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2 A. KOHATSU-HIGA AND R. PETTERSSON

1. Introduction. The Monte Carlo simulationmethod is used to estimate quan-

tities of the type E[f(X)] where f is a somewhat regular function and X is a random

variable that can be simulated.

In this article, we are interested in the case when f is a generalized function

such as the Dirac delta function �x or a discontinuous function such as an indicator

function. In the �rst case the expectation will become the density of the random

variable X and in the second the distribution function. If f is not regular then the

Monte Carlo method has to be slightly modi�ed using 1
n

Pn

i=1 fn(X
i) where fn is

a smooth function that approximates f and Xi are independent copies of X. This

approximation converges to the desired quantity but a big error is produced due to

the non-smoothness of the general function f . In this frame it becomes important to

device methods in order to reduce the variance of the Monte Carlo estimation. This

problem has been extensively studied by statisticians (although in a slightly di�erent

situation) in the theory of kernel density estimation; see e.g. [12].

Here we propose to analyze the above problem using MalliavinCalculus forWiener

space. More explicitely, using the integration by parts formula of Malliavin Calculus

one has that E[f(X)] = E[F (X)H(X; 1)], where H(X; 1) is an appropriate random

variable and F is an antiderivative of f . In this way we gain smoothness in the function

to be evaluated but the simulation ofH(X; 1) starts to be required. The above formula

can be explained as the integration by parts of
R
R
f(x)p(x)dx = �

R
R
F (x)p0(x)dx,

where p is the density of X, i.e. H(X; 1) = �p0(X)=p(X). This looks simple as

long as one knows the density of X. Here we deal with cases where p is not known

explicitely. Still, we show that there are ways to simulate H(X; 1) and that some

variance reduction is in fact achieved.

The typical example that we treat here is when X is the �nal value of a di�usion.

That is, X = X1 where

Xt = x0 +

Z
t

0

b(Xs)ds +

Z
t

0

�(Xs)dWs; t 2 [0; 1]: (1.1)

Here x0 2 R and b and � are smooth functions. If the H�ormander hypothesis is

satis�ed then the density of X1 exists and is smooth. In [1] and [2] the approximation

error for the density is studied when the random variable X1 is replaced by the Euler-

Maruyama approximation �X.

Obviously, the density of X is explicitely known only in particular cases and

therefore the simulation of H(X; 1) is not a trivial matter. This is exactly the merit

of Malliavin Calculus. One can use this technique to develop an expression forH(X; 1)

that can be simulated. In order to simulate E[f(X)], our Monte Carlo method with

variance reduction is to calculate 1
n

Pn

i=1 F (
�Xi)H( �Xi; 1), where �Xi are independent

Euler approximations of X. We concentrate on the particular case when f is the

delta function which therefore generates the density of the di�usion process but this

methodology can be applied also when approximating the price of an option or its

greeks in mathematical �nance. In fact, this idea appeared �rst in [5] applied to

the calculation of greeks called delta, vega and gamma. Also in [6] a more careful

study of the simulation of the density is carried out. An optimal variance reduction

method is devised but it requires the knowledge of the density itself and is therefore

not amenable to direct application.

In this article, we introduce a control variate method and a tuning method, sim-

ilar to the ones used in kernel density estimation, that helps to reduce the variance

substantially. The main di�erence with respect to kernel density estimation methods
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is that our tuning does not require that the window size goes to 0 as the sample size

increases. Furthermore the same simulated paths give good estimates for densities at

any point. That is, one can compute the density over the whole real line with the

same number of simulated paths.

We focus in the one-dimensional case just to avoid cumbersome notation. The

results are also valid in multidimensions with appropriate modi�cations. The impor-

tance of these methods is obvious when the dimension is relatively big. See also [9]

on variance reduction of smooth functions of di�usions where methods of importance

sampling and control variates are developed without the use of the integration by

parts formula.

In Section 2 after some preliminaries on Malliavin Calculus we explain the general

method and give a control variate method for variance reduction. In Section 3 we

estimate the error of the approximating expectations. The error is estimated when

there is an Itô-Taylor expansion for the functional in the spirit of [8]. In Section

4 we consider as an application of Section 3, the case of di�usion processes with a

H�ormander condition. We also de�ne the di�erent approximations and give bounds

on the approximation error. In Section 5 we study the mean square error of the

kernel density method. In Section 6 a similar study for the integration by parts

method is made and a comparison is made. In Section 7 numerical implementations

are described.

Throughout let c denote a generic constant which may di�er from line to line.

2. Malliavin derivative and density by duality. Let W = fWtgt2[0;1] be a
standard one-dimensional Brownian motion de�ned on a complete probability space

(
;F ; P ). Assume F = fFtgt2[0;1] is generated by W . Let S be the space of random

variables of the form F = f(Wt1 ; : : : ;Wtn), where f is smooth. For F 2 S, DtF =Pn

i=1
@

@xi
f(Wt1 ; : : : ;Wtn)1[0;ti](t). For k 2 Z+, p � 1, let Dk;p be the completion of

S with the respect to the norm

kFkk;p = (E[jF jp] +E[(

kX
j=1

Z 1

0

: : :

Z 1

0

jDj

s1;::: ;sj
F j2ds1 : : :dsj)p=2])1=p;

where Dj

t1;::: ;tj
F = Dt1

: : :Dtj
F . We let kFk0;p = (E[F p])1=p = kFkp and D1 =

\k;pDk;p . For processes u = futgt2[0;1] on (
;F ; P ), Dk;p
L2 ([0;1]) is de�ned as Dk;p but

with norm kukk;p;L2([0;1]) = (E[kukp
L2([0;1])

]+E[(
P

k

j=1

R 1
0
: : :
R 1
0
kDj

s1;::: ;sj
uk2

L2([0;1])ds1

: : :dsj)
p=2])1=p. For two-parameter processes u = fus;tgs;t2[0;1], D

k;p

L2 ([0;1]2)
is de�ned

analogously. D1
L2 ([0;1]) and D

1
L2 ([0;1]2) are de�ned similarly to D1 .

We denote by �(u) the Skorokhod integral, the dual operator of D. If ut is Ft
adapted, then �(u) =

R 1
0
utdWt, the Itô integral of u; see e.g. [11]. Here we write

�(u) =
R 1
0
utdWt, even if ut is not Ft adapted. This integral satis�es that

Z 1

0

FutdWt = F

Z 1

0

utdWt �
Z 1

0

(DtF )utdt (2.1)

for F 2 D1;2 and E(F 2
R 1
0
u2tdt) <1; see e.g. Nualart [11, (1.49), p. 40], and

E[

Z 1

0

(DtF )utdt] = E[F�(u)]: (2.2)
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For F , G in D1;2 and h a stochastic process such that E
R 1
0
h2
t
dt < 1, we use the

notation

Hh(F;G) =

Z 1

0

~htGdWt; (2.3)

where ~ht = ht=
R 1
0 hsDsFds, whenever the integrand in (2.3) is Skorohod integrable.

