Monahan (1992)
and Newey and West (1994), confidence intervals based on prewhitened kernel estimators indeed
exhibit improved finite sample performance, though they are still not perfectly satisfactory.

4 The Bootstrap and How to Studentize

Given the success of the bootstrap in regression settings with independent observations (Wu,
1986), it is natural to apply an appropriate bootstrap method to time series regressions. Such
a method has to take into account the time series structure of both the regressors and the error
variables. In the absence of semi-parametric structural models for these variables, such as ARMA
or VAR models with i.i.d. innovations, the common approach is to resample blocks of data. For
ease of notation, let Zt = (X ′t, yt)

′, so the observed data is {Z1, . . . , ZT }. Also denote the true
probability mechanism by P . The most popular time series bootstrap is the block bootstrap due
to Künsch (1989) and Liu and Singh (1992). It considers overlapping blocks of size b, namely
Yt = {Zt, . . . , Zt+b−1}, t = 1, . . . , T − b+ 1. Assuming for the moment T = lb, the method selects
l blocks Y ∗t at random and with replacement from the T − b+ 1 available blocks and concatenates
them to arrive at the pseudo sequence {Y ∗1 , . . . , Y ∗l } = {Z∗1 , . . . , Z∗T }; in case T is not a multiple
of b, one would do the same with the smallest l such that T < lb and then truncate the pseudo
sequence at T observations. Denote by P ∗T the bootstrap distribution (conditional on the observed
data) of the pseudo sequence {Z∗1 , . . . , Z∗T }. Let β̂∗T be the OLS estimator of β computed from
the pseudo sequence and let θ̂∗T be the corresponding linear combination a′β̂∗T . A straightforward
bootstrap approximation of the sampling distribution of the OLS estimator β̂T is then

LP {θ̂T − θ} ≈ LP ∗T {θ̂
∗
T − θ̂T } (2)

Here, the general notation LQ{W} denotes the law of a random variable W under a probability
mechanism Q.

The relation (2) can now be used to construct an approximate confidence interval for θ. This
particular bootstrap approximation is usually referred to as the hybrid bootstrap (Hall, 1992)
or the basic bootstrap (Davison and Hinkley, 1997); we shall use the latter notation henceforth.
A problem with the block bootstrap is that, due to ‘edge effects’, θ̂T is not equal to θ(P ∗T ), the
parameter θ corresponding to the bootstrap distribution P ∗T . Lahiri (1992), in the context of the
sample mean, showed that this failure of the block bootstrap has negative second-order effects
that can be remedied by employing the parameter of the bootstrap distribution, θ(P ∗T ), in the
centering. In our application this would correspond to the approximation

LP {θ̂T − θ} ≈ LP ∗T {θ̂
∗
T − θ(P ∗T )}
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It might be useful to further clarify what this parameter is exactly. (We thank a referee for
this suggestion and corresponding details.) Focusing on β first, we have

β = arg min E

[
1
T

T∑
t=1

(yt −X ′tβ)2

]

and therefore

β =

[
E

(
1
T

T∑
t=1

(XtX
′
t

)]−1

E

(
1
T

T∑
t=1

Xtyt

)
Because β(P ∗T ) is the bootstrap analog of β it follows that

β(P ∗T ) =

[
E∗
(

1
T

T∑
t=1

(X∗tX
∗′
t

)]−1

E∗
(

1
T

T∑
t=1

X∗t y
∗
t

)

where E∗ denotes the expectation with respect to the bootstrap distribution. Defining weights
αT (t) = (T −b+1)−1 min(t/b, 1, (T −b+1)/b), the ‘edge effects’ of the block bootstrap now imply
that

β(P ∗T ) =

[
T∑
t=1

αT (t)XtX
′
t

]−1 T∑
t=1

αT (t)Xtyt

which is not equal to β̂T . Finally, θ(P ∗T ) = a′β(P ∗T ), which is not equal to θ̂T = a′β̂T .

Andrews (2001) has suggested an alternative approach to recentering the bootstrap distribu-
tion; see also Hall and Horowitz (1996) and Lahiri (1996). It consists of changing the way one
computes the bootstrap estimator of β, but then centering it by substracting β̂T again. The
alternative bootstrap estimator is defined as

β̄∗T = arg min
1
T

T∑
t=1

[(
y∗t −X∗′t β

)2 − E∗ (g∗t (β̂T))′ β]

where g∗t
(
β̂T
)

is the score for observation t with bootstrap data and evaluated at β̂T ; in particular,

here g∗t
(
β̂T
)

= −X∗t
(
y∗t −X∗′t β̂T

)
. For the block bootstrap

E∗
(

1
T

T∑
t=1

g∗t

(
β̂t
))

