Paper #1162
- Títol:
- Contribution biplots
- Autor:
- Michael Greenacre
- Data:
- Juliol 2009
- Resum:
- In order to interpret the biplot it is necessary to know which points � usually variables � are the ones that are important contributors to the solution, and this information is available separately as part of the biplot�s numerical results. We propose a new scaling of the display, called the contribution biplot, which incorporates this diagnostic directly into the graphical display, showing visually the important contributors and thus facilitating the biplot interpretation and often simplifying the graphical representation considerably. The contribution biplot can be applied to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. In the contribution biplot one set of points, usually the rows of the data matrix, optimally represent the spatial positions of the cases or sample units, according to some distance measure that usually incorporates some form of standardization unless all data are comparable in scale. The other set of points, usually the columns, is represented by vectors that are related to their contributions to the low-dimensional solution. A fringe benefit is that usually only one common scale for row and column points is needed on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot legible. Furthermore, this version of the biplot also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important, when they are in fact contributing minimally to the solution.
- Paraules clau:
- biplot, contributions, correspondence analysis, discriminant analysis, log-ratio analysis, MANOVA, principal component analysis, scaling, singular value decomposition, weighting.
- Codis JEL:
- C19, C88
- Àrea de Recerca:
- Estadística, Econometria i Mètodes Quantitatius
- Publicat a:
- Journal of Computational and Graphical Statistics, 2013, 22(1), 107–122
Descarregar el paper en format PDF