The usefulness ofHh(F;G) can be seen in the integration by parts formula of Malliavin

Calculus which can be expressed as

E[f 0(F )G] = E[f(F )Hh(F;G)]: (2.4)

We let H(F;G) � HDF (F;G) (i .e. ht = DtF in (2.3)). Similar arguments as to

those in [11, p. 78 & p. 97] gives the following theorem.

Theorem 2.1. Assume F 2 D1;2 and E
R 1
0
h2
t
dt < 1. Let ' be a function

on R such that ', d

dx
' 2 L2(R), '(0) = 1 and c 2 L2(R). Let r be a positive

number and assume that ~h'((F � x)=r) is Skorohod integrable. Then the density of
F , f , exists, is continuous, and f has the representation f(x) = E[�c;r(x)], where
�c;r(x) = (1fF>xg � c(x))Hh(F; '(F�x

r
)). Furthermore,

Hh(F; '(
F � x

r
)) = '(

F � x

r
)Hh(F; 1)�

1

r
'0(

F � x

r
): (2.5)

Proof of Theorem 2.1. We �rst observe that taking F = 1 and ut = '((F�x)=r)~ht
in (2.2) yields

E[Hh(F; '(
F � x

r
))] = 0: (2.6)

We now show the existence of the density of F . For this we assume that F and u are

su�ciently smooth as well as '. The general argument follows by a density argument.

Taking a < b and using (2.1), (2.2) and (2.6) we have thatZ b

a

E[(1fF>xg � c(x))Hh(F; '(
F � x

r
))]dx

=

Z b

a

E[1fF>xg

Z 1

0

~ht'(
F � x

r
)dWt]dx

=

Z b

a

E[1fF>xg('(
F � x

r
)

Z 1

0

~htdWt �
Z 1

0

~htDt'(
F � x

r
)dt)]dx

= E[

Z
F

�1
1[a;b](x)'(

F � x

r
)dx

Z 1

0

~htdWt]

�
Z b

a

E[

Z 1

0

1fF>xg~htDt'(
F � x

r
)dt]dx

= E[

Z 1

0

Dt(

Z
F

�1
1[a;b](x)'(

F � x

r
))dx~htdt]

�
Z b

a

E[

Z 1

0

1fF>xg~htDt'(
F � x

r
)dt]dx

= E[

Z 1

0

1[a;b](F )'(0)~htDtFdt] = E[1[a;b](F )];
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which shows the absolute continuity of the law of F with respect to the Lebesgue

measure. The right continuity of the density of F , f , follows from the fact that
d

dx
' 2 L2([0; 1]) and the right continuity of the indicator function 1f�>xg. Now f can

also be written with 1fF>xg replaced by 1fF�xg from which the left continuity follows.

Finally taking F = '((F �x)=r) and ut = ~ht in (2.1) the claim (2.5) follows. That is,

Hh(F; '(
F � x

r
))

=

Z 1

0

'(
F � x

r
)~htdWt

= '(
F � x

r
)

Z
t

0

~htdWt �
Z 1

0

Dt('(
F � x

r
))~htdt:

2

Taking F = '((F � x)=r)=
R 1
0
hsDsFds and ut = ht in (2.1) and assuming enough

smoothness one obtains that

Hh(F; 1) =

R 1
0
htdWtR 1

0
hsDsFds

+

R 1
0

R 1
0
Dt(hsDsF )htdsdt

(
R 1
0
hsDsFds)2

: (2.7)

Note that the variance of �c;r(x) is �nite under reasonable assumptions, while var(�x(f)) =

1. The issue of the variance of �c;r(x) will be further discussed in Section 5. The

representation of the density f introduced in Theorem 2.1 has the additional bene�t

that it allows to develop a control variate method for the reduction of variance; see

also [5], [6] and [7] for related results.

Remark 2.2 (Control variate method). Assume the same hypotheses as in The-
orem 2.1. If f(x) > 0, then E[Hh(F; '(F�x

r
))2] > 0 and, for �xed ' and r, the

variance of �c;r(x) = (1fF�xg � c(x))Hh(F; '(F�x
r

)) is minimized by

c(x) = ch
loc
(x) = E[1fF�xgH

h(F; '(
F � x

r
))2]=E[Hh(F; '(

F � x

r
))2]: (2.8)

2

The case of f(x) = 0 can also be dealt with some extra changes. To simplify our

discussion we will focus on the case when f(x) > 0.

3. Convergence of approximative functionals. In this section we present a

general theory of approximation for random variables F on Wiener space that gives

as a result rates of convergence to the density of F . This theory is based on Itô-Taylor

expansions in the spirit of [8]. Later we consider as an application the case when F is

the terminal value of the solution of a stochastic di�erential equation. Other examples

that satisfy the following conditions will be treated in forthcoming publications. To

simplify we use the notation dW 1
s
= dWs and dW 0

s
= ds.

Condition 3.1. (i) fFngn�0 and F are in D1 and satisfy

F � Fn =

1X
i;j=0

ZZ
A
i;j

n

ui;jn (s1; s2)dW
i(s1)dW

j(s2);

where Ai;j
n are subsets of [0; 1]2 with mean area

P1
i;j=0 jA

i;j
n j=4 � an for a sequence

an ! 0 as n ! 1, and supn sups1;s2
P1

i;j=0 ku
i;j

n (s1;s2)kk;p < 1 for all k 2 Z+,
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p > 1. The processes ui;j
n

are measurable, not necessarily adapted but with enough
properties so that the above integrals are well de�ned.

(ii) For � 2 [0; 1] there exist processes hn � hn;� in D1 (L2[0; 1]), uniformly

bounded in n, and a process h 2 D1 (L2([0; 1]), such that E[j
R 1
0
h(s)DsFdsj�p] <

1 for all p > 1 and Ekhn � hkp
L2[0;1] � en(p) for a sequence en(p) � en;�(p) ! 0,

n!1.
(iii) For � 2 [0; 1] there exist positive random variables dn and positive bounded

constants bn and c such that jbn +
R 1
0
h(s)DsFdsj > cj

R 1
0
h(s)DsFdsj and

jbn +
Z 1

0

hn(s)(�DsFn + (1� �)DsF )dsj � dn;

where for any p > 1 there exists k(p) � k(p; �) 2Z+ such that sup
n
sup

�2[0;1]E[d
�p
n
](a

k(p)=2
n +

en(4k(p))
1=2 + b

2k(p)
n ) <1.

Without loss of generality we assume that all the sequences an, bn, en and dn are

smaller than 1. Next we give the main approximation result in this section.

