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1 Introduction

The phenomenon of measure concentration has recently received distinguished atten-

tion due to its much better understanding and its spectacular power and simplicity

in applications. The basic methods for proving concentration inequalities have been

(1) martingale methods|see McDiarmid [22], [23] for excellent surveys;

(2) information-theoretic methods, see Alhswede, G�acs, and K�orner [1], Marton

[17], [18],[19], Dembo [5] and Massart [21];

(3) Talagrand's induction method [27],[25],[26], which led to a large variety of pow-

erful new inequalities.

Recently, a new proof technique emerged based on logarithmic Sobolev inequal-

ities, see Ledoux [14],[13]. The method has been shown to provide the sharpest in-

equalities for empirical processes (Massart [20]). The purpose of this paper is to show

that the concentration inequalities obtained by this method have wide applications

outside of empirical process theory. In Section 2 we present a general concentration

inequality, which is derived from results in Massart [20]. In Section 3 this inequality

is applied to prove sharp concentration of certain random combinatorial objects such

as the empirical vc dimension of a family of sets as well as to sharpen earlier concen-

tration inequalities for the length of the longest increasing subsequence and for other

con�guration functions. In Section 4 we show that the new inequality may be used

to prove new concentration inequalities for quantities like the number of increasing

subsequences or the empirical Vapnik-Chervonenkis entropy (vc-entropy) of a class

of sets. These concentration results have direct applications in learning theory, which

are illustrated in Section 5.
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2 A concentration inequality for nonnegative func-

tionals

The main result of the paper is the following concentration inequality for functionals

of independent (not necessarily identically distributed) random variables:

Theorem 1 Let (X1; :::; Xn) be independent random variables taking values in some

measurable set X , and let f : X n ! [0;1) be a function. Assume that there exists

another function g : X n�1 ! R such that for any x1; : : : ; xn 2 X , the following

properties hold:

0 � f(x1; : : : ; xn)� g(x1; : : : ; xi�1; xi+1; : : : ; xn) � 1; for every 1 � i � n (1)

and

nX
i=1

[f(x1; : : : ; xn)� g(x1; : : : ; xi�1; xi+1; : : : ; xn)] � f(x1; : : : ; xn): (2)

Denote Z = f(X1; : : : ; Xn), and de�ne h (u) = (1 + u) log (1 + u) � u, for u � �1.

Then for every positive number t

P [Z � E [Z] + t] � exp

�
�E [Z] h

�
t

E [Z]

��
: (3)

Moreover for every positive number t � E [Z]

P [Z � E [Z]� t] � exp

�
�E [Z] h

�
�

t

E [Z]

��
: (4)

The proof of inequality (3) may be obtained by a modi�cation of the proof of

an inequality in [20] for the right tail of the supremum of a nonnegative empirical

process. The left-tail inequality (4) is new. The proof of a more general version of

the theorem is given in the Appendix.

Remarks. 1. A typical application of the theorem is to the supremum of sums of

nonnegative bounded random variables (empirical processes). Indeed, let X1; :::; Xn

be independent [0; 1]
N
-valued random variables and consider Z = supt�N

Pn

i=1Xi;t.

De�ning f(x1; : : : ; xn) = supt�N
Pn

i=1 xi;t and g(x1; : : : ; xn�1) = supt�N
Pn�1

i=1 xi;t,

and denoting by � � n some positive integer such that f(x1; : : : ; xn) =
Pn

i=1 xi;� , one

obviously has

0 � f(x1; : : : ; xn)� g(x1; : : : ; xi�1; xi+1; : : : ; xn) � xi;� � 1
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and therefore

nX
i=1

[f(x1; : : : ; xn)� g(x1; : : : ; xi�1; xi+1; : : : ; xn)] �

nX
i=1

xi;� = f(x1; : : : ; xn):

2. Using the same argument as in Massart [20], we see that inequality (4) (and

similarly (3)) is in some sense unimprovable. Indeed, consider N = 1 and suppose

that X1; :::; Xn are independent Bernoulli trials with probability of success p = 1� q.

