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1 Introduction

The connection between continued fractions and best approximations is well

known. It seems that Huygens (1629{1695) was the �rst to realise that the

approximants of a continued fraction show the property that can be described

as `best approximation' to a number, see [1, p. 86 and �.]. The following two

de�nitions of best approximation are from Kintchine's Continuous Fractions

([5, pp. 27-35]):

Definition (Kintchine). a) A rational fraction P=Q is a best approxima-

tion of the �rst kind to the real number !, if any other rational fraction

having the same or smaller denominator di�ers from this number more than

P=Q. In symbols, ���! � p

q

��� > ���! � P

Q

���
whenever p=q 6= P=Q, 0 � q � Q.

b) A rational fraction P=Q is a best approximation of the second kind to

the real number !, if from p=q 6= P=Q, 0 � q � Q there follows

jq ! � pj > jQ! � P j :

A best approximation of the second kind is also known as an optimal approx-

imation.

Remark. Best approximations of the second kind sometimes behave in a

rather non intuitive way. For instance, it may happen that p=q < P=Q < !

while p=q approximates ! better than P=Q.

The motivation for this paper comes from an interesting problem by Bill

Gosper cited in [6, page 363, Ex. 39].

If a baseball player's batting average is :334, what is the fewest

possible number of times he has been at bat?

The problem, in a slightly more general setting is (see [3]):

Given an interval, �nd in it the rational number with the

smallest numerator and denominator.

Gosper's solution is the following:

\Express the endpoints as continued fractions. Find the �rst term where

they di�er and add 1 to the lesser term, unless it's last. Discard the terms

to the right. What's left is the continued fraction for the smallest rational
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in the interval. (If one fraction terminates but matches the other as far as it

goes, append an in�nity and proceed as above.)"

This problem gave us the ideas: what if we reverse the question? Given

a rational number, P=Q, what is the set of real numbers for which P=Q is a

`best approximation', either of the �rst kind or the second? Is it an interval

or a more complicated set? In the case of best appoximations of the �rst

kind, it seems quite natural that this set is an interval. But in the case of

the best approximations of the second kind the remark that follows their

de�nition makes it not so obvious.

We call these sets Optimality Intervals and the purpose of this paper is

to prove that they are intervals indeed. More formally:

De�nition 1. a) Given a positive proper rational fraction P=Q we write

O1 (P/Q) to refer to the set of real numbers to which P=Q is a best approx-

imation of the �rst kind and

b) O2 (P/Q) to refer to the set of real numbers to which P=Q is a best

approximation of the second kind.

Before going any further, we need some results from the arithmetic theory

of continued fractions:

2 Some Results on Continued Fractions

As usual we write

[a0; a1; a2; : : : ; an] = a0 +
1

a1 +
1

a2 + ...
+

1

an

and since mostly we are going to stay in [0; 1], we drop the integer part a0
so that [a1; a2; : : : ; an] is to be understood as [0; a1; a2; : : : ; an].

If continued fractions must represent numbers uniquely, the identity

[a1; a2; : : : ; an; 1] = [a1; a2; : : : ; an + 1]

must be dispensed with, usually by imposing that, apart from the continued

fraction [1] representing the number 1, the last partial quotient of all other

terminating continued fractions has to be an integer greater than 1. That is

the option adopted in [5].
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A di�erent strategy may be chosen which consists in accepting both repre-

sentations as valid and use one or the other depending on the current setting

(see [4, p. 133 140]). That is the convention we shall adopt in this paper.

For non terminating continued fractions, which represent irrational num-

bers, no ambiguity arises.

De�nition 2. a) The set of real numbers in [0; 1] whose �rst n partial quo-

tients are given positive integers a1; a2; : : : ; an constitute an interval with

endpoints: [a1; a2; : : : ; an] and [a1; a2; : : : ; an + 1] which we shall refer to as

a fundamental interval of rank n, or a cylinder. We write Jn(a1; a2; : : : ; an)

to denote such an interval and jJnj to refer to the its length.