=
T∑
t=1

αT (t)gt
(
β̂T
)

which in general is not zero and therefore β̄∗T is in general not equal to β̂∗T . In this approach, one
should use the approximation

LP {θ̂T − θ} ≈ LP ∗T {θ̄
∗
T − θ̂T }

where θ̄∗T = a′β̄∗T . This second approach seems to have been favored by the time series literature
that considers more complicated settings than just smooth functions of means, such as the OLS
estimator.
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But the simplest solution avoids any extra computations at all. Politis and Romano (1992)
introduced the circular block bootstrap where the original data are ‘wrapped’ in a circle prior to
resampling blocks; edge effects are thus eliminated. This third approach ensures that θ̂T = θ(P ∗T )
for linear statistics θ̂T , such as OLS estimators and linear combinations of them. (It would not
work in more complicated settings, though.)

Fitzenberger (1997) applied the basic block bootstrap to time series regressions. However,
its finite sample performance is not superior to normal theory intervals. The reason for this
‘disappointment’ has its roots in the much-studied, simpler setting of the sample mean for i.i.d.
observations. It is well-known (e.g., Hall, 1992) that in this setting the basic bootstrap does not
provide an asymptotic refinement over the CLT normal interval in the sense that both are only
first order correct. To achieve second order correctness, a more sophisticated method such as
the studentized bootstrap or the BCa bootstrap has to be employed. This result carries over
to the dependent case. Davison and Hall (1993) and Götze and Künsch (1996), abbreviated by
GK in the remainder of this paper, considered inference for smooth functions of means in the
context of stationary, dependent observations. They showed that the basic bootstrap is only first
order correct while the studentized bootstrap provides an asymptotic refinement, at least under
regularity conditions that ensure an Edgeworth expansion. It turns out to be important that the
studentization be done in a certain way; see the discussion below. Moreover, the block bootstrap
distribution needs to be centered around the mean of the bootstrap distribution rather than the
sample mean, a problem that could be avoided by the use of the circular bootstrap again. Since
the OLS estimator can be expressed as a smooth function of appropriate sample means, the
corresponding theory actually follows from the work of GK; see Section 5.

The studentized bootstrap, together with the proper centering, leads to the approximation

LP {(θ̂T − θ)/σ̂T } ≈ LP ∗T {(θ̂
∗
T − θ(P ∗T ))/σ̂∗T } (3)

which again can be used to construct a confidence interval for θ. Here, σ̂T is an estimator of the
standard deviation of θ̂T and σ̂∗T is an estimator of the standard deviation of θ̂∗T .

Following GK, these two estimators do not have the same functional form. Since the bootstrap
sequence is generated by concatenating i.i.d. blocks of data, one can exploit this particular
dependence structure to arrive at the following ‘natural’ estimator σ̂∗T in the context of time
series regressions: Assuming for simplicity that T = lb, where b is the block size used to construct
the block bootstrap sequence, define

V̂ ∗t = X∗t (y∗t −X∗t β̂∗T ), t = 1, . . . , T

ζj =
1√
b

b∑
t=1

V̂ ∗(j−1)b+t, j = 1, . . . , l

and

Σ̂∗T =

(
1
T

T∑
t=1

X∗t (X∗t )′
)−1

1
l

l∑
j=1

ζjζ
′
j

(
1
T

T∑
t=1

X∗t (X∗t )′
)−1
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Then, the ‘natural’ estimator of the standard deviation of θ̂∗T is given by

σ̂∗T =
√
a′Σ̂∗Ta

On the other hand, the original sequence is a stationary time series without any ‘special’ depen-
dence structure. It is therefore natural to use a kernel estimator for σ̂T based on equation (1).

Remark 4.1 We have discussed how to use the studentized bootstrap in order to construct
confidence intervals for a real-valued parameter θ = a′β, where a is a fixed known p × 1 vector.
At times, interest might instead focus on a multivariate parameter θ = Rβ, where R is a fixed
and known j × p matrix. In this setting, it is more natural to consider hypothesis tests of the
sort H0 : Rβ = r0. The test can be performed by approximating the sampling distribution of the
Wald test statistic under the null hypothesis, using the bootstrap in the following way.

LP {(Rβ̂T − r0)′(RΣ̂TR
′)−1(Rβ̂T − r0)} ≈H0

LP ∗T,0{(Rβ̂
∗
T − r0)′(RΣ̂∗TR

′)−1(Rβ̂∗T − r0)}

When the bootstrap is used for the purposes of hypothesis testing, it is crucial that the bootstrap
law P ∗T,0 satisfy the constraints of the null hypothesis (e.g., Politis et al., 1999, Section 1.8). For
our application it has to be ensured that Rβ(P ∗T,0) = r0. This cannot be achieved by simply
resampling blocks of the observed data. One way of enforcing the null hypothesis in P ∗T,0, based
on the circular block bootstrap, is the following. Denote by β̃T the constrained least squares
estimators based on the observed data and satisfying Rβ̃T = r0. Also, let ε̂t = yt − X ′tβ̂T and
yt,0 = X ′tβ̃T + ε̂t. Then, P ∗T,0 resamples blocks from the ‘null data’ (X ′1, y1,0)′, . . . , (X ′T , yT,0)′. If
the ‘regular’ block bootstrap is used instead, one needs to adjust for the edge effects in addition;
see the discussion above.