In this case (4) states that for every 0 < t � np,

P [Z � np� t] � exp

�
�np h

�
�t

np

��
:

Given � > 0, taking p = �=n and setting t = �", this inequality may be written as

P [Z � � � �"] � exp [��h (�")] ; for every " 2 (0; 1) : (5)

But Z follows the binomial distribution B (n; �=n) and therefore follows asymptoti-

cally the Poisson distribution with parameter � as n goes to in�nity. Moreover, the

right-hand side of (5) is known to be the Cram�er-Cherno� deviation upper bound for

a Poisson random variable with parameter � . This implies that the exponent in this

upper bound cannot be improved since Cram�er's large deviation asymptotic ensures

that for for every " 2 (0; 1)

lim inf
�!1

lim
n!1

1

�
logP [Z � � � �"] � �h (�") :

3. It is worth noting that (3) and (4) respectively imply the simpler inequalities

P [Z � E [Z] + t] � exp

�
�

t2

2E [Z] + 2t=3

�
(6)

and

P [Z � E [Z]� t] � exp

�
�

t2

2E [Z]

�
(7)

which hold for any t > 0. (6) follows immediately from the inequality

h(t) �
t2

2 + 2t
3

; t > 0;

and (7) is trivial when t > E [Z] and follows from (4) otherwise since, for every

t 2 [0; 1],

h(�t) �
t2

2
:
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3 Con�guration functions

In this and the next section, we show that Theorem 1 has many natural applications

outside empirical process theory. More precisely, we apply Theorem 1 to random

combinatorial quantities that were called con�guration functions in [25, section 7].

De�nition 1 Assume that we have a sequence of spaces 
1;
2; : : : and that we have

a property P de�ned over the union of �nite products of spaces: (
i1�
i2�� � ��
in)

with ij < ij+1, that is, for any element (xi1 ; : : : xin) 2 
i1 � 
i2 � � � � � 
in , we may

decide whether (xi1 ; : : : xin) satis�es property P . Moreover assume that P is heredi-

tary in the following sense: if (xi1 ; : : : xin) satis�es P then so does any subsequence

(xj1; : : : xjm) of (xi1 ; : : : xin) where fj1 : : : jmg � fi1 : : : ing and jk is increasing. The

function fn that maps any tuple (xi1 ; : : : xin) to the size of the largest subsequence sat-

isfying P is the con�guration function associated with property P . Any subsequence

of maximal length satisfying property P is called a witness.

When 
1; : : :
n is provided with a product probability measure, results about

concentration around the median for con�gurations functions were proved by Tala-

grand using the convex distance approach [25, 27]. Here we provide concentration

around the mean and (slightly) better constants. Moreover the proof is completely

straightforward from Theorem 1.

Theorem 2 Let fn be a con�guration function, and let Z = fn(X1; : : : ; Xn), where

X1; : : : ; Xn are independent random variables. Then for an t � 0,

P [Z � E [Z] + t] � exp

�
�

t2

2(E [Z] + t=3)

�
:

and

P [Z � E [Z]� t] � exp

�
�

t2

2E [Z]

�
:

Proof. Let f(x1; : : : ; xn) = fn(x1; : : : ; xn) and g(x1; : : : ; xn�1) = fn�1(x1; : : : ; xn�1).

It su�ces to show that f and g satisfy the conditions of Theorem 1. Condition (1)

is trivially satis�ed. On the other hand, let fxi1 ; : : : ; xikg � fx1; : : : ; xng be a sub-

sequence of cardinality k witnessing the fact that f(xi1; : : : ; xik) = `. (Note that

such a set exists.) Observing that for any i � n such that xi =2 fxi1 ; : : : ; xikg,

f(x1; : : : ; xn) = g(x1; : : : ; xi�1; xi+1; : : : ; xn), we see that (2) is also satis�ed, which

concludes the proof. 2
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To illustrate the fact that con�guration functions are rather natural objects, let

us describe three of them originating from di�erent �elds.

