Volver a Working Papers

Paper #638

Título:
Hypernormal densities
Autores:
Raffaella Giacomini, Andreas Gottschling, Christian Haefke y Halbert White
Fecha:
Septiembre 2002
Resumen:
We propose a new family of density functions that possess both flexibility and closed form expressions for moments and anti-derivatives, making them particularly appealing for applications. We illustrate its usefulness by applying our new family to obtain density forecasts of U.S. inflation. Our methods generate forecasts that improve on standard methods based on AR-ARCH models relying on normal or Student's t-distributional assumptions.
Palabras clave:
ARMA-GARCH models, neural networks, nonparametric density estimation, forecast accuracy
Códigos JEL:
C63, C53, C45
Área de investigación:
Estadística, Econometría y Métodos Cuantitativos

Descargar el paper en formato PDF