Paper #198
- Título:
- The minimax distortion redundancy in empirical quantizer design
- Autores:
- Peter Bartlett, Tamas Linder y Gábor Lugosi
- Fecha:
- Enero 1997
- Resumen:
- We obtain minimax lower and upper bounds for the expected distortion redundancy of empirically designed vector quantizers. We show that the mean squared distortion of a vector quantizer designed from $n$ i.i.d. data points using any design algorithm is at least $\Omega (n^{-1/2})$ away from the optimal distortion for some distribution on a bounded subset of ${\cal R}^d$. Together with existing upper bounds this result shows that the minimax distortion redundancy for empirical quantizer design, as a function of the size of the training data, is asymptotically on the order of $n^{1/2}$. We also derive a new upper bound for the performance of the empirically optimal quantizer.
- Palabras clave:
- Estimation, hypothesis testing, statistical decision theory: operations research
- Códigos JEL:
- C13, C14
- Área de investigación:
- Estadística, Econometría y Métodos Cuantitativos
- Publicado en:
- IEEE Transactions on Information Theory, 44, (1998), pp. 1802-1813
Descargar el paper en formato PDF