1. Increasing subsequences. Consider a vector x = (x1; : : : ; xn) of n di�erent

numbers in [0; 1]. The positive integers i1 < i2 < � � � < im form an increasing

subsequence if xi1 < xi2 < � � � < xim (where i1 � 1 and im � n). Let L(x) denote the

length of the longest increasing subsequence. fn(x) = L(x) is a clearly a con�guration

function (taking 
i = [0; 1] for all i), and therefore Z = L(X1; : : : ; Xn) satis�es the

inequalities of Theorem 2, where the Xi's are independent uniform random variables

on [0; 1]. This improves the constants of the inequalities obtained and Talagrand [25]

for the same random variable. See also Frieze [8] for early work on the concentration

on L(X).

2. Independent sets in random graphs. In the G(n; p) model for random

graphs, the random graph G = (V;E) with vertex set V (jV j = n) and edge set E

is generated by starting from the complete graph with n vertices and deleting each

edge independently from the others with probability 1� p. A subset of vertices A is

independent inG if and only if no two vertices fromA are adjacent inG. Independence

is an hereditary property. The size of the largest independent set is the independence

number of the graph and it is denoted by �(G).

To show that the independence number can be regarded as a con�guration func-

tion, we merely have to show that the G(n; p) model may be regarded as a product

probability space. This is well known (see, e.g., [22]): the ith component of the prob-

ability space just de�nes the set of edges between vertex i and vertices with index

j < i. Thus, Z = �(G) satis�es the inequalities of Theorem 2, regardless of the values

of n and p.

Results concerning the average value of �(G) and concentration of �(G) around

it have been known for a while for both sparse (p = d=n with d constant) and dense

(p constant) random graphs. It is well-known that the independence number of dense

random graphs is nearly deterministic (see Bollob�as [3]). In this case Theorem 2 does

not provide anything new. On the other hand, in the sparse case Frieze [7] proved,

that for any � > 0, for su�ciently large d and n:

j�(G)�
2n

d

�
log d� log log d� log 2 + 1

�
j �

�n

d
(8)

with probability going to 1 as n!1. Frieze uses the method of bounded-di�erences,

but gives no explicit concentration inequality for the independence number. It does

not seem obvious to get sharp concentration inequalities independent of d, from the

construction presented in [7]. Such issues are handled in an e�ortless way by viewing

the independence number as a con�guration function.
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3. vc dimension. Let A be an arbitrary collection of subsets of X , and let x =

(x1; : : : ; xn) be a vector of n points of X . De�ne the trace of A on x by

tr(x) = fA \ fx1; : : : ; xng : A 2 Ag :

The shatter coe�cient, (or Vapnik-Chervonenkis growth function) of A in x is T (x) =

jtr(x)j, the size of the trace. T (x) is the number of di�erent subsets of the n-point set

fx1; : : : ; xng generated by intersecting it with elements of A. A subset fxi1 ; : : : ; xikg

of fx1; : : : ; xng is said to be shattered if 2k = T (xi1 ; : : : ; xik). The vc dimension

D(x) of A (with respect to x) is the cardinality k of the largest shattered subset of

x. From the de�nition, it is obvious that fn(x) = D(x) is a con�guration function,

and therefore satis�es the conditions of Theorem 2.

Remarks. 1. To illustrate that the constants of Theorem 2 are optimal, consider the

vc-dimension and the following example: let X = (X1; : : : ; Xn) be a vector of i.i.d.

random variables taking values in the set of nonnegative integers. Let the common

distribution of the Xi's be such that PfX1 = 0g = 1� c=n for some positive constant

c, and PfX1 = ig = c=n3 for i = 1; : : : ; n2. Then it is easy to see that, for large n,

D(X) is approximately distributed as a Poisson(c) random variable, so the optimality

of the bounds are seen as in Remark 2 following Theorem 1 above.

