Volver a Working Papers

Paper #597

Título:
Variance reduction methods for simulation of densities on Wiener space
Autores:
Arturo Kohatsu y Roger Pettersson
Fecha:
Enero 2002
Resumen:
We develop a general error analysis framework for the Monte Carlo simulation of densities for functionals in Wiener space. We also study variance reduction methods with the help of Malliavin derivatives. For this, we give some general heuristic principles which are applied to diffusion processes. A comparison with kernel density estimates is made.
Palabras clave:
Stochastic differential equations, weak approximation, variance reduction, kernel density estimation
Códigos JEL:
G13
Área de investigación:
Estadística, Econometría y Métodos Cuantitativos
Publicado en:
SIAM Journal of Numerical Analysis, 12, (2002) pp.423-476

Descargar el paper en formato PDF