Tornar a Working Papers

Paper #502

Títol:
Mixed equilibrium in a Downsian model with a favored candidate
Autors:
Enriqueta Aragonés i Thomas R. Palfrey
Data:
Setembre 2000
Resum:
This paper examines competition in the standard one- dimensional Downsian model of two-candidate elections, but where one candidate (A) enjoys an advantage over the other candidate (D). Voters' preferences are Euclidean, but any voter will vote for candidate A over candidate D unless D is closer to her ideal point by some fixed distance \delta. The location of the median voter's ideal point is uncertain, and its distribution is commonly known by both candidates. The candidates simultaneously choose locations to maximize the probability of victory. Pure strategy equilibria often fails to exist in this model, except under special conditions about \delta and the distribution of the median ideal point. We solve for the essentially unique symmetric mixed equilibrium, show that candidate A adopts more moderate policies than candidate D, and obtain some comparative statics results about the probability of victory and the expected distance between the two candidates' policies.
Paraules clau:
Spatial competition, mixed strategies, candidate quality
Codis JEL:
D72
Àrea de Recerca:
Microeconomia
Publicat a:
Journal of Economic Theory, 103, 1, (2002), pp. 131-161

Descarregar el paper en format PDF