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Abstract

Research on judgment and decision making presestnfusing picture of
human abilities. For example, much research hashasiged the dysfunctional
aspects of judgmental heuristics, and yet, othedirigs suggest that these can be
highly effective. A further line of research hasdeled judgment as resulting from
“as if” linear models. This paper illuminates thistohctions in these approaches by
providing a common analytical framework based am ¢bntral theoretical premise
that understanding human performance requires fgpegihow characteristics of the
decision rules people use interact with the demandise tasks they face. Our work
synthesizes the analytical tools of “lens modelesrch with novel methodology
developed to specify the effectiveness of heusstit different environments and
allows direct comparisons between the differentreg@ghes. We illustrate with both
theoretical analyses and simulations. We furthek lour results to the empirical
literature by a meta-analysis of lens model studied estimate both human and
heuristic performance in the same tasks. Our te$ughlight the trade-off between
linear models and heuristics. Whereas the formecagnitively demanding, the latter
are simple to use. However, they require knowledged thus “maps” — of when and

which heuristic to employ.

Keywords: Decision making; heuristics; linear misgdelens model; judgmental

biases.
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Two classes of models have dominated research dgment and decision
making over the last decades. In one, explicibgedion is given to the costs and
limits of information processing and people areuassd to use simplifying heuristics
— typically making use of only part of the infornuat available (Kahneman, Slovic,
& Tversky, 1982; Gigerenzer, Todd, & the ABC ResbaBroup, 1999). In the other,
it is assumed that people can integrate all therinétion at hand and that this is
combined and weighted “as if” using an algebraictypically linear — model
(Anderson, 1981; Brehmer, 1994; Hammond, 1996).

Research on these models has been conducted witfaérent traditions with
few attempts to unify the two approaches (howesee, Hammond, 1990). Whereas
such unification is not our goal, we recognizehkdity of both approaches and seek
to illuminate their complementarities. For examplecent research suggests that
people can process information in distinctive wggl, Chaiken & Trope, 1999),
variously described as “experiential” vs. “ratich@Epstein, 1994), “System 1” vs.
“System 2” (Stanovich & West, 1998), or “tacit” v&leliberate” (Hogarth, 2001).
The former denote processes that are intuitiveearrigtic whereas the latter are the
outcomes of more deliberative processes. We do propose a one-to-one
correspondence between the dual process approadfiecone hand, and heuristic
and algebraic models, on the other hand. HoweVer, analogy emphasizes the
advantages of seeking complementarities.

The topic of heuristics has been central to refeancjudgment and decision
making and has generated many interesting findasg&ell as controversy (see, e.g.,
Gigerenzer, 1996; Kahneman & Tversky, 1996.) Howewehereas few scholars
doubt that people make extensive use of heurigigvariously defined) in everyday

life, many questions are still unresolved. One aongnt set of issues centers on



understanding the relative efficacy of differentuhstics and, in particular,
explicating the environmental conditions when thexseeffective.

At one level, this failure is surprising in that ftdert Simon — whose work is
held in high esteem by researchers with differireyve about heuristics — specifically
emphasized the importance of environmental factots. particular, some 50 years
ago, Simon stated

...if an organism is confronted with the problembafhaving approximately

rationally, or adaptively, in a particular enviroem, the kinds of

simplifications that are suitable may depend ndy @m the characteristics —
sensory, neural, and other — of the organism, Quaky on the nature of the

environment (Simon, 1956, p. 130).

Interest, however, of most research on heuristssdentered on specific rules
such as representativeness (Kahneman & Tversky2)1@¥ailability (Tversky &
Kahneman, 1973), recognition (Goldstein & Gigesrn2002), and affect (Slovic,
Finucane, Peters, & MacGregor, 2002) that limibiniation processing costs and
there have been few attempts to understand possiieonmental effects.

