Paper #466
- Títol:
- On the concept of optimality interval
- Autors:
- Pelegrí Viader, Jaume Paradís i Lluís Bibiloni
- Data:
- Maig 2000
- Resum:
- The approximants to regular continued fractions constitute `best approximations' to the numbers they converge to in two ways known as of the first and the second kind. This property of continued fractions provides a solution to Gosper's problem of the batting average: if the batting average of a baseball player is 0.334, what is the minimum number of times he has been at bat? In this paper, we tackle somehow the inverse question: given a rational number P/Q, what is the set of all numbers for which P/Q is a `best approximation' of one or the other kind? We prove that in both cases these `Optimality Sets' are intervals and we give a precise description of their endpoints.
- Paraules clau:
- Diofantine approximations, continued fractions, metric theory
- Codis JEL:
- C00
- Àrea de Recerca:
- Estadística, Econometria i Mètodes Quantitatius
- Publicat a:
- International Journal of Mathematics and Mathematical Sciences, 30, 9, (2002), pp. 559-567
Descarregar el paper en format PDF