2. It is likely that Theorem 2 does not provide the sharpest possible answer for the

longest increasing subsequence problem, and it does not provide the right answer

for the independence number in dense random graphs [2, chapter XI]. The longest

increasing subsequence has already been commented by Talagrand in [27]: empirical

evidence suggests that the longest increasing subsequence is more concentrated than

suggested by Theorem 2.

4 Combinatorial entropies

The analysis of combinatorial optipization problems has been often complemented by

the analysis of counting versions (see, e.g., [12]): rather than determining the largest

independent set or increasing subsequence one may be interested in estimating the

number I(x) of independent sets or the number N(x) of increasing subsequences. In

statistical pattern recognition, the shatter coe�cient T (x) is of primary interest.

The next result shows sharp concentration of combinatorial entropies and partic-

ularly of the vc entropy (log-shattering coe�cient). These bounds are completely

new, we do not know whether any of the previously known concentration inequalities

may be used to derive similar bounds. The constants are again optimal by the same

example as above.
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A combinatorial entropy is de�ned as follows:

De�nition 2 let x = (x1; : : : ; xn) be an n-vector of elements of X to which we

associate a set Tr(x) � Yn of n-vectors whose components are elements of a possibly

di�erent set Y. We assume that for each x 2 X n and i � n, the set Tr(x(i)) =

Tr(x1; : : : ; xi�1; xi+1; : : : ; xn) is the the projection of Tr(x) along the ith coordinate,

that is,

Tr(x(i)) =
n
y(i) = (y1; : : : ; yi�1; yi+1; : : : ; yn) 2 Y

n�1 : (9)

9yi 2 Y such that (y1; : : : ; yn) 2 Tr(x)
o
: (10)

The associated combinatorial entropy is H(x) = logb jTr(x)j where b is an arbitrary

positive number.

Remark. The logarithm of the number of subsequences that satisfy an hereditary

property is obviously a combinatorial entropy.

The key property of combinatorial entropies is that they all satisfy condition (2)

of Theorem 1:

Lemma 1 Let H(x) be a combinatorial entropy. Then for any x 2 X n,

nX
i=1

�
H(x)�H(x(i))

�
� H(x):

Proof. Recall that the Shannon entropy (of base b) of a discrete random variable

Y is

hb(Y ) = �
X
y

PfY = yg logb PfY = yg;

where the sum is taken over all possible values of Y . The key of our proof is the

following inequality of Han [9] (see also Cover and Thomas [4, page 491]): for any n

discrete random variables Y1; : : : ; Yn,

hb(Y1; : : : ; Yn) �
1

n� 1

nX
i=1

hb(Y1; : : : ; Yi�1; Yi+1; : : : ; Yn):

Now we are prepared to prove the lemma. Consider the uniform distribution over the

set Tr(x). This de�nes a random vector vector Y = (Y1; : : : ; Yn) 2 Y
n. Then clearly,

H(x) = logb jTr(x)j = hb(Y1; : : : ; Yn):

7



Since the uniform distribution maximizes the Shannon entropy, we also have, for all

i � n, that

H(x(i)) � hb(Y1; : : : ; Yi�1; Yi+1; : : : ; Yn):

The statement now follows from Han's inequality. 2

Remark. The relationship between isoperimetrical issues and concentration of

measure has been underlined many times: concentration-of-measure results may be

used to prove or replace isoperimetric inequalities (see for example Ledoux [13]). Here,

isoperimetry comes at the rescue of concentration: Han's inequality may be viewed

as a weak but general isoperimetric inequality. A geometric version of it had been

known for decades before they were formulated in the language of information theory,

see Loomis and Whitney [15].

Remark. Let us notice that Han's inequality and the tensorization inequality

for entropies (inequality (15) in the Appendix) that play a key role in the proof of

theorem 1 are both consequences of the subadditivity of the Shannon entropy and

the fact that the Shannon entropy decreases with conditioning. Moreover it is easy

to check that in the discrete case, Han's inequality and the tensorization inequality

(15) can be derived from each other.