At the same time that Simon was publishing his saimivork on heuristics,
the use of algebraic, and particularly linear meddb represent psychological
processes received considerable impetus from Hami:did955) formulation of
clinical judgment, and was subsequently bolstegetidifman’s (1960) argument for
“paramorphic” representation (see also Einhornjritfeintz, & Kleinmuntz, 1979.
Contrary to work on heuristics, this research Hamms concern for environmental

factors. Specifically, by depicting Brunswik’'s (IB5lens model within a linear

framework, Hammond and his colleagues were ableddscribe psychological

1 As stated ironically by one of our colleagues, stas though researchers on heuristics suffer
collectively from the “fundamental attribution ertqRoss, 1977) whereby explanations of behavior
fail to take environmental factors into considevati

% The earliest representation of judgment as a fimeadel that we know of goes back to Wallace
(1923).



achievement in the form of an equation — the lemsleh equation — that captures
effects of both individuals and the environment riit@ond, Hursch, & Todd, 1964;

Hursch, Hammond, & Hursch, 1964; Tucker, 1964). &bwer, this framework has

been profitably used by many researchers (see, Brghmer & Joyce, 1988;

Cooksey, 1996; Hastie & Kameda, 2005). Other teples such as conjoint analysis
(cf., Louviéere, 1988) also assume that people m®deformation as though using
linear models and, in so doing, seek to quantiéyridative weights given to different
variables affecting judgments and decisions (se® @dnderson, 1981).

In many ways the linear model has been the “wonsdibof judgment and
decision making research from both descriptive nedgcriptive viewpoints. As to the
latter, consider the influence of linear modelsmulti-attribute theory (see, e.g.,
Keeney & Raiffa, 1976) as well as the literaturesbootstrapping (Goldberg, 1970;
Camerer, 1981; Russo & Schoemaker, 2002), equahitieg (Dawes & Corrigan,
1974; Einhorn & Hogarth, 1975; Wainer, 1976; Daw#379), and the statistical-
clinical debate (Meehl, 1954; Dawes, Faust, & Me&BB9; Kleinmuntz, 1990).

However, despite the ubiquity of the linear modelrepresenting human
information integration, its psychological validihas been questioned. First, when
the amount of information exceeds a threshold ,(¢lgee cues in a multiple-cue
prediction task), people have difficulty in exeagti linear rules and resort to
simplifying heuristics. Second, the linear modepli®s trade-offs between cues or
attributes and, because people find these difficukéxecute — both cognitively and
emotionally (Hogarth, 1987; Luce, Payne, & Bettm&af99) — they often resort to
trade-off avoiding heuristics (Payne, Bettman, &rison, 1993).

This discussion of heuristics and linear modelssesi many important

psychological issues. Under what conditions do [geoie heuristics — and which



heuristics — and how effective are these relativéhe more cognitively demanding
linear model? Moreover, if heuristics neglect mfation and/or avoid trade-offs,
how do these features contribute to their succetslare, and when?

Our purpose is to illuminate these and relatedesswithin the context of
predicting (choosing) the better of two alternadiven the basis of several cues
(attributes). Moreover, we assume that the cdters probabilistically related to the
cues and that the optimal equation for predicthmg driterion is a linear function of
the cues. Thus, if the decision maker weights thes appropriately (using a linear
model) she will achieve the maximum predictive perfance. However (as we
explain below), this is an exacting standard toiex&h Thus, what are the
consequences of abandoning the linear rule andy wsmpler heuristics? Moreover,
when will different heuristics perform relativelyelt or badly?

Specifically, we consider five models and, to difgpthe analysis, only
consider three cues. (We return to this issueerdiscussion.) Two of these models
are linear and three are heuristics. Whereas wkl ¢@mve chosen many variations of
these models, we believe they are sufficient tssitate our approach.