Theorem 3.2. Assume Condition 3.1. Then for any distribution T ,

jE[T (F )� T (Fn + Yn)]j � c(an + bn); (3.1)

where Yn is an independent normal random variable with mean zero and variance bn.
Furthermore, if

sup
n�1

sup
0<�<1

E[j
Z 1

0

hn(s)(�DsFn + (1� �)DsF )dsj�p] <1; (3.2)

for all p > 1, then

jE[T (F )� T (Fn)]j � can: (3.3)

We say that the approximation problem is uniformly elliptic when (3.2) is sat-

is�ed. If we instead only assume Condition 3.1 we will say that the approximation

problem is of H�ormander type. See Section 4 for more explanation about this termi-

nology.

The above theorem will be usually applied to T (y) = 1fy�xg or T (y) = �
(k)
x (y),

the k-th derivative of the Dirac delta measure. We will do the proof in the second case

for x = 0, k = 0. The general case is proved similarly. The application of Theorem

3.2 to di�usion processes and its Euler aproximation will be given in Section 4. At

the end of this section we also give a generalization of Theorem 3.2 where F �Fn may

be expressed as a sum of higher order stochastic multiple integrals.

We start with some technical results.

Lemma 3.3. Assume Condition 3.1 (i). Then EkD(Fn � F )kp
L2[0;1]

� ca
p=4
n for

any p > 4.
The above rate is not optimal in most cases. But for our purposes it will su�ce

as a rate of convergence.

Lemma 3.4. Assume Condition 3.1. Then

sup
n�1

sup
0<�<1

E[jbn +
Z 1

0

hn(s)(�DsFn + (1� �)DsF )dsj�p] <1 for all p > 1:
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Proof of Lemma 3.3. We consider one of the terms in Condition 3.1 (i) (i = 1,

j = 1). By Proposition 1.4.5 of [11, p. 69], which is a consequence of Meyer's

inequality,

EkD
ZZ

A
1;1
n

u1;1
n
(s1; s2)dW

1
s1
dW 1

s2
kp
L2([0;1])

� c1k
ZZ

A
1;1
n

u1;1n (s1; s2)dW
1
s1
dW 1

s2
kp1;p

� c2k1A1;1
n

u1;1n kp3;p

= c3(E[k1A1;1
n

u1;1n kp
L2([0;1]2)] + E[(

3X
j=1

Z 1

0

: : :

Z 1

0

k1
A
1;1
n

Dj

s1;::: ;sj
u1;1n k2

L2([0;1]2)ds1 : : :dsj)
p=2])

� E[k1
A
1;1
n

u1;1
n
kp
L2([0;1]2)

]

+E[(k1
A
1;1
n

k1=2
L2([0;1]2)(

ZZ
[0;1]2

(

3X
j=1

Z 1

0

� � �
Z 1

0

(Dj

s1;::: ;sj
u1;1n (t1; t2))

2ds1 : : :dsj)
2dt1dt2)

1=2)p=2]

� ap=4
n

sup
(t1;t2)2[0;1]2

ku1;1
n
(t1; t2)kp3;p � cap=4

n
:

2

Proof of Lemma 3.4. De�ne the set

A � fj
Z 1

0

(hn(s)DsFn � h(s)DsF )dsj _ j
Z 1

0

(hn(s) � h(s))DsFdsj _ bn <
1

4
j
Z 1

0

h(s)DsFdsjg:

On A,

j
R 1
0
hn(s)(�DsFn + (1� �)DsF )dsj � 1

2
j
R 1
0
h(s)DsFdsj, hence

E[jbn +
Z 1

0

hn(s)(�DsFn + (1� �)DsF )dsj�p;A] � 4pE[j
Z 1

0

h(s)DsFdsj�p]:

By Chebyshev's inequality and Condition 3.1 (iii), E[kbn +
R 1
0
hn(s)(�DsFn + (1 �

�)DsF )dsk�p;Ac] � cp(E[d
�2p
n;� ]P (A

c))1=2. For any k 2 Z+ so that kp > 1, we have

by Condition 3.1 (ii) and Lemma 3.3 that P (Ac) is less or equal to

42kpck;pE

�
j
Z 1

0

h(s)DsFdsj�2kp
�
khnDFn � hDFk2kp

L1[0;1]
+ k (hn � h)DFk2kp

L1[0;1]
+ b2kpn

��

� ck;p

�
Ej
Z 1

0

h(s)DsFdsj�8kp
�1=4��

E kD (Fn � F )k4kp
L2[0;1]

�1=2 �
E khnk

8kp
L2[0;1]

�1=4

+
�
E khn � hk4kp

L2[0;1]

�1=2 �
E kDFk8kp

L2[0;1]

�1=4�
+ ck;pE

�
j
Z 1

0

h(s)DsFdsj�2kp
�
b2kp
n

� ck;p

�
akp=2n + en(4kp)

1=2 + b2kpn

�
:

The result follows by Condition 3.1 (ii) and (iii). 2

Recall (2.3) and de�ne inductively H(n) by H(n)(F;G) = Hh(F;H(n�1)(F;G))
and H(0)(F;G) = G. We then have that for any m 2Z+ and p > 1,

kH(m)(F;G)kp (3.4)

� ckGkm+1;p0

�
kFk�1

m+1;p1
+ khk�2

m;p2

�
k(
Z 1

0

h(s)DsFds)
�1k�3

p3
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for a constant c and indices �1, �2 , �3, p0; : : : ; p3 depending on m, p; see e.g. [10,

Proposition 3.3.2]. We consider the extended Wiener space W generated by (W; ~W ),

where ~W is a Brownian motion independent of W . Let Yn =
p
bn ~W1. For G 2

D
1;2(W) (which has as norm the natural extension for the product space D1;2(W ) �
D
1;2( ~W )-norm) we deduce using (2.4) that

E[g0(Yn + F )G] = E[g(Yn + F ) �H(F;G)]; (3.5)

where

�H(F;G) � �Hh(F;G) =

Z 1

0

Gh(t)R 1
0
h(s)DsFds+ bn

dWt +

Z 1

0

G
p
bnR 1

0
h(s)DsFds+ bn

d ~Wt:

Similarly, de�ne by induction �H(k) by �H(k)(F;G) = �H(F; �H(k�1)(F;G)) where �H(0)(F;G) =

G. Also if instead of h we use hn in the de�nition of �H we use the notation �Hn. Using

similar arguments as to those of the proof of (3.4) the following result is deduced.

Lemma 3.5. Assume F 2 D1 (W ) and G 2 D1 (W). Then for m 2 Z+ and
p > 1,

k �H(m)(F;G)kp � ckGkm+1;p0(kFk
�1

m+1;p1
+ khk�2

m;p2
+ b�3n )

�k(
Z 1

0

h(s)DsFds+ bn)
�1k�4

p4
;

for a constant c and indices p0; p1; p2; p4, �1; : : : ; �4, depending on m and p.