Remark 4.2 There are several other alternatives for implementing a studentized bootstrap.
First, instead of the block bootstrap one could use the stationary bootstrap of Politis and Ro-
mano (1994). By selecting blocks of random sizes (according to a certain geometric distribution),
it achieves that the resulting bootstrap sequences are stationary. Lahiri (1999) proved asymptotic
refinements of the studentized stationary bootstrap. Second, one might want to try a prewhitened
kernel variance estimator for the studentization of the estimator based on the original sample,
θ̂T , and/or for the studentization of the bootstrap estimator, θ̂∗T . The reason here being the good
performance of prewhitened kernel variance estimators known from the literature; e.g., Andrews
and Monahan (1992) and Newey and West (1994). We have experimented along those lines via
various simulation studies. In general, the alternative methods performed comparably to the
scheme of GK but did not provide any further improvement. Hence, there appears little to gain
from pursuing other ways of studentization.
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5 Summary of Relevant Theory

The OLS estimator β̂T can be written as a smooth functions of sample means. Hence, the first
and second-order theory developed by GK applies directly; see their paper for a sufficient set of
regularity conditions, such as moment and mixing conditions. GK showed that in order to obtain
asymptotic refinements over normal theory, it is crucial to use a low bias variance estimator in
the studentization of the OLS estimator β̂T . In the computation of σ̂T they consequently propose
the Truncated kernel which, having characteristic exponent q = ∞, enjoys minimum asymptotic
bias among all kernels.

With this choice, the bootstrap approximation (3) has error OP (n−3/4+ε), where ε is a small
number (GK); in contrast, the approximation (2) has error larger than OP (n−1/2), as does normal
theory. It needs to be pointed out, though, that the Truncated kernel may result in a negative
variance estimate in finite sample. Should this occur, we propose to switch to a kernel estima-
tor based on the QS kernel, which is guaranteed yield a nonnegative variance estimate as its
characteristic exponent is q = 2. With this choice, the bootstrap approximation (3) has error
OP (n−2/3+ε), where ε is a small number (GK).

The improvement in the approximation of the sampling distribution of the (studentized) OLS
estimator due to the bootstrap results in enhanced coverage accuracy of one-sided confidence
intervals compared to normal theory (GK). One the other hand, two-sided equal-tailed bootstrap
confidence intervals are not more accurate (in the sense of the rate of convergence to the nominal
confidence level) than two-sided normal theory confidence intervals. The same results hold true in
the simpler setting of the sample mean with i.i.d. data (Hall, 1992). Still, in this setting, equal-
tailed bootstrap confidence intervals provide an improvement in terms of the constant (Hall,
1992).

When two-sided confidence intervals are desired, an alternative to equal-tailed intervals are
symmetric intervals, based on the bootstrap approximation of the two-sided sampling distribution
function

LP {|θ̂T − θ|/σ̂(θ̂T )} ≈ LP ∗T {|θ̂
∗
T − θ(P ∗T )|/σ̂∗(θ̂∗T )}

In many contexts, such intervals are more accurate than two-sided normal theory intervals. Exam-
ples include the sample mean with i.i.d. data and OLS estimators for regression parameters with
independent data (Hall, 1992). More generally, Hall and Horowitz (1996) and Andrews (2001)
have obtained such results in the context of GMM estimators with stationary, dependent data,
covering the case of OLS estimators. However, for this they have to assume a stricter dependence
condition: the asymptotic variances of the estimators of interest can only depend on a finite (and
known) number of correlations, so that kernel variance estimators are dispensed with. While thus
no formal theory for asymptotic refinements of symmetric block bootstrap confidence intervals
in the setting of this paper exists, it still stands to reason that they exhibit better finite-sample
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properities. We will address this question in the simulation studies of Section 7.

It should be mentioned that Lahiri (1996) studied asymptotic refinements of the studentized
block bootstrap for general M -estimators in multiple regressions, which include the OLS estimator
as a special case. But he considered a setting where the covariates Xt are fixed and known while
the error terms εt are a stationary, dependent sequence. This setting would be inappropriate for
most economical applications.