First, we consider what happens when the decisiaker can be modeled as if
she were using a linear combination of the cues) (Mth respect to the weights
applied to the variables and is also inconsisteit offman, 1960). Note carefully
that we are not saying that the decision makeradlgtuses a linear formula but can
be modeled “as if.”We justify this approach on the grounds that lineadels can
often provide higher-level representations of ulyiley processes such that their
outcomes are consistent with a variety of differaodels (for further elaboration, see

Einhorn et al., 1979). Moreover, when the amodribfmrmation to be integrated is



limited, the linear model can also provide a goadcpss description (Payne,
Bettman, & Johnson, 1993).

Second, the decision maker is unable to differemtibe weights that should
be given to the variables and simplifies by givemual weight to each (EW).EW,
of course, is a special case of LC and has beerom&mated to have desirable
properties (Dawes & Corrigan, 1974).

Third, the decision maker uses the “take-the-b€éETB) heuristic proposed
by Gigerenzer and Goldstein (1996). This worksdlews. It is first assumed that
the decision maker can order attributes or cuethéiy ability to predict the criterion.
Choice is then made by the most predictive cuedaatdiscriminate between options.
If no cues discriminate, choice is made at randdihis model is “fast and frugal” in
that it typically decides on the basis of one oo tmes (Gigerenzer, Todd, & the ABC
Research Group, 1999).

There is experimental evidence that people use [KeBstrategies, although
not exclusively (Rieskamp & Hoffrage, 1999; 2002p&er, 2000; 2003; Broder &
Schiffer, 2003; Newell & Shanks, 2003; Newell, Wast & Shanks, 2003).
Descriptively, the two most important criticismseafirst, that the stopping rule is
often violated in that people seek more informatiban the model specifies, and
second, people may not be able to rank order tee by predictive ability (Juslin &
Persson, 2002).

The fourth model, CONF (Karelaia, 2006) was devetbpo overcome the

descriptive shortcomings of TTB. Its spirit is tonsult the cues in the order of their

% In all of the models investigated, we assume ifttiie decision maker uses a variable, she knosvs it
zero-order correlation with the criterion.

* In Gigerenzer and Goldstein’s (1996) formulati@ii;B operates on cues that can only take binary
values (i.e., 0/1). We analyze a version of thizlet based on continuous cues where discriminddion
determined by a threshold, i.e., a cue only discié@tes between two alternatives if the difference
between the values of the cues exceeds a specéiadt (>0).



validity (like TTB) but not to stop the process ena discriminating cue has been
identified. Instead, the process only stops oneedibcrimination has been confirmed
by another cue. With three cues, then, CONF ondypires that two cues favor the
chosen alternative. Moreover, CONF has the advantlagt choice is insensitive to
the order in which cues are consulted. Thus, #wstn maker does not need to
know the relative validities of the cugs.

Finally, our fifth model is based solely on theglevariable (SV) that the
decision maker believes to be most predictive. sTimerefore also models any
heuristic that is based on a single variable swgcim gudgments by representativeness
(Kahneman & Tversky, 1972), availability (Tverskykahneman, 1973), recognition
(Gigerenzer & Goldstein, 2002), or affect (Slovicag, 2002). In these latter cases,
however, the variable would not necessarily be ofadde by a third party but would
represent an intuitive feeling or judgment experexh by the decision maker in the
situation (e.g., an assessment of similarity, kealge of recognition, or a feeling of
liking).

It is important to note that all these rules reprgsfeasible psychological
processes. Figure 1 specifies and compares whalsrte be known for each of the
models to achieve itsiaximum performance. As can be seen, this can be decorhpose
between knowledge about the specific cue valuesntdly the three variables under
consideration (on the left) and what is needed egglt the variables (on the right).
Two models require knowing all cue values (LC an&/)Eand one only needs to

know one (SV). The number of cue values requined BB and CONF depends on

® In our subsequent modeling of CONF, we assumeatiatlifference between cue values is sufficient
to indicate discrimination or confirmation. In peiple, one could also assume a threshold in theesam
way that we model TTB.



the characteristics of each choice faced. As tightg, maximum performance by LC
requires precise, absolute knowledge; TTB requinesability to rank-order cues by
validity; and for SV one needs to identify the euéh the greatest validity (if there is
more than one). Neither EW nor CONF requires kndgégeabout weights.

