Tornar a Working Papers

Paper #376

Títol:
A sharp concentration inequality with applications
Autors:
Stéphane Boucheron, Gábor Lugosi i Pascal Massart
Data:
Abril 1999
Resum:
We present a new general concentration-of-measure inequality and illustrate its power by applications in random combinatorics. The results find direct applications in some problems of learning theory.
Paraules clau:
Concentration of measure, Vapnik-Chervonenkis dimension, logarithmic Sobolev inequalities, longest monotone subsequence, model selection
Codis JEL:
C1
Àrea de Recerca:
Estadística, Econometria i Mètodes Quantitatius
Publicat a:
Random Structures and Algorithms, 16, (2000), pp. 277-292

Descarregar el paper en format PDF