Tornar a Working Papers

Paper #1182

Títol:
A low dimensional Kalman filter for systems with lagged observables
Autor:
Kristoffer Nimark
Data:
Novembre 2009
Resum:
This note describes how the Kalman filter can be modified to allow for the vector of observables to be a function of lagged variables without increasing the dimension of the state vector in the filter. This is useful in applications where it is desirable to keep the dimension of the state vector low. The modified filter and accompanying code (which nests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) the log likelihood of a parameterized state space model conditional on a history of observables (iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution of latent states conditional on a history of observables.
Paraules clau:
Kalman filter, lagged observables, Kalman smoother, simulation smoother
Àrea de Recerca:
Macroeconomia i Economia Internacional

Descarregar el paper en format PDF