Theorem 3 Assume that H(x) = logb jTr(x)j is a combinatorial entropy such that

for all x 2 X n and i � n,

H(x)�H(x(i)) � 1:

If X = (X1; : : : ; Xn) is a vector of n independent random variables taking values in

X , then the random combinatorial entropy H = H(X) satis�es

P [H � E [H] + t] � exp

�
�

t2

2E [H] + 2t=3

�
;

and

P [H � E [H]� t] � exp

�
�

t2

2E [H]

�
:

Moreover,

E [logb jTr(X)j] � logb E [jTr(X)j] �
1

ln 2
E [logb jTr(X)j] : (11)
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Remark. Borrowing the terminology of statistical physics, we may call logb E [jTr(X)j]

the annealed combinatorial entropy. This quantity is often much easier to handle than

the expected combinatorial entropy. (11) shows that the two quantities are always

closely linked together.

Proof. The �rst two inequalities follow from a straighforward combination of

Lemma 1 with Theorem 1. The �rst inequality of (11) is an obvious consequence of

Jensen's inequality. As logb jTr(X)j satis�es the conditions of Theorem 1, we may

use (18) in the Appendix and �nd that, for all � > 0,

E
�
e�(logb jTr(X)j�E logb jTr(X)j)

�
� e(e

����1) E[logb jTr(X)j] :

The choice � = log b yields the desired result. 2

Next we discuss some of the applications of Theorem 3.

1. vc entropies. The vc entropy is de�ned as H(x) = log2 T (x), where T (x) is the

shatter coe�cient de�ned in the previous section. The vc entropy is a simple example

of a combinatorial entropy. It may be generalized to a class of functions with a �nite

range. More precisely, let k > 1 be a positive integer, and let F be a class of functions

X ! f1; : : : ; kg. Given a vector x = (x1; : : : ; xn) 2 X
n, de�ne Tr(x) � f1; : : : ; kgn as

the set of all di�erent n-vectors (f(x1); : : : ; f(xn)) with f 2 F . Then it is immediate

to see that Hk(x) = logk jTr(x)j is a combinatorial entropy satisfying the condition

of Theorem 3.

The case k = 2 (i.e., the case of the vc entropy H(x) is of particular interest, as

it plays a key role in some applications in pattern recognition and machine learning

(see, e.g., [6], [28]). In this case we obtain the following:

Corollary 1 For any class of sets A and for all t > 0, the random vc entropy

satis�es

P [H � E [H] + t] � exp

�
�

t2

2E [H] + 2t=3

�
:

and

P [H � E [H]� t] � exp

�
�

t2

2E [H]

�
:

Also,

E [log2 T (X)] � log2 E [T (X)] �
1

ln 2
E [log2 T (X)] :
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In [28], Vapnik considers the limit of the average vc-entropy rate E [log2 T (X)] =n and

the limit of the annealed vc-entropy rate log2 E [T (X)]=n as criteria for consistency

and fast convergence of an inference rule called Empirical Risk Minimization. The last

statement of the corollary shows that either these two quantities converge to zero or

none of them. This answers, in a positive way, an open question raised by Vapnik [28,

pages 53{54]: the empirical risk minimization procedure is non-trivially consistent

and rapidly convergent if and only if the annealed entropy rate (1=n) log E [T (X)]

converges to zero. For the de�nitions and discussion we refer to [28].

2. Increasing subsequences. Recall the setup of the �rst example of Section 3,

and let N(x) denote the number of di�erent increasing subsequences of x. Observe

that log2N(x) is a combinatorial entropy. This is easy to see by considering Y =

f0; 1g, and by assigning, to each increasing subsequence i1 < i2 < � � � < im of x,

a binary n-vector y = (y1; : : : ; yn) such that yj = 1 if and only if j = ik for some

k = 1; : : : ; m (i.e., the indices appearing in the increasing sequence are marked by

1). Now condition (9) as well as the condition of Theorem 3 are obviously met, and

therefore H(X) = log2N(X) satis�es all three inequalities of Theorem 3. This result

signi�cantly improves a concentration inequality obtained by Frieze [8] for log2N(X).