Proof of Lemma 3.5. We use induction. For �Hk � �H(k)(F;G),

�Hk =

Z 1

0

�Hk�1h(t)R 1
0
h(s)DsFds+ bn

dWt +

Z 1

0

�Hk�1
p
bnR 1

0
h(s)DsFds+ bn

d ~Wt;

where �H0 = G. Applying Meyer's Inequality; see e.g. [11, p 69], and H�older's

Inequality, for k = 0; : : : ;m, we have

k �Hkkm�k;p

� ck �Hk�1km�k+1;�p(khkm�k+1;�p +
p
bn)k(

Z 1

0

h(s)DsFds+ bn)
�1km�k+1;p

where ��1 + ��1 + �1 = 1. Furthermore, using Cauchy-Schwartz's Inequality in

the calculation of terms of the form
R
[0;1]i

(Dt1;::: ;ti(
R 1
0
h(s)DsFds+ bn)

�1)2dt1 : : :dti
gives

k(
Z 1

0

h(s)DsFds+ bn)
�1km+1;p

� c(kFk�1
m+1;q1

+ khk�2
m;q2

+ b�3n )k(
Z 1

0

h(s)DsFds+ bn)
�1k�4q4 ;

for some indices q1; q2; q4; �1; : : : ; �4. The result follows by induction. 2

Proof of Theorem 3.2. Let fn(x) = �p
bn
(x) = exp(�x2=2bn)=

p
2�bn and Gn =R 1

0 f
0
n(Yn+�Fn+(1��)F )d�. Using the mean value theorem and the duality between
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the Shorohod integral and the derivative operator; see e.g. [11, (1.41) p. 35], yields

E[fn(F + Yn)� fn(Fn + Yn)] (3.6)

= E[Gn(F � Fn)] =

1X
i;j=0

E[Gn

ZZ
A
i;j

n

ui;j
n
(s1; s2)dW

i

s1
dW j

s2
]

=

ZZ
A
0;0
n

E[Gnu
0;0
n (s1; s2)]ds1ds2 +

ZZ
A
0;1
n

E[Ds2(Gn)u
0;1
n (s1; s2)]ds1ds2

+

ZZ
A
1;0
n

E[Ds1
(Gn)u

1;0
n
(s1; s2)]ds1ds2 +

ZZ
A
1;1
n

E[D2
s1;s2

(Gn)u
1;1
n
(s1; s2)]ds1ds2:

We will compute one of these terms as they are all similar. Using (3.5) three times,

we get that jE[Ds2Gnu
0;1
n
(s1; s2)]j equals

j
Z 1

0

E[f 00
n
(Yn + �Fn + (1 � �)F )(�Ds2

Fn + (1� �)Ds2
F )u0;1

n
(s1; s2)]d�j

= j
Z 1

0

E[�n(Yn + �Fn + (1� �)F ) �H(3)(�Fn + (1� �)F;

(�Ds2Fn + (1� �)Ds2F )u
0;1
n (s1; s2))]d�j

�
Z 1

0

Ej �H(3)
n (�Ds2Fn + (1� �)Ds2F; (�Ds2Fn + (1� �)Ds2F )u

0;1
n (s1; s2))jd�;

where �n is the distribution function associated with fn. By Lemma 3.5,

sup
n

sup
s1;s2

sup
0<�<1

Ej �H(3)
n

(�Fn + (1� �)F; (�Ds2Fn + (1� �)Ds2F )u
0;1
n
(s1; s2))j

� c sup
n

sup
s1;s2

sup
0<�<1

k(�Ds2
Fn + (1� �)Ds2

F )u0;1
n
(s1; s2)k4;p0

�(k�Fn + (1� �)Fk�14;p1 + khnk
�2

3;p2
+ b�3n )

�k(bn +
Z 1

0

hn(s)(�DsFn + (1� �)DsF )ds)
�1k�4p4 ;

which is �nite by Condition 3.1 (i), (ii) and Lemma 3.4. Similar considerations lead

to the conclusion that the other terms in (3.6) have a similar bound. In conclusion

one has that jE[fn(F + Yn)� fn(Fn + Yn)]j � can.

Now consider E[�0(F )� fn(F + Yn)]. Observe that

E[fn(F + Yn)] =

Z
R

E[fn(F + y)]fn(y)dy = E[�p2bn(F )]

= E

Z
R

�0(F + z)�p2bn(z)dz = E�0(F +
p
2Yn):

By Condition 3.1 (ii) and Theorem 2.1, the densities of F and F+
p
2Yn are continuous

and hence, E[�0(F )� �0(F +
p
2Yn)] = limm!1E[fm(F )�fm(F +

p
2Yn)]. A Taylor

expansion of fm around F yields

E[fm(F )� fm(F +
p
2Yn)] =

p
2E[f 0

m
(F )Yn] + 2E[

Z 1

0

f 00
m
(F + �

p
2Yn)(1� �)Y 2

n
d�]:
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Clearly, E[f 0
m
(F )Yn] = 0 by the independence of F and Yn. By (2.4), (3.4), and

Condition 3.1 (ii),

jE[f 00
m
(F + �

p
2Yn)Y

2
n
]j = j

Z
E[f 00

m
(F + �

p
2y)]y2fn(y)dyj

= j
Z
R

E[�m(F + �
p
2y)H3(F; 1)]y2fn(y)dyj

� c
�
kFk�14;p1 + khk�23;p2

�
k(
Z 1

0

h(s)DsFds)
�1k�3

p3
E[Y 2

n
] � cbn:

Hence, jE[�0(F ) � fn(F + Yn)]j � cbn. Similarly, for an independent copy �Yn of Yn,

we obtain by Lemma 3.5,

jE[�0(Fn + Yn)� fn(Fn + Yn)]j

= jE[�0(Fn + Yn) � �0(Fn + Yn +
p
2�Yn)]j

= 2 lim
m!1

j
Z 1

0

Z
R

E[f 00
m
(�
p
2y + Fn + Yn)y

2fn(y)dy(1 � �)d�j

= 2 lim
m!1

j
Z 1

0

Z
R

E[�m(�
p
2y + Fn + Yn) �H

(3)
n

(Fn; 1)]y
2fn(y)dy(1 � �)d�j

� c(kFnk�14;p1 + khnk
�2

3;p2
+ b�3n )k(

Z 1

0

hn(s)DsFnds+ bn)
�1k�4p4EY

2
n � cbn:

If furthermore (3.2) is satis�ed, (3.3) follows as above but with Yn � 0. 2

With the above technique and a further generalization of Condition 3.1 (i) one

can obtain a power expansion of the error.