With the usual notations for the approximants:

pn�1

qn�1
= [a1; a2; : : : ; an�1] ;

pn

qn
= [a1; a2; : : : ; an]

it is seen at once that

jJn(a1; a2; : : : ; an)j =
1

qn�1(qn�1 + qn)
:

Any real number ! 2 Jn(a1; a2; : : : ; an) admits a representation of the

form

! = [a1; a2; : : : ; an + �] ; � 2 (0; 1]:

The identity

[m+ �] =
1

m + �
=

1

m
�

�

m(m + �)

admits the following generalization

[a1; a2; : : : ; an + �] =
pn + pn�1�

qn + qn�1�
=

pn

qn
+ (�1)n�1

(1 + �n)�

1 + �n�
jJnj

with

�n :=
qn�1

qn
= [an; : : : ; a1] :

The ratios �n; n = 1; 2; : : : were introduced by Paul L�evy in his 1929 paper

on the Gauss-Kuzmin Theorem [8]. For the details see [9, p. 10 and pp. 155-

158].

We shall also adhere to the following convention which we state in the

form of a de�nition.

De�nition 3. a) Given a positive proper rational fraction P=Q we write

P

Q
= [a1; a2; : : : ; an; m]
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where n � 0 is an integer and a1; a2; : : : ; an; m are positive integers. It is to

be understood that the case n = 0 implies that P=Q is the unit fraction 1=m.

(m is allowed to take the value 1.)

Proposition 1. Given two positive proper fractions p=q and P=Q the rela-

tion ���P
Q
�

p

q

��� = 1

Qq
; (1)

holds if, and only if, for some integer n � 0 there are n+1 positive integers,

a1; a2; : : : ; an; m, which satisfy

p

q
= [a1; a2; : : : ; an] ;

P

Q
= [a1; a2; : : : ; an; m] :

which amounts to saying that p=q and P=Q are both consecutive approximants

to the numbers of the fundamental interval Jn+1(a1; a2; : : : ; an; m).

Remark. If m = 1 and only in that case p

q
and P

Q
are the endpoints of an

interval of rank n+ 1. In symbols,

p

q
= [a1; a2; : : : ; an] ;

P

Q
= [a1; a2; : : : ; an; 1] :

It is perhaps worth to point out that in the simplest case, that of order

zero, that is to say when
p

q
=

0

1
= [0;]

then, necessarily,
P

Q
=

1

m
= [m] = [m� 1; 1]

for m = 2; ; 3 : : :

When the order is equal to one, which means p

q
= 1

1
= [1] then, necessarily,

P

Q
=

m� 1

m
=

1

1 +
1

m� 1

= [1; m� 1]

for m = 2; 3; : : : . The form [a1; a2; : : : ; an; m] has been chosen to stress the

fact that the same pattern propagates to any order of depth.

For the proof, see [4, Theorem 172, p. 140]).
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Lemma 1. Given the positive proper fraction P=Q = [a1; a2; : : : ; an; m], n �

0, m � 2, if we set

pn

qn
= [a1; a2; : : : ; an]

Pn+1

Qn+1

= [a1; a2; : : : ; an; m� 1] ;

then, obviously, qn < Q and Qn+1 < Q while, except for P=Q itself the

rational numbers in the open interval with endpoints pn=qn and Pn+1=Qn+1

have denominators strictly larger than Q.

In other words pn=qn and Pn+1=Qn+1 are the closest fractions to P=Q with

denominators less than or equal to Q. In addition we have8>><
>>:

pn

qn
<

P

Q
<

Pn+1

Qn+1

n = 0; 2; 4; : : :

Pn+1

Qn+1

<
P

Q
<

pn

qn
n = 1; 3; 5; : : : :

Proof Any number p=q laying between pn=qn and P=Q may be written as

[a1; a2; : : : ; an; m+ k + �] ; k � 1 � 2 (0; 1)

so that [a1; a2; : : : ; an; m+ k] is an approximant to p=q and since the sequence

of denominators is strictly increasing. q > (m+k)qn+qn�1 � mqn+qn�1 = Q.