3. Independent sets in random graphs. The logarithm of the number of

independent sets was considered by Zuckerman [29]. This logarithm can also be

regarded as a combinatorial entropy: Tr is the set of bitvectors of length n, such that

the vertices corresponding to coordinates equal to 1 form an independent set.
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5 Learning and model selection

In this section we point out some immediate applications of the results of Section 3

to some problems emerging in learning theory and pattern recognition. The results

presented here are not necessarily optimal, they merely intend to illustrate how some

of the new concentration inequalities may be applied in a virtually e�ortless manner to

re-prove and improve some previously obtained results in statistical learning theory.

Let the data Dn = ((X1; Y1); : : : ; (Xn; Yn)) consist of independent, identically

distributed copies of the random variable pair (X; Y ) taking values in Rd�f0; 1g. The

goal of pattern classi�cation (see [6], [28]) is to construct a function fn : R
d ! f0; 1g

that mimimizes L(fn) where the loss functional L(�) is de�ned by

L(f) = P [f(X) 6= Y ]

for all f : Rd ! f0; 1g. The empirical loss of such a function is de�ned simply by

bL(fn) = 1

n

nX
i=1

Iffn(Xi)6=Yig;

where IA denotes the indicator function of an event A. Often the data are used to

select a set An � R
d from a given class A of subsets of Rd , and the classi�er is de�ned

as

fn(x) = Ifx2Ang:

The following theorem shows how the loss of such a classi�er may be bounded by

some purely empirical quantities. It involves the random shatter coe�cient of the

class A de�ned in Section 3. Introduce the notation Xn
1 = (X1; : : : ; Xn).

Theorem 4 Let A be an arbitrary class of subsets of Rd , and let fn be de�ned as

above. Then for any � > 0, the probability that

L(fn) � bL(fn) +r6 logT (Xn
1 )

n
+ 5

s
log 2

�

n

is greater than 1� �.

11



Proof. For any t > 0, and u > 0,

P

"
L(fn)� bL(fn) >r6 logT (Xn

1 )

n
+

r
6t

n
+ u

#

� P

"
L(fn)� bL(fn) >r6 logT (Xn

1 ) + 6t

n
+ u

#

� P

"
L(fn)� bL(fn) >r3E log T (Xn

1 )

n
+ u

#
+P [E log T (Xn

1 ) > 2 logT (Xn
1 ) + 2t] :

The �rst term on the right-hand side may be bounded by recalling the Vapnik-

Chervonenkis inequality (see [28, Theorem 3.1]):

P

�
sup

f=IA:A2A

L(f)� bL(f) > �

�
� E T (X2n

1 )e�n�
2

;

which is true for any � > 0. Now it is easy to see that for any x2n1 = (x1; : : : ; x2n),

T (x2n1 ) � T (xn1 )T (x
2n
n+1), so by independence we have log E T (X2n

1 ) � 2 log E T (Xn
1 ).

Therefore,

P

"
L(fn)� bL(fn) >r3E logT (Xn

1 )

n
+ u

#

� P

"
L(fn)� bL(fn) >r2 log E T (Xn

1 )

n
+ u

#
(by inequality 11 from Theorem 3)

� P

"
L(fn)� bL(fn) >r log E T (X2n

1 )

n
+ u

#
(by the argument above)

� e�nu
2

;

where at the last step we used the Vapnik-Chervonenkis inequality.