Finally, all the above papers assume a strong mixing condition on the underlying sequence
of data. This condition may not hold for certain economic processes. Gonçalves and White
(2002) proved consistency of the block bootstrap and the stationary bootstrap under the weaker
condition of near epoch dependence, though no results on asymptotic refinements were obtained.

6 Choice of the Block Size

The application of the block bootstrap requires a choice of the block size b. Asymptotic theory
typically only requires that b→∞ and that b/T → 0 as T →∞; for example, see Künsch (1989)
and Politis and Romano (1992). But these requirements are of little practical help. The choice
of the block size is a difficult but important problem, comparable to the choice of the bandwidth
for kernel variance estimators. In the relevant literature this problem is quite often either ignored
or delayed to future research, which is a regrettable state of affairs. Our aim is to propose an
inference method for time series regressions that is not only of academic interest but will also
find the approval of practitioners. Therefore, we feel the need to provide at least a reasonable ad
hoc method that can be used in practice, though we are unable to completely solve this difficult
problem (and it appears unlikely that a ‘perfect’ solution will ever be found).

A notable exception in the literature, dealing explicitly with the problem of choosing the block
size, is Hall et al. (1996). They showed that the optimal block size (minimizing the asymptotic
mean squared error or MSE) depends significantly on context and is given by C(P )n1/k, where
C(P ) is a constant and k = 3, 4, or 5 for the contexts of variance estimation, estimation of a
one-sided distribution function, or estimation of a two-sided distribution function, respectively.
The constant C(P ) depends on the underlying joint distribution P and the context but a way
is suggested to estimate it in practice. The problem with trying to adopt their approach for our
purposes is two-fold. First, all the asymptotic MSE calculations are done for the basic block
bootstrap and thus would no longer be valid for the studentized block bootstrap. Second, for
the estimation of a distribution function, C(P ) depends on the argument of that function, that
is, on y in F (y) = ProbP {Y ≤ y} for a general random variable Y . Since for the construction
of a confidence interval one needs to estimate a quantile of a distribution, it seems that the
corresponding y would first have to be found in some recursive fashion.
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Instead, we will propose a method which can be applied to an arbitrary bootstrap method,
whether studentized or not, and which immediately tackles the task of estimating a specific
quantile as opposed to estimating the distribution function at a given point. To this end, we
suggest to use a calibration method, a concept dating back to Loh (1987, 1988, 1991). One can
think of the actual coverage level 1 − λ of a block bootstrap confidence interval as a function of
the block size b, conditional on the underlying probability mechanism P , the nominal confidence
level 1− α, and the sample size T . The idea is now to adjust the ‘input’ b in order to obtain the
actual coverage level close to the desired one. Hence, one can consider the block size calibration
function g : b→ 1−λ. If g(·) were known, one could construct an ‘optimal’ confidence interval by
finding b̃ that minimizes |g(b)− (1− α)| and use b̃ as the block size of the time series bootstrap;
note that |g(b)− (1− α)| = 0 may not always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is there-
fore unknown. We now propose a bootstrap method to estimate it. The idea is that in principle
we could simulate g(·) if P were known by generating data of size T according to P and by
computing confidence intervals for θ for a number of different block sizes b. This process is then
repeated many times and for a given b one estimates g(b) as the fraction of the corresponding
intervals that contain the true parameter. The method we propose is identical except that P is
replaced by an estimate P̂T .

Algorithm 6.1 (Choice of the Block Size)

1. Fit a model P̂T to the observed data (X ′1, y1)′, . . . , (X ′T , yT )′.

2. Fix a selection of reasonable block sizes b.

3. Generate K pseudo sequences ((X∗1 )′, y∗1)′k . . . , ((X
∗
T )′, y∗T )′k, k = 1, . . . ,K, according to P̂T .

For each sequence, k = 1, . . . ,K, and for each b, compute a confidence interval CIk,b.

4. Compute ĝ(b) = #{θ(P̂T ) ∈ CIk,b}/K.

5. Find the value of b̃ that minimizes |ĝ(b)− (1− α)|.

The role of the semi-parametric model in Algorithm 6.1 can be compared to the role of the
semi-parametric model in the prewhitening process for kernel variance estimation. Even if the
model is misspecified, it should contain some information on the dependence structure of the true
mechanism P that can be exploited to estimate g(·). In practice we suggest to employ a VAR
model, whose order could be estimated by one of the well-known information criteria, say, in
conjunction with bootstrapping the estimated residuals.

Remark 6.1 Note that Algorithm 6.1 is essentially a double bootstrap and therefore computa-
tionally more expensive, by an order of magnitude, than the application of the bootstrap method
once the block size has been determined.
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Remark 6.2 If a bootstrap method is used for hypothesis testing rather than confidence interval
construction, an analogous algorithm can be used by focusing on the significance level of the test
rather than on the confidence level of the interval. Note that in this case the semi-parametric
model P̂T should be replaced by a semi-parametric model P̂T,0 which satisfies the constraints of
the the null hypothesis; the remaining details are straightforward.