On the other hand, the numbers laying between P=Q and Pn+1=Qn+1

constitute the fundamental interval Jn+1(a1; a2; : : : ; an; m� 1).

3 Calculation of O1.

Proposition 2. The set of real numbers to which the positive proper frac-

tion P=Q = [a1; a2; : : : ; an; m] is a best approximation of the �rst kind is an

interval with endpoints(
r := [a1; a2; : : : ; an; 2m; an; : : : ; a1] ;

s := [a1; a2; : : : ; an; m� 1; 2; m� 1; an; : : : ; a1] :

Proof It is obvious that given two fractions p=q and P=Q which we may

suppose ordered from left to right, and any real number ! satisfying

1

2

�
p

q
+

P

Q

�
< ! �

P

Q

is better approximated by P=Q.
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In view of Lema 1 we only have to show that

1

2

�
pn

qn
+

P

Q

�
= [a1; a2; : : : ; an; 2m; an; : : : ; a1]

Since r belongs to the fundamental interval Jn := Jn(a1; a2; : : : ; an) it

can be written as

r = [a1; a2; : : : ; an + x] =
pn

qn
�

(1 + �n)x

1 + �nx
jJnj

for some rational x, 0 < x � 1 and �n = [an; : : : ; a1]. Since P=Q may be

written as
P

Q
= [a1; a2; : : : ; an; m] =

pn

qn
�

(1 + �n)
1

m

1 + �n
1

m

jJnj

the arithmetic mean takes the form

1

2

�
pn

qn
+

P

Q

�
=

pn

qn
�

1

2

(1 + �n)

m+ �n
jJnj

and equating the two expressions,

x

1 + �nx
=

1

2(m + �n)
:

A simple calculation shows that the last equation is equivalent to

x =
1

2m+ �n

and since �n = [an; : : : ; a1] we �nally get

x = [2m; an; : : : ; a1]() r = [a1; a2; : : : ; an; 2m; an; : : : ; a1] :

As to the other endpoint s, again in view of Lema 1 setting

Jn+1 := Jn+1(a1; a2; : : : ; an; m� 1)

the same argument applies and now we have

s :=
1

2

�
Pn+1

Qn+1

+
P

Q

�
=

Pn+1

Qn+1

�

1

2
jJn+1j

which, as the midpoint of Jn+1, can also be written as

[a1; a2; : : : ; an; m� 1; y] =
Pn+1

Qn+1

�

(1 + �n+1)y

1 + �n+1y
jJn+1j
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for some rational y, 0 < y � 1 and �n+1 = [m� 1; an; : : : ; a1]. Equating, we

get
1

2
=

(1 + �n+1)y

1 + �n+1y

which is easily seen to imply

y =
1

2 + �n+1
= [2; m� 1; an; : : : ; a1] ;

and, �nally

s = [a1; a2; : : : ; an; m� 1; 2; m� 1; an; : : : ; a1]

as was to be proved.

4 Calculation of O2.

For P=Q falling short of being an optimal approximation to the real number

! there must exist a fraction p=q with q � Q and

jq ! � pj � jQ ! � P j ; (2)

which might be phrased saying that p=q prevents P=Q from being an optimal

approximation to !.