To bound the second term, we use the lower-tail inequality of the concentration

result Theorem 3 for the vc entropy logT (Xn
1 ):

P [E log T (Xn
1 ) > 2 logT (Xn

1 ) + 2t] � exp

 
�

�
1
2
E log T (Xn

1 ) + t
�2

2E log T (Xn
1 )

!
� e�t=2:

Summarizing, we have

P

"
L(fn)� bL(fn) >r6 logT (Xn

1 )

n
+

r
6t

n
+ u

#
� e�nu

2

+ e�t=2:

12



Choosing u =
q

1
n
log 2

�
and t = 2 log 2

�
concludes the proof. 2

The above result is important because the (unknown) loss may be controlled by

a purely empirical quantity. Such a result is useful in automatic model selection.

Assume now that a sequence of classes of sets A1;A2; : : : is given, and for each

class there is a classi�er bfk which chooses its hypothesis from class Ak (i.e., bfk(x) =
Ifx2Akg for some Ak 2 Ak). Then it is immediate from the above Theorem that with

probability greater than 1� �, simultaneously for all k � 1,

L( bfk) < bL( bfk) +r6 logTk(X
n
1 )

n
+ 6

s
log 2

�
+ 2 log k

n
;

where Tk(X
n
1 ) is the random shatter coe�cient of class Ak. This suggests a model

selection rule based on minimizing the empirical quantity on the right-hand side. Note

that the right-hand side is the empirical loss penalized by a data-dependent penalty,

involving the random vc entropy of the k-th class. In particular, the following result

is an immediate consequence.

Theorem 5 Let bf1; bf2; : : : be a sequence of classi�ers de�ned as above. Assume that

the classi�er fn is selected among these by minimizing the quantity

bL( bfk) +r6 logTk(X
n
1 )

n
+ 6

s
log 2

�
+ 2 log k

n

over all k = 1; 2; : : : . Then with probability greater than 1� �,

L(fn) � inf
k

0@bL( bfk) +r6 logTk(X
n
1 )

n
+ 6

s
log 2

�
+ 2 log k

n

1A :

Similar results, but with signi�cantly more involved proofs were shown by Shawe-

Taylor, Bartlett, Willamson, and Anthony [24] and Lugosi and Nobel [16]. For dis-

cussion on the signi�cance of these results and related work we refer to these papers.
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Appendix: Proof of Theorem 1

Here we prove the following, stronger, version of Theorem 1:

Theorem 6 . Let fXi; i 2 Ig be some �nite family of independent random variables.

De�ne X = (Xj)j2I and for every i 2 I, let X(i) = (Xj)j2Infig. Let Z = � (X), be

some nonnegative and bounded measurable function of X. Assume that for every

i 2 I there exists some measurable function Z(i) of X(i) such that

0 � Z � Z(i) � 1: (12)

Assume furthermore that X
i2I

�
Z � Z(i)

�
� Z: (13)

De�ning h as h (u) = (1 + u) log (1 + u)� u, for u � �1, the following inequalities

hold. For every positive number t

P [Z � E [Z] + t] � exp

�
�E [Z] h

�
t

E [Z]

��
and for every positive number t � E [Z]

P [Z � E [Z]� t] � exp

�
�E [Z] h

�
�

t

E [Z]

��
:

To prove Theorem 6, we need a modi�cation of an information inequality for func-

tionals of independent variables presented in Massart [20] (see Lemma 2.3 therein).

Lemma 2 Let I be some �nite set. Let, for every i 2 I, Xi be some random variable

with values in some measurable space 
i and de�ne 
 =
Q

j2I 
j, 

(i) =

Q
j2Infig
j.

Let � be some real valued measurable function on 
 and for every i 2 I, �(i) be

some real valued measurable function on 
(i). De�ne X = (Xj)j2I , Z = � (X) and

for every i 2 I X(i) = (Xj)j2Infig, Z
(i) = �(i)

�
X(i)

�
. If we assume the variables

fXi; i 2 Ig to be independent and the Laplace transform �! E
�
e�Z
�
to be �nite on

some non empty open interval I then, for any � 2 I

�E
�
Ze�Z

�
� E

�
e�Z
�
log E

�
e�Z
�
�
X
i2I

E
�
e�Z�

�
��(Z � Z(i))

��
; (14)

where � denotes the function z ! exp (z)� z � 1.