7 Simulation Study

The purpose of this section is to compare the small sample performance of various methods to
construct two-sided confidence intervals in time series regressions. Performance is measured in
terms of estimated coverage probability of nominal 95% and 90% intervals. The methods included
in the study are normal theory intervals as well as basic and studentized bootstrap intervals. A
few words regarding the various methods are in order.

The normal theory intervals use the QS kernel, both for the standard interval and for the
prewhitened interval. The prewhitening is done using a VAR(1) model. The automatic choice of
bandwidth is the one of Andrews (1991). We also tried the one of Newey and West (1994) but
the differences were not meaningful and so the corresponding results are not reported.

As was discussed in Section 5, one can hope to improve upon the equal-tailed basic bootstrap
confidence intervals by both studentizing and symmetrizing. To judge the magnitude of the
corresponding improvements, we include equal-tailed basic, equal-tailed symmetric, equal-tailed
studentized, and symmetric studentized intervals in the study. The study uses the circular block
bootstrap in order to avoid a recentering of the bootstrap distributions; see Section 4. The
studentized bootstrap intervals use the Truncated kernel for the studentization of the statistic
based on the original sample, where the bandwidth is equal to the block size of the block bootstrap
(GK). In case the resulting estimator σ̂T is negative, we switch to the QS kernel. (Depending on
the data generating process, sample size, and block size used, for the choices detailed below, a
negative estimate σ̂T due to the Truncated kernel occurs with a frequency of up to 15%.) The
following abbreviations are used to label the various confidence interval types.

• NT: normal theory interval

• NT-PW: prewhitened normal theory interval

• BA-ET: equal-tailed basic bootstrap interval

• BA-SYM: symmetric basic boostrap interval

• STUD-ET: equal-tailed studentized bootstrap interval

• STUD-SYM: symmetric studentized bootstrap interval
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To generate the data, we employ the classic design of Andrews (1991), which has also been
considered by Andrews and Monahan (1992), Fitzenberger (1997), and Politis et al. (1997),
among others:

yt = X ′tβ + εt

where Xt,1 = 1, and Xt = (1, Ẋt)′ and β are 5 × 1 vectors. Throughout, we are concerned with
constructing confidence intervals for the regression parameter β2. Without loss of generality, β is
set equal to zero.

In the first model, AR(1)-HOMO, errors and regressors are independent AR(1) processes.

AR(1)-HOMO: ẋt,j = ρẋt−1,j + νt,j and εt = ρεt−1 + νεt

Here, and for the following models, the {νt,j} and {νεt} are mutually independent white noise
processes.

The second model, AR(1)-HET1, is a variation of the first one in the sense that multiplicative
heteroskedasticity is overlaid on the errors.

AR(1)-HET1: ẋt,j = ρẋt−1,j + νt,j , ε̃t = ρε̃t−1 + νεt and εt = |xt,2| ε̃t

In the third model, MA(1)-HOMO, both the errors and the regressors are independent MA(1)
processes.

MA(1)-HOMO: ẋt,j = νt,j + θνt−1,j and εt = νεt + θνεt−1

For all three models, {νt,j} and {νεt} are independent i.i.d. innovation sequences, having a
standard normal distribution. The values considered for the parameters ρ and θ are 0.2, 0.5, and
0.8. Sample sizes included are T = 64 and T = 128. Block sizes for the bootstrap methods are
b = 5, 12, 20 when T = 64 and b = 10, 25, 40 when T = 128, respectively. The number of bootstrap
replications is B = 1, 000. Estimated coverage probabilities are based on 2,000 replications per
scenario, with all interval types being computed on the same replications.

Remark 7.1 It would have been desirable to include the automatic choice of the block size of
Algorithm 6.1 in the general simulation study. Unfortunately, this was not possible. Even with
the three fixed block sizes, each of Tables 4–6 represents roughly a full day of computing time
using stand-alone C++ code. Keep in mind that the algorithm to determine the block size is
computationally more demanding by an order of magnitude, so a corresponding table would take
several months.

The results are listed in tables Tables 1– 6. The findings can be summarized as follows.

• In accordance with Davison and Hall (1993) and Götze and Künsch (1996), the basic boot-
strap does not improve upon normal theory.
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• In accordance with Andrews and Monahan (1992) and Newey and West (1994), prewhitening
is useful in normal theory intervals.

• In accordance with Davison and Hall (1993) and Götze and Künsch (1996), the studentized
bootstrap improves upon the basic bootstrap and normal theory.

• While not covered by any formal theory in our context, symmetric bootstrap confidence
intervals improve upon equal-tailed ones.