Theorem 3.6. Assume Condition 3.1 but with (i) replaced by

(i)0 : F � Fn =

lX
i=2

X
j1;:::;ji=0;1

Z
A
j1;:::;ji
n

uj1;::: ;ji(s1; : : : ; si)dW
j1
s1
:::dW ji

si

+
X

j1;::: ;jl+1=0;1

Z
R
j1;::: ;jl+1
n

un(s1; : : : ; sl+1)dW
j1
s1
: : : dW jl+1

sl+1
;

for l � 2, where Aj1;::: ;ji
n is a subset of [0; 1]i with

Pl

i=2

P
j1;::: ;ji=0;1

jAj1;::: ;ji
n j=[2(2l�

2)] � an ! 0 as n!1, R
j1;::: ;jl+1
n is a subset of [0; 1]l+1, and uj1;::: ;ji as well as un

are two measurable stochastic processes not necessarily adapted. Assume

max
i

sup
s1;::: ;si

kuj1;::: ;ji(s1; : : : ; si)kk;p + sup
n

sup
s1;::: ;sl+1

kun(s1; : : : ; sl+1)kk;p <1;

for k 2 Z+, p > 1. Let Yn be an independent normal random variable with mean 0

and variance bn �
Pl

i=2

P
j1;:::;ji=0;1

jAj1;::: ;ji
n j=[2(2l � 2)]. Then for any distribution

T , there exist deterministic functions cj1;::: ;ji and a constant c such that:

sup
n

jE[T (F )� T (Fn + Yn)]

�
lX

i=2

X
j1;::: ;ji=0;1

Z
A
j1;:::;ji
n

cj1;::: ;ji(s1; : : : ; si)ds1 : : : dsij

� c
X

j1;::: ;jl+1=0;1

jRj1;::: ;jl+1
n

j+ o(

lX
i=2

X
j1;::: ;ji=0;1

jAj1;::: ;ji
n

j):
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Furthermore, if (3.2) is satis�ed, then Yn can be replaced by 0.
Note that the second integral in Theorem 3.6 is interpreted as the anticipating

multiple Skorohod integral. In this theorem we have not used the coe�cients an be-

cause this was just a bound for the sum of the areas of the sets Ai;j

n
(see also Section 5).

Corollary 3.7. If the condition (i) 0 in the above theorem is replaced by

(i)00 : F � Fn =

lX
i=2

X
j1;::: ;ji=0;1

Z
A
j1;:::;ji
n

un
j1;::: ;ji

(s1; : : : ; si)dW
j1
s1
: : :dW ji

si
;

where sup
n
maxi sups1;::: ;si ku

n

j1;::: ;ji
(s1; : : : ; si)kk;p � c(k; p), then for any distribu-

tion T , jE[T (F ) � T (Fn + Yn)]j � c
P

l

i=2

P
j1;::: ;ji=0;1

jAj1;::: ;ji
n

j: Furthermore, if
(3.2) is valid, then Yn can be replaced by 0.

4. Application to di�usion processes. We assume for convenience through-

out in this section that b 2 C1
b
(R) and � 2 C1

b
(R). Consider the particular case

when F = X1 is given by (1.1) and Fn = �Xn

1 is given by its Euler approximation
�Xn

ti
= �Xn

ti�1
+ b( �Xn

ti�1
)�ti + �( �Xn

ti�1
)�Wi, where �n = f0 = t0 < t1 < : : : < tn = 1g

is a partition of [0; 1] with mesh m(�n) = maxfti+1 � ti : 0 � i � n � 1g and

�Wi = Wti � Wti�1 . We interpolate �Xn between the grid points by �Xn
t = x0 +R

t

0
b( �Xn

�s
)ds +

R
t

0
�( �Xn

�s
)dWs, where �s = maxfti : ti < sg. We �rst prove that

Condition 3.1 (i) is satis�ed.

Lemma 4.1. Let b 2 C1
b
(R) and � 2 C1

b
(R). Then Condition 3.1 (i) is satis�ed

for an = m(�n).
Proof.

Xt � �Xn

t
=

Z t

0

b0(�0
s
)(Xs � �Xn

s
)ds+

Z t

0

�0(�1
s
)(Xs � �Xn

s
)dWs (4.1)

+

Z
t

0

b( �Xn

s )� b( �Xn

�s
)ds +

Z
t

0

�( �Xn

s )� �( �Xn

�s
)dWs:

Here �0s and �1s are random points in the interval determined by Xs and �Xn
s . In

particular we understand the expression b0(�0
s
) in its integral form b0(�0

s
) =

R 1
0
b0( �Xn

s
+

�(Xs� �Xn
s ))d� and similarly for �0(�1s). Note that (4.1) is linear inX� �Xn. Therefore,

if we de�ne E as the unique solution to Et = 1 +
R
t

0
b0(�0s )Esds +

R
t

0
�0(�1s )EsdWs, we

have

Xt � �Xn

t = Et
Z

t

0

E�1s �0(�0s)fb( �X
n

�s
)(s � �s) + �( �Xn

�s
)(Ws �W�s)gds

+Et
Z t

0

E�1
s

b0(�1
s
)fb( �Xn

�s
)(s � �s) + �( �Xn

�s
)(Ws �W�s )gdWs

� Et
Z

t

0

E�1s �0(�1s )�
0(�0s)fb( �X

n

�s
)(s � �s) + �( �Xn

�s
)(Ws �W�s)gds:

Here b0(�1s) =
R 1
0
b0( �Xn

�s
+ �( �Xn

s � �Xn
�s
))d�, and similarly for �0(�0s). By using the

integration by parts formula; see e.g. [11, (1.49), p. 40], follows,

Xt � �Xn

t
=

X
i;j2f0;1g

Z t

0

Z s2

�s2

ui;j
n
(s1; s2)dW

i

s1
dW j

s2
:
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It is straighforward to show that kui;j
n
(s1; s2)kk;p is uniformly bounded in (s1; s2) and

n. Clearly jAi;j
n
j =

R 1
0

R
s

�s
duds � m(�n). Condition 3.1 (i) is satis�ed. 2

Now we introduce su�cient conditions that ensure the smoothness of the density

of Xt. This also explains the terminology introduced for Condition 3.1 and (3.2).

Condition 4.2 (H�ormander condition). j�(x0)j � � > 0 or jb(x0)�(k)(x0)j �
� > 0 for some k 2 N and for some � > 0.

Condition 4.3 (Uniform ellipticity condition). j�(x)j � � > 0 8x 2 R and for
some � > 0.

Lemma 4.4. (i) If Condition 4.2 is satis�ed then Condition 3.1 is satis�ed for
F = X1, Fn = �Xn

1 with hn(s) = hn;�(s) = �DsFn + (1 � �)DsF , h(s) = DsF ,

en(p) = cpa
p=4
n for some constant cp, bn = dn = an = m(�n).

(ii) If Condition 4.3 is satis�ed and 1� tn�1 � cm(�n) for some c > 0, then (3.2)
is satis�ed with the same choices for hn and h as above.

Results similar to Lemma 4.4 for h and F are well known; see e.g. [11, p 111].

