Tornar a Working Papers

Paper #1182

A low dimensional Kalman filter for systems with lagged observables
Kristoffer Nimark
Novembre 2009
This note describes how the Kalman filter can be modified to allow for the vector of observables to be a function of lagged variables without increasing the dimension of the state vector in the filter. This is useful in applications where it is desirable to keep the dimension of the state vector low. The modified filter and accompanying code (which nests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) the log likelihood of a parameterized state space model conditional on a history of observables (iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution of latent states conditional on a history of observables.
Paraules clau:
Kalman filter, lagged observables, Kalman smoother, simulation smoother
Àrea de Recerca:
Macroeconomia i Economia Internacional

Descarregar el paper en format PDF (140 Kb)

Cercar Working Papers

Per data:
-cal seleccionar un valor a les quatre llistes desplegables-

Consultes Predefinides