The detailed results of Tables 1–6 demonstrate that the choice of the block size is indeed
important in applying the block bootstrap. While Algorithm 6.1 is computationally too expensive
to be incorporated in the general simulation study, we still would like to investigate its finite-
sample performance. Therefore, we carry out a separate, smaller-scale simulation study. The
following restrictions are imposed to make the computations feasible:

• The sample size is T = 64.

• The dimensionality is reduced from p = 5 to p = 2.

• The input block sizes in Algorithm 6.1 are limited to b = 5, 12, 20.

• The automatic choice of block size is only computed for STUD-SYM.

The semi-parametric model in Algorithm 6.1 is a VAR(1) with bootstrapping the fitted residuals.
For the latter, the circular block bootstrap with a small block size (b = 5) is used to capture
some left-over dependence in the residuals in case the VAR(1) is misspecified, as is the case for
the MA(1)-HOMO model. Tables 7–9 show the results for fixed and automatic block sizes. It
is seen that the studentized bootstrap with automatic choice of block size is far superior to the
normal-theory methods.

8 Conclusions

In this paper, the use of the studentized block bootstrap for time series regressions was proposed.
The relevant second-order theory follows from previous work. On the other hand, the important
problem of the choice of the block size had been rather neglected so far. We have offered a practical
suggestion to deal with this problem. Its main disadvantage, the computational cost, will diminish
over time. The finite-sample performance of various confidence interval types was examined via
a simulation study. Based on the results of this study, the studentized block bootstrap yields
improved performance compared to normal theory intervals.
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9 Tables

Table 1: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

AR(1)-HOMO model, ρ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 92.5 86.9
NT-PW 92.5 86.9
BA-ET 92.0 89.4 85.5 87.3 84.2 79.5
BA-SYM 93.0 90.6 87.4 87.5 84.5 79.9
STUD-ET 93.2 93.3 96.5 87.9 88.9 92.5
STUD-SYM 93.9 95.2 97.3 88.5 89.8 94.5

AR(1)-HOMO model, ρ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 89.6 83.4
NT-PW 92.2 87.5
BA-ET 89.4 87.3 84.0 83.8 81.8 78.0
BA-SYM 91.6 90.1 86.6 85.3 83.6 79.9
STUD-ET 92.4 93.2 96.9 86.8 87.9 93.2
STUD-SYM 93.9 94.8 97.6 88.8 89.5 94.6

AR(1)-HOMO model, ρ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 76.5 69.3
NT-PW 88.7 83.7
BA-ET 78.6 77.3 75.4 72.1 72.4 71.1
BA-SYM 83.1 85.6 84.0 74.5 76.8 75.0
STUD-ET 86.3 87.8 93.9 79.3 81.7 88.3
STUD-SYM 89.9 92.8 97.3 82.6 86.9 93.2
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Table 2: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

AR(1)-HET1 model, ρ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 89.0 82.0
NT-PW 88.6 81.6
BA-ET 85.7 82.9 78.8 80.1 77.1 73.9
BA-SYM 87.8 85.4 81.9 81.0 78.1 74.7
STUD-ET 91.0 92.9 96.0 85.7 87.6 91.3
STUD-SYM 92.9 94.8 97.2 88.3 89.4 93.6

AR(1)-HET1 model, ρ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 85.2 77.8
NT-PW 88.1 80.8
BA-ET 82.5 79.7 75.9 77.0 74.3 70.2
BA-SYM 86.0 83.4 79.7 78.4 75.9 71.9
STUD-ET 90.9 91.4 96.8 84.9 85.4 91.7
STUD-SYM 93.5 94.1 97.5 87.8 88.3 94.8

AR(1)-HET1 model, ρ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 72.0 64.0
NT-PW 82.7 75.7
BA-ET 71.3 71.8 69.2 65.5 66.5 64.2
BA-SYM 77.1 79.0 76.5 67.8 69.7 67.4
STUD-ET 86.2 87.7 94.0 77.7 80.1 87.4
STUD-SYM 91.0 91.8 96.4 83.9 85.2 91.4
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Table 3: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

MA(1)-HOMO model, θ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 91.9 85.9
NT-PW 91.8 86.2
BA-ET 91.4 88.4 84.6 86.3 82.8 79.0
BA-SYM 91.9 89.2 86.2 86.2 83.4 79.8
STUD-ET 92.5 93.3 97.9 87.1 89.1 94.7
STUD-SYM 93.4 94.7 98.6 88.0 89.8 95.9

MA(1)-HOMO model, θ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 90.8 84.6
NT-PW 92.7 87.6
BA-ET 91.2 88.3 84.5 85.5 83.2 79.2
BA-SYM 92.1 90.2 86.9 85.8 83.6 79.8
STUD-ET 92.9 92.8 96.9 87.3 88.3 93.3
STUD-SYM 93.9 94.3 97.8 88.9 89.4 94.4