14



Proof. As the proof is exactly the same as that of Lemma 2.3 in Massart [20],

we just give a sketch. For every i 2 I, we denote by E
(i) the expectation operator

conditionally on X(i). Then, introducing �(t) = t log t, the tensorization inequality

for entropy (see Ledoux [14]), yields, for any nonnegative function g on 
 such that

G = g(X) satis�es E [G jlogGj] <1,

E [� (G)]� � (E [G])� E

"X
i2I

E
(i) [� (G)]� �

�
E
(i) [G]

�#
: (15)

Then, for every every i 2 I, the variational de�nition of entropy [11] asserts that for

every positive measurable function G(i) of X(i), one has

E
(i) [� (G)]� �

�
E
(i) [G]

�
� E

(i)
�
G
�
logG� logG(i)

�
�
�
G�G(i)

��
:

Applying the above inequality to the variables G = e�Z and G(i) = e�Z
(i)

, one gets

E
(i) [� (G)]� �

�
E
(i) [G]

�
� E

(i)
�
e�Z�(��(Z � Z(i)))

�
which, via (15), leads to (14). 2

Proof of Theorem 6. We apply Lemma 2 so that inequality (14) holds for any

�. Since the function � is convex with � (0) = 0, for any � and any u 2 [0; 1] ,

�(��u) � u�(��). Hence it follows from (12) that for every �, �(��
�
Z � Z(i)

�
) ��

Z � Z(i)
�
�(��) and therefore we derive from (14) and (13) that

�E
�
Ze�Z

�
� E

�
e�Z
�
log E

�
e�Z
�
� E

"
�(��)e�Z

X
i2I

�
Z � Z(i)

�#
� �(��)E

�
Ze�Z

�
:

Introduce eZ = Z � E [Z] and de�ne, for any �, F (�) = E

h
e�

eZ

i
. Setting v = E [Z],

the above inequality becomes

[�� � (��)]
F 0 (�)

F (�)
� logF (�) � v� (��) ; (16)

which in turn implies�
1� e��

�
	0 (�)� 	(�) � v� (��) with 	 (�) = logF (�) :

Now observe that the function 	0 = v� is a solution of the ordinary di�erential

equation
�
1� e��

�
	0 (�)�	(�) = v� (��). We want to show that 	 � 	0. In fact,

if 	1 = 	�	0, then �
1� e��

�
	0

1 (�)�	1 (�) � 0: (17)
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Hence, de�ning f(�) = log
�
e� � 1

�
and g(�) = e�f(�)	1 (�), we have�

1� e��
�
[f 0(�)g(�) + g0(�)]� g(�) � 0;

which yields since f 0(�)(1� e��) = 1�
1� e��

�
g0(�) � 0:

Hence g0 is nonnegative on (�1; 0) and nonpositive on (0;1) and therefore g is

nondecreasing on (�1; 0) and nonincreasing on (0;1). Now, since eZ is centered

	0
1 (0) = 0. Using the fact that �e�f(�) tends to 1 as � goes to 0, we conclude that

g(�) tends to 0 as � goes to 0. This shows that g is nonpositive, therefore 	 � 	0

and we have proved that

log E
�
e�(Z�E[Z])

�
� v� (�) for every � 2 R: (18)

Then by Markov's inequality

P [Z � E [Z] � t] � exp

�
� sup

�>0

(t�� v� (�))

�
and

P [Z � E [Z] � �t] � exp

�
� sup

�<0

(�t�� v� (�))

�
:

The proof can be completed by using the easy-to-check (and well-known) relations:

sup�>0 [t�� v� (�)] = vh (t=v) for every t > 0 and sup�<0 [�t�� v� (�)] = vh (�t=v)

for every 0 < t � v. 2
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