The following remarks show that when studying approximations of the

second kind, mediant fractions play the role formerly played by arithmetic

mean. If we suppose for instance, that p=q < ! < P=Q, then condition (2)

amounts to

(q +Q)! � p+ P () ! �
p+ P

q +Q
;

while in the case that p=q < P=Q < ! then condition (2) is equivalent to

(P � p)! � Q� q () ! �
P � p

Q� q
:

To sum up, if p=q < P=Q the condition for p=q not to prevent P=Q from

being an optimal approximation to ! is that ! belong to the open interval

Il :=
�p+ P

q +Q
;
P � p

Q� q

�
:

while if P=Q < p=q the condition is

! 2
�P � p

Q� q
;
p+ P

q +Q

�
=: Ir:
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Since no ambiguity may arise, we may agree to write I (p=q ! P=Q) to

refer to Il or Ir depending on which side p=q lies. With this notation it

becomes obvious that

O2

�
P

Q

�
=

\
p�q�Q

I

�
p

q
!

P

Q

�

which, in addition, proves that O2 (P=Q) is an interval. The following lema,

where we switch to determinant notation, does most of the job.

Lemma 2. Let a=b; p=q; P=Q be three positive proper fractions.

a) If a=b < p=q < P=Q, the condition

P

Q
�

p

q
=

1

Qq
()

����P p

Q q

���� = 1 (3)

implies

i)
a+ P

b +Q
�

p+ P

q +Q
and ii)

P � p

Q� q
�

P � a

Q� b
: (4)

b) In a similar way, if P=Q < p=q < a=b then the condition

p

q
�

P

Q
=

1

Qq
()

����p P

q Q

���� = 1 (5)

implies

i)
p+ P

q +Q
�

a + P

b +Q
and ii)

P � a

Q� b
�

P � p

Q� q
: (6)

In other words, in any case

I

�
p

q
!

P

Q

�
� I

�
a

b
!

P

Q

�

Proof We only give the details of case a). It is su�cient to show that

i)

����p+ P a+ P

q +Q b +Q

���� � 0 and ii)

����P � a P � p

Q� b Q� q

���� � 0: (7)

Since (3) implies ����p+ P P

q +Q Q

���� =
����P � p P

Q� q Q

���� = �1
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from ����p+ P a+ P

q +Q b +Q

���� =
����p+ P a

q +Q b

����+
����p+ P P

q +Q Q

���� =
����p+ P a

q +Q b

����� 1

and the fact that

����p+ P a

q +Q b

���� is a positive integer we get

����p+ P a+ P

q +Q b+Q

���� � 1� 1 = 0:

which proves case (7) i).

In an analogous way, from����P � a P � p

Q� b Q� q

���� =
����P P � p

Q Q� q

���� +
�����a P � p

�b Q� q

���� = �1 +
����P � p a

Q� q b

���� :
Since, obviously a=b < P=Q < (P �p)=(Q�q), again

����P � p a

Q� q b

���� is a positive
integer and (7) ii) follows.

Proposition 3. The set of real numbers to which the positive proper fraction

P=Q = [a1; a2; : : : ; an; m] is a best approximation of the second kind is an

interval with endpoints(
r := [a1; a2; : : : ; an; m+ 1] = [a1; a2; : : : ; an; m; 1]

s := [a1; a2; : : : ; an; m� 1; 2] :
(8)

Proof By Lema 1, pn=qn and Pn+1=Qn+1 are the closest fractions to P=Q

with denominators less than or equal to Q and, obviously verify (3), Lema 2

implies that no other fraction may prevent P=Q from being an optimal ap-

proximation to the numbers of the set

I

�
pn

qn
!

P

Q

�\
I

�
Pn+1

Qn+1

!

P

Q

�

which is easily seen to be the interval with endpoints the mediant fractions

pn + P

qn +Q
and

Pn+1 + P

Qn+1 +Q
:

Two further calculations show that

pn + P

qn +Q
=

(m+ 1)pn + pn�1

(m+ 1)qn + qn�1
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and that

Pn+1 + P

Qn+1 +Q
=

(2m� 1)pn + 2pn�1

(2m� 1)qn + 2qn�1
=

(m� 1 + 1

2
)pn + 2pn�1

(m� 1 + 1

2
)qn + 2qn�1

;

which prove (8).
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