MA(1)-HOMO model, θ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b = 5 b = 12 b = 20
NT 88.7 82.7
NT-PW 92.2 86.7
BA-ET 89.2 87.2 83.0 84.3 82.0 78.6
BA-SYM 90.8 89.0 85.6 84.3 82.6 78.2
STUD-ET 91.9 92.4 97.2 86.5 87.0 93.4
STUD-SYM 93.1 93.1 97.8 87.5 88.7 94.5
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Table 4: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

AR(1)-HOMO model, ρ = 0.2, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 93.5 88.0
NT-PW 93.6 88.3
BA-ET 91.5 87.2 83.3 86.6 82.6 78.7
BA-SYM 92.3 88.3 84.8 86.7 82.1 77.7
STUD-ET 91.7 93.1 96.7 86.7 89.2 93.6
STUD-SYM 92.9 94.4 97.4 86.9 90.1 94.8

AR(1)-HOMO model, ρ = 0.5, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 91.7 85.1
NT-PW 95.2 89.2
BA-ET 90.3 87.0 82.6 85.1 80.7 76.5
BA-SYM 91.9 88.7 84.8 85.1 82.0 77.6
STUD-ET 91.6 92.2 97.4 87.2 87.2 93.4
STUD-SYM 93.2 93.7 98.0 88.3 88.8 95.0

AR(1)-HOMO model, ρ = 0.8, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 83.7 77.0
NT-PW 95.1 90.8
BA-ET 82.9 80.4 78.1 77.6 76.1 73.2
BA-SYM 86.9 86.7 84.8 79.4 78.9 76.5
STUD-ET 89.9 91.0 96.0 83.9 85.3 91.7
STUD-SYM 92.0 93.8 98.1 86.4 88.7 94.3
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Table 5: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

AR(1)-HET1 model, ρ = 0.2, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 92.5 86.9
NT-PW 93.1 86.2
BA-ET 90.2 85.9 81.8 84.3 79.4 75.4
BA-SYM 91.3 87.6 83.2 84.5 79.9 75.5
STUD-ET 92.2 93.4 97.0 86.9 88.8 93.3
STUD-SYM 93.7 94.2 97.9 88.2 90.4 94.8

AR(1)-HET1 model, ρ = 0.5, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 89.1 83.5
NT-PW 91.5 86.4
BA-ET 87.1 82.9 78.9 80.9 77.4 73.3
BA-SYM 88.4 85.6 81.8 81.9 78.4 74.2
STUD-ET 91.8 91.8 96.9 85.7 86.5 92.6
STUD-SYM 93.5 93.6 97.7 88.2 89.2 94.3

AR(1)-HET1 model, ρ = 0.8, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 80.1 72.6
NT-PW 91.5 86.0
BA-ET 78.0 75.6 72.2 72.1 69.9 67.3
BA-SYM 81.5 80.0 77.8 73.9 72.4 69.1
STUD-ET 88.4 89.5 95.4 80.7 81.7 90.4
STUD-SYM 92.0 92.2 97.2 85.3 85.8 93.2
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Table 6: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The first three columns correspond to the nominal level 95% always.

MA(1)-HOMO model, θ = 0.2, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 93.0 87.6
NT-PW 93.6 87.9
BA-ET 91.7 86.9 83.2 85.7 81.6 77.8
BA-SYM 91.7 88.0 84.2 86.1 81.7 78.0
STUD-ET 91.8 93.6 97.1 86.6 88.6 93.9
STUD-SYM 92.7 94.4 97.5 86.3 89.2 95.2

MA(1)-HOMO model, θ = 0.5, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 91.5 85.7
NT-PW 93.0 88.0
BA-ET 90.2 85.7 82.3 84.9 80.0 76.9
BA-SYM 90.6 86.7 83.7 84.8 80.3 77.1
STUD-ET 91.2 92.0 96.9 85.6 86.7 92.7
STUD-SYM 91.7 92.7 97.2 85.7 87.4 94.2

MA(1)-HOMO model, θ = 0.8, T = 128

Interval b = 10 b = 25 b = 40 b = 10 b = 25 b = 40
NT 92.2 87.0
NT-PW 95.3 91.0
BA-ET 91.9 88.1 84.0 86.4 82.1 78.2
BA-SYM 92.3 88.9 85.9 87.0 82.7 78.3
STUD-ET 92.4 93.0 97.7 87.7 88.3 93.9
STUD-SYM 93.2 94.0 98.3 88.1 89.5 94.6
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Table 7: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The automatic choice of block size is denoted by b̃. The first four columns correspond
to the nominal level 95% always. The results for the normal theory intervals and for the fixed
block sizes are different from Table 1, since the dimensionality has been reduced from p = 5 to
p = 2.