Proof of Lemma 4.4. First we prove Lemma 4.4 (i). Condition 3.1 (i) is satis�ed

by Lemma 4.1. Condition 3.1 (ii) is satis�ed by Lemma 3.3. In fact,

E khn;� � hk
L2[0;1] = (1� �)E

D( �Xn

1 �X1)

L2[0;1]

� cpa
p=4
n :

Furthermore, by Condition 4.2 and the proof of [11, Theorem 2.3.2],E[(
R 1
0 (DsX1)

2ds)�p] <
1, 8p > 1, and Condition 3.1 (ii) follows.

To prove that Condition 3.1 (iii) is satis�ed we note that obviously jan+
R 1
0
(DsX1)

2dsj >
j
R 1
0
(DsX1)

2dsj and jan +
R 1
0
(�Ds

�Xn
1 + (1 � �)DsX1)

2dsj � dn � an. Clearly

sup
n
d�p
n
(a

k(p)=2
n + en(4k(p))

1=2 + b
2k(p)
n ) = 2a

k(p)=2�p
n + b

2k(p)�p
n <1 if 2k(p) � p.

Next we prove Lemma 4.4 (ii). Similar to the proof of Lemma 3.4 we de�ne the

set A � f
R 1
0

�
Ds( �X

n
1 �X1)

�2
ds < 1

4

R 1
0
(DsX1)

2dsg, and have that for any p > 1,

sup
n

sup
�

E[j
Z 1

0

(�Ds
�Xn

1 + (1� �)DsX1)
2dsj�p;A] � 4�pE[j

Z 1

0

(DsX1)
2dsj�p] <1:

Next we �nd a similar bound for the expectation taken over the set Ac. Note that

without loss of generality we can suppose that �(x) � � > 0 for all x 2 R. Then

DsX1 > � exp(
R 1
s
b
0
(Xu)du +

R 1
s
�0(Xu)dWu) (see (7.1)). Also notice that Ds

�Xn

1 =

�( �X(tn
n�1)) � � > 0 for tn�1 < s � 1 (see (7.3, and (7.5)). Hence for � > 1=2 ,

j
Z 1

0

(�Ds
�Xn

1 + (1� �)DsX1)
2dsj �

1

4
�2(1� tn�1):

For � � 1=2 we use that

j
Z 1

0

(�Ds
�Xn

1 + (1� �)DsX1)
2dsj

�
1

4
�2
Z 1

tn�1

exp(2

Z 1

s

b
0
(Xu)du+ 2

Z 1

s

�0(Xu)dWu)ds:

In Ac the above estimates together with Chebyshev's inequality and Lemma 3.3 com-
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plete the proof as in the proof of Lemma 3.4. That is,

sup
n

sup
�

E[j
Z 1

0

(�Ds
�Xn

1 + (1 � �)DsX1)
2dsj�p;Ac]

� 4p��2p((1 � tn�1)
�pP (Ac)

+E[(

Z 1

tn�1

exp(2

Z 1

s

b
0
(Xu)du+ 2

Z 1

s

�0(Xu)dWu)ds)
�2p]1=2P (Ac)1=2)

� cm(�n)
�p(P (Ac) + P (Ac)1=2):

From here the result follows as P (Ac) � ck(m(�n))
k=2 for any k > 1. Taking k big

enough �nishes the proof of the Lemma. 2

Section 3 gives the rate of convergence of the Euler approximation. The same

proof gives the following stronger result:

Proposition 4.5. Assume Condition 4.2. Then

sup
x

jE�x(X1)� E�x( �X
n

1 + Yn)j � cm(�n);

where Yn is an independent normal random variable with zero mean and variance
m(�n). Furthermore, if Condition 4.3 is valid and 1� tn�1 � cm(�n) for some c > 0,
then

sup
x

jE�x(X1) �E�x( �X
n

1 )j � cm(�n):

This stronger version follows because the antiderivative of the delta function is the

indicator function which is bounded in x. Applying Remark 2.2 to our current setting

gives

Remark 4.6 (Control variate method). (i) Assume Condition 4.2 with the
choices for hn and h in Lemma 4.4(i). Let �hnn;r(x) = (1f �Xn

1
+Yn>xg � c(x))Hhn ( �Xn

1 +

Yn; '(
�Xn

1 +Yn�x
r

)). Then E(�hnn;r(x)) = E�x( �X
n
1 + Yn) and supx;nE(�

hn
n;r(x)

2) <1. If

E�x( �X
n

1 + Yn) > 0 then E[Hhn( �Xn

1 + Yn; '(
�Xn

1 �x
r

))2] > 0 and, for �xed ' and r, the
variance of �hn;r(x) is minimized by

c(x) = ch
n;r

(x) =
E[1f �Xn

1
+Yn>xgH

hn( �Xn

1 + Yn; '(
�Xn

1 +Yn�x
r

))2]

E[Hhn( �Xn

1 + Yn; '(
�Xn

1
+Yn�x
r

))2]
:

(ii) Assume Condition 4.3 with the choices for hn and h in Lemma 4.4(ii). Then
Yn above can be replaced by 0. Furthermore E�x( �X

n
1 ) > 0. 2

Results similar to Proposition 4.5 have already been obtained in [1] and [2]. The

main di�erence with the results here is that the method of proof is somewhat di�erent

and that our Proposition 4.5 is the result of a general theory based on Itô-Taylor

expansions which can also be applied to other situations. In fact, under further

restrictions on the structure of the sets An, Rn and the continuity of the processes u

and un one can improve Theorem 3.6 to obtain Taylor expansions of the errors. For

example in the uniformly elliptic case we have

E[T (Fn) � T (F )] = c1an + c
(n)
2 a2n;

for any distribution T . In the general H�ormander case,

E[T (Fn + Yn) � T (F )] = c1an + c2bn + c
(n)
3 anbn + c

(n)
4 a2n + c

(n)
5 b2n;
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where Yn is a mean zero normal random variable with variance bn, independent ofW ,

and supn jc
(n)
i
j <1, i = 2; : : : ; 5. This result will be proven elsewhere.

5. Kernel density estimation method. So far we have given convergence

results for the density approximation by integration by parts. In this section we

discuss heuristically the "most natural" approach by kernel density estimates and

compare the asymptotic variances.

The kernel density estimation technique is a very well known method used in

statistics. The main di�erence with our situation here is that in statistics the amount

of data is limited while here the amount of simulations can be �xed by the user.

Nevertheless the same theory gives some insights of the optimal use of this method

for simulation of densities.

That is, let � be a smooth positive even function with
R
R
�(x)dx = 1. Then the

approximation of the density is obtained by computing
P

N

i=1 �(
F
i

n
�x
h

)=(Nh). The

error is measured through the L2(R)-norm of the variance. Estimating this error

requires the study of various errors.