AR(1)-HOMO model, ρ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 92.9 87.5
NT-PW 92.7 87.8
BA-ET 91.9 87.9 82.8 86.1 82.6 77.9
BA-SYM 92.2 88.2 84.1 86.6 82.6 78.6
STUD-ET 92.3 92.8 97.3 88.3 87.6 94.8
STUD-SYM 92.7 93.8 98.1 94.6 88.6 89.3 95.9 89.6

AR(1)-HOMO model, ρ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 90.0 83.1
NT-PW 91.9 86.0
BA-ET 88.9 87.3 83.1 83.2 81.0 76.7
BA-SYM 90.7 89.1 85.1 83.6 80.4 77.2
STUD-ET 92.1 92.8 96.4 86.6 87.7 92.0
STUD-SYM 93.4 93.3 98.2 94.4 87.5 89.3 94.6 89.6

AR(1)-HOMO model, ρ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 79.0 72.1
NT-PW 89.3 84.0
BA-ET 78.7 76.7 74.3 71.6 70.4 68.2
BA-SYM 81.5 83.9 82.3 73.2 74.5 73.0
STUD-ET 92.1 92.8 96.4 86.6 87.7 92.9
STUD-SYM 93.4 93.2 98.2 94.1 87.5 89.3 94.6 89.3
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Table 8: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The automatic choice of block size is denoted by b̃. The first four columns correspond
to the nominal level 95% always. The results for the normal theory intervals and for the fixed
block sizes are different from Table 2, since the dimensionality has been reduced from p = 5 to
p = 2.

AR(1)-HET1 model, ρ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 92.1 86.3
NT-PW 91.9 86.6
BA-ET 89.5 86.0 81.6 84.7 80.5 76.2
BA-SYM 91.4 88.2 83.5 85.0 81.4 76.2
STUD-ET 92.4 92.0 97.3 87.3 86.3 92.7
STUD-SYM 94.3 94.4 97.0 94.4 88.9 89.5 94.1 89.5

AR(1)-HET1 model, ρ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 86.0 79.8
NT-PW 88.3 82.7
BA-ET 83.4 80.4 75.8 78.3 74.9 71.7
BA-SYM 85.4 83.9 80.0 78.9 75.4 72.5
STUD-ET 89.5 92.3 96.0 83.1 85.5 90.9
STUD-SYM 92.3 94.5 97.2 94.3 87.1 88.5 93.9 90.1

AR(1)-HET1 model, ρ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 79.0 70.7
NT-PW 87.4 82.3
BA-ET 74.6 74.4 70.6 68.4 64.9 65.7
BA-SYM 80.5 81.4 78.5 71.0 72.6 70.2
STUD-ET 89.5 92.3 96.0 82.6 84.8 89.8
STUD-SYM 92.3 94.5 97.2 94.2 85.5 87.6 92.9 89.3
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Table 9: Estimated coverage probabilities of various confidence intervals with nominal levels 95%
and 90%. The automatic choice of block size is denoted by b̃. The first four columns correspond
to the nominal level 95% always. The results for the normal theory intervals and for the fixed
block sizes are different from Table 3, since the dimensionality has been reduced from p = 5 to
p = 2.

MA(1)-HOMO model, θ = 0.2, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 91.2 85.7
NT-PW 91.2 85.2
BA-ET 89.9 86.9 81.7 84.4 81.4 77.4
BA-SYM 91.6 87.5 83.9 84.7 81.2 77.4
STUD-ET 91.2 92.9 96.8 85.9 87.6 92.4
STUD-SYM 91.8 94.4 97.8 94.7 86.3 87.2 94.3 89.9

MA(1)-HOMO model, θ = 0.5, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 90.3 84.4
NT-PW 91.8 86.6
BA-ET 89.5 87.0 82.5 84.2 81.1 77.0
BA-SYM 89.6 87.2 84.0 84.1 81.4 76.7
STUD-ET 90.2 91.7 96.7 85.5 87.1 92.7
STUD-SYM 90.7 92.9 97.4 94.2 85.5 88.2 94.2 89.2

MA(1)-HOMO model, θ = 0.8, T = 64

Interval b = 5 b = 12 b = 20 b̃ b = 5 b = 12 b = 20 b̃

NT 90.9 83.8
NT-PW 93.0 87.6
BA-ET 90.8 87.0 82.4 83.7 80.3 77.2
BA-SYM 92.1 88.5 83.3 83.5 80.9 76.5
STUD-ET 92.9 94.0 97.1 87.0 88.8 93.7
STUD-SYM 93.1 94.7 97.9 94.1 87.4 90.0 95.2 88.9
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