The �rst error is the di�erence between the expectations of the simulated approx-

imation and the limit random variable,

1

h
E[�(

Fn � x

h
)� �(

F � x

h
)] = c1(x)an + c

(h;n)
2 (x)a2n; (5.1)

where sup
n;h

jc(h;n)2 (x)j < 1. Here the constants obviously depend also on �. To

obtain this result it is enough to notice that

1

h
E[�(

Fn � x

h
)� �(

F � x

h
)] = E[�x(Fn + hY )� �x(F + hY )];

where Y is a smooth random variable with density given by �. This converts the

estimation of the error into the uniformly elliptic case. Therefore the same method

of proof as in Theorem 3.6 can be used.

The second error is the di�erence between the density to be approximated and

the approximation with the kernel function; see e.g. [12]:

1

h
E[�(

F � x

h
)� �x(F )] =

1

2
h2p00(x)

Z
u2�(u)du+O(h4)p(4)(x);

where p is the density of F . Similarly for the mean square error,

E[(
1

Nh

NX
i=1

�(
F i
n � x

h
) � p(x))2]

= Var[
1

Nh

NX
i=1

�(
F i

n
� x

h
)] + (

1

h
E[�(

Fn � x

h
)� �(

F � x

h
)])2

+(E[
1

h
�(
F � x

h
)� p(x)])2 + 2

1

h
E[�(

Fn � x

h
)� �(

F � x

h
)]E[

1

h
�(
F � x

h
)� p(x)]

= pn(x)
1

Nh

Z
�2(u)du+ c1(x)

2a2n +
h4

4
(p00(x)

Z
u2�(u)du)2

+c1(x)h
2anp

00(x)

Z
u2�(u)du+ higher order terms;
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where pn is the density of Fn. If one considers as a minimization criterion the L1-

norm of the mean squared error, this gives the classical criterion of kernel density

estimation. That is,

Z
E[(

1

Nh

NX
i=1

�(
F i

n
� x

h
) � p(x))2]dx

�
1

Nh

Z
�2(u)du+ c21a

2
n
+
h4

4

Z
p00(x)2dx(

Z
u2�(u)du)2:

The optimum is therefore obtained when � is the Epanechnikov kernel and h �
N�1=5 and N � a

�5=2
n :

6. Optimal choice for the integration by parts method. As in the previous

section we will �nd heuristically an optimal choice of localization function ' and

localization parameter r, for the integration by parts method introduced in Section

2. In order to do this we will �nd an asymptotical expression for the variance of the

simulations.

Let ' 2 C1
b
with '(0) = 1. One criteria for optimality may be to choose ' and r

so that they minimizeZ
R

E[1(Fn + Yn � x)Hh(Fn + Yn; '(
Fn + Yn � x

r
))2]dx (6.1)

under the general H�ormander condition. This criteria can be studied but is cum-

bersome as the optimal choices will depend on n. Instead one may study the limit

assuming that the error terms are small. Therefore for simplicity we consider, for

small r, under convenient smoothness and boundedness conditions, the asymptotic

limit of (6.1) which, using (2.5), equals
R
R
I(x)dx where

I(x) = E[1(F � x)('(
F � x

r
)Hh(F; 1)�

1

r
'0(

F � x

r
))2]:

Let Hi(x) = E[Hh(F; 1)ijF = x] for i = 1; 2, and let p be the density of F . Then

I(x) =

Z 1

x

E[('(
y � x

r
)Hh(F; 1)�

1

r
'0(

y � x

r
))2jF = y]p(y)dy

=

Z 1

x

(
1

r2
'0(

y � x

r
)2 �

2

r
''0(

y � x

r
)H1(y) + '(

y � x

r
)2H2(y))p(y)dy

= r

Z 1

0

(
1

r2
'0(z)2 �

2

r
''0(z)H1(x+ rz) + '(x+ rz)2H2(x+ rz))p(x + rz)dz:

Under smoothness and boundedness conditions of Hi, ' and p, I(x) = I2(x) +O(r2)

for small r, where

I2(x) =
1

r
p(x)

Z 1

0

'0(z)2dz +H1(x)p(x)

Z 1

0

('0(z)2zp0(x) � 2''0(z))dz

+rp00(x)

Z 1

0

1

2
'0(z)2z2dz +H2(x)p(x)

Z 1

0

'2(z)dz

�2(H1(x)p
0(x) +H0

1(x)p(x))

Z 1

0

''0(z)zdz (6.2)
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and Z
R

I2(x)dx =
1

r

Z 1

0

'0(z)2dz + r

Z 1

0

'2(z)dz

Z
R

H2(x)p(x)dx; (6.3)

where
R
R
H2(x)p(x)dx = E[Hh(F; 1)2] and

R
R
H1(x)p(x)dx = E[Hh(F; 1)] = 0 . An

optimal value for r which minimizes (6.3) is given by

r =

 R1
0

'0(z)2dz

E[Hh(F; 1)2]
R1
0

'(z)2dz

!1=2

:

Replacing this r in (6.3) yields

Z
R

I2(x)dx = 2

�
E
�
Hh(F; 1)2

� Z 1

0

'(z)2dz

Z 1

0

'0(z)2dz

�1=2
;

which, by variational analysis, is minimized for ' solving

'(z)

Z 1

0

'0(z)2dz � '00(z)

Z 1

0

'(z)2dz = 0: (6.4)

For any � > 0, the function '(z) = e��jzj is symmetric, solves (6.4), and satis�es

'(0) = 1. Hence we propose as a natural choice of r and ',

r =

 R1
0

'0(z)2dz

E[Hh(F; 1)2]
R1
0

'(z)2dz

!1=2

; '(x) = e��jxj; (6.5)

where � > 0 may be arbitrarily chosen. Note that the main error term (6.3) with

optimal ' is independent of the value of �.

After the minimization in r and ' is done one can apply the control variate

method introduced in Remark 4.6. Therefore the variance error for the integration

by parts with control variates and localization is in the uniformly elliptic case,

E[(
1

N

NX
i=1

(1(F i

n
� x) � cn(x; r)) �Hn(F

i

n
; '(

F i

n
� x

r
)) � p(x)))2]

� C1(x)
2a2n +

Var[(1(Fn � x)� cn(x; r)) �Hn(Fn; '(
Fn�x
r

))]

N
:

The optimal choice is therefore N � a�2n . For the general H�ormander case N �
(an + bn)

�2.

6.1. Comparison of the kernel density estimate and the integration

by parts method: some conclusions and remarks. A �rst look at both meth-

ods shows that kernel density estimation has a square bias asymptotically equal to

h4p00(x)2
R
u2�(u)du due to the fact of using �, besides the square bias c1(x)

2a2
n
+

c2(x)
2b2n from the approximation of F . If the �rst type of error is much smaller

than the second one, then only the second one is important when comparing the two

methods.

In order to compare both methods, suppose that an = n�1. Then the optimal

sample size for the integration by parts method is N = n2, which is signi�cantly less
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than the optimal sample size N = n5=2 for the kernel density method. Furthermore

the kernel density method creates bias while the integration by parts does not at least

theoretically. Nevertheless the amount of calculations in the integration by parts

method is higher.

The optimal parameter rn;N does not go to 0 as n, N increase. In fact, r could

remain constant throughout the calculations with little increase of the variance. It

seems that rn;N ! r > 0 in most of the cases. Numerical experiments indicate that

the choice of r does not look to be sensitive. Kernel density estimation often requires

a �ne tuning of the bandwidth h.

There is no clear way of how to apply a control variate method to kernel density

estimation methods.

In higher dimensions the kernel density estimate rate of convergence deteriorates

typically to N� 4
d+4 while the integration by parts keeps the same rate.

Constants in the integration by parts methods increase in value as the degree of

hypoellipticity increase.

Similar variance reductions could be studied on other environments were an inte-

gration by parts formula is available. For example in the Poisson case one could use

the same ideas as shown here; see e.g. [3].

7. Numerical implementation. We consider the particular case when F = X1

is given by (1.1) and Fn is its Euler approximation. We �rst note that

DsXt =

�
�(Xs)e

R
t

s
b
0

(Xv)dv+
R
t

s
�
0(Xv)dWv ; s � t;

0; s > t;
(7.1)

where b
0
(Xv) = b0(Xv)� 1

2�
0(Xv)

2; see e.g. [11, p. 107]. Using (7.1), it follows that

DsDtX1 = Ds[Xt]�
0(Xt)e

R
1

t
b
0

(Xv)dv+
R
1

t
�
0(Xv)dWv (7.2)

+ [�0(Xs)1ft�sg +

Z 1

t

b
0 0(Xv)DsXvdv +

Z 1

t

�00(Xv)DsXvdWv]DtX1:

Since

Dtj
�Xn

tk
= Dtj

�Xn

tk�1
+ [b0( �Xn

tk�1
)�t+ �0( �Xn

tk�1
)�Wk]Dtj

�Xn

tk�1

+ �( �Xn

tk�1
)Dtj�Wk;

and Ds�Wtk = 1ftk�1<s�tkg, it follows that Dtk
�Xn

tk
= �( �Xn

tk�1
). By induction,

Dtj
�Xn

tk
=

8>>>>><
>>>>>:

0; j = 0;

�( �Xn
tk�1

); 1 � j = k;

�( �Xn
tj�1

)�k�1
l=j (1 + b0( �Xn

tl
)�tl+1 + �0( �Xn

tl
)�Wl+1); 1 � j � k � 1;

0; j � k + 1:

(7.3)
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Note that (7.3) is a discrete version of (7.1) (�j(1+"j) � e
P

j
(�j��2j=2)). Using similar

arguments one obtains

Dti
Dtj

�Xn

tk
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0; j = 0;

0; j � k + 1;

b0( �Xn
tk�1

)Dti
�Xn
tk�1

; j = k

Dti
[ �Xn

tj�1
]b0( �Xn

tj�1
)�k�1

l=j (1 + a0( �Xn
tl
)�t+ b0( �Xn

tl
)�Wl+1)

+
�P

k�1
l=j

[a00( �Xn

t
l
)�t+b00( �Xn

t
l
)�Wl+1 ]Dt

i

�Xn

t
l

1+a0( �Xn

t
l
)�t+b0( �Xn

t
l
)�Wl+1

+
b
0( �Xn

t
i�1

)1fj�i�1�k�1g

1+a0( �Xn

t
i�1

)�t+b0( �Xn

t
i�1

)�Wi

�
Dtj

�Xn
tk
;

2 � j � k � 1:

; (7.4)

which is a discrete version of (7.2).

To apply the above formulas to the integration by parts method we need to use

that

Ds
�Xn

tk
= D

�
+
s

�Xn

tk
; (7.5)

where �+
s
= minfti : ti � sg. This follows because

Ds
�Xn

tk
= Ds[ �X

n

tk�1
+ b( �Xn

tk�1
)�tk + �( �Xn

tk�1
)�Wk]

= [1 + b0( �Xn

tk�1
)�tk + �0( �Xn

tk�1
)�Wk]Ds

�Xn

tk�1
+ �( �Xn

tk�1
)1ftk�1<s�tkg:

We then have that for tk�1 < s < tk, Ds
�Xn

tk
= �( �Xn

tk�1
) = Dtk

�Xn

tk
. By induction we

have in general that for tj�1 < s < tj, Ds
�Xn
tk
= Dtj

�Xn
tk
for j = 1; :::; k. We also have

that

DsDt
�Xn

tk
= D

�
+
s

D
�
+
t

�Xn

tk
: (7.6)

Using (7.5), (7.6) and (2.7) gives

H1( �Xn

1 ; 1) =
W1Pn

1 Dti
�Xn
1�ti

+

P
n

i;j=1DtiDtj
�Xn

1�ti�tj

(
Pn

1 Dti
�Xn
1�ti)

2
;

from which H1( �Xn

t ; '((
�Xn

t � x)=r)) can be computed by (2.5). An approximation to

the density using the integration by parts formula can now be explicitly written. For

example,

fn;N (x) =
1

N

NX
i=1

(1f �Xn;i

1
�xg � ĉ1loc(x))H

1( �X
n;i

1 ; '(
�Xi
1 � x

r
)); (7.7)

where

ĉ1loc(x) =

1
N

PN

i=1 1f �Xn;i

1
�xgH

1( �X
n;i

1 ; '(
�Xn;i

1
�x

r
))2

1
N

PN

i=1H
1( �X

n;i

1 ; '(
�Xn;i

1
�x

r
))2

is a natural estimate of (2.8).

We perform the simulation (7.7) with optimal ' and r from (6.5) with � = 1 and

equidistant partition m(�n) = n�1 and compare with a locally optimal r (numerically

obtained optimal r for �xed x) and the kernel density estimate; see Figure 1. We also

compare the convergences in Figure 2. The computations are made in matlab.



VARIANCE REDUCTION METHODS 19

(a) −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Fig. 1. Monte Carlo simulation of dX = dt+ (sinX + 2)dW , X0 = 0; n = m(�n)�1 = 3000,

N = 1000. (a) Approximation using the integration by parts formula with control variate: local
search of optimal r - - - (optimal r for given x), and global search of optimal r - � - (minimizing
(6.1)), respectively. Gaussian kernel density estimate with optimal bandwidth ([4, p. 47]) . . .. The
numerical solution of the Fokker Planck equation |. (b) Corresponding sample variances of the
estimates.
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0.12

Fig. 2. Monte Carlo simulation of dX = dt+ (sinX + 2)dW , X0 = 0. In (a), convergence of

approximations to the density at x = 2 for n = m(�n)�1 = 50;51; : : : ; 125, N = n2. Integration by
parts method with control variate: local search of optimal r - - - (optimal r for given x), Gaussian
kernel density estimate with optimal bandwidth ([4, p. 47]) . . .. In (b), corresponding sample

variances.
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