Whereas it is difficult to tell whether obtaininglues of cue variables or
knowing something about how cues vary in importaacaore taxing cognitively, we
have attempted an ordering of the models in Fidgufeom most to least taxing.
Clearly, LC is the most taxing and, as noted abtwe,mportant issue to understand
is how sensitive it is to deviations from optimalesification of its parameters.
CONF, at the other extreme, is not demanding amdotily uncertainty centers on
how many variables need to be consulted for eaciside.

In our analysis, we adopt a Brunswikian perspedbiyeexploiting properties
of the well known lens model equation (Hammond, ddby & Todd, 1964; Hursch,
Hammond, & Hursch, 1964; Tucker, 1964; Hammond &w&trt, 2001) combined
with more recent analytic methods that were devedadp determine the performance
of heuristic decision rules (Hogarth & Karelaia,08@; in press; Karelaia, 2006).
Using these tools, we are able to describe howremviental characteristics interact
with those of the different heuristics in determmthe performance of the latter.

The novelty of our approach is that we are ableedmpare and contrast
heuristic and linear model performance within theme analytical framework.
Moreover, noting that different models require eiiéint levels of knowledge (cf.
Figure 1), we see our work as mapping the demankin@vledge in different regions
of the environment. In other words, to make effectlecisions, how much and what

knowledge is needed in different types of situagibon



In brief, our analytical results show that the parfance of heuristic rules is
affected by the type of weighting function (i.eqwhthe environment weights cues);
cue inter-correlation; the predictability of the vennment; and loss functions.
Whereas the weighting function determines whichriséa is best suited to specific
tasks, the other factors moderate the advantagesle€ting the correct rule. Both
cue redundancy (i.e., inter-correlation) and ndise, lack of predictability) reduce
differences between model performance but thesebeaaugmented or diminished
according to the loss function used. We also shiwat “sensible” models make
identical predictions in more cases than might Haaen imagined a priori. However,
since they disagree across 8-30% of the cases amiead, it pays to understand the
differences.

We exploit the mathematics of the lens model (Tuck®64) to ask how
“well” decision makers need to execute LC ruletsigges to perform as well or better
than heuristics in binary choice. We find thatfpemance using LC rules generally
falls short of that of appropriate heuristics uslégcision makers have high “linear
cognitive ability” (which we quantify). This analig is supported by a meta-analysis
of lens model studies in which we estimate lineagnitive ability across some 250
tasks and also demonstrate that, within the sashks tindividuals vary in their ability
to outperform heuristics using LC models.

This paper is organized as follows. We first byigbview literature that has
considered the effectiveness of heuristic decismmalels. For the most part, this has
been dependent on empirical demonstrations and laions and, as such,
conclusions cannot be easily generalized. In ceptaur approach, developed in the
subsequent section, is based on statistical thedhys allows us to make theoretical

predictions of model accuracy in terms of both patage correct predictions and
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expected losses. To facilitate the exposition, vesgnt the underlying rationale with
respect to the SV, LC, and EW models in the mathdad the equations for the other
models in Appendices A and B. We demonstrate theep®f our equations with

theoretical predictions of differential model perfance over a wide range of
environments as well as using simulation. Thisolowed by our examination of

empirical data using meta-analysis of the lens rhditerature and leads to the
conclusions summarized above. Finally, we conspisichological, normative, and

methodological implications of our work as wellsagygestions for future research.

Evidence on the effectiveness of simple, heuristicodels

Interest in the use of heuristic decision models foaled much research (and
controversy) in judgment and decision making. Tig&al impetus from Simon’s
work on bounded rationality (Simon, 1955; 1956) wwasemphasize the need for
humans to use heuristic methods (or to “satisfiderause of inherent cognitive
limitations. Moreover, Simon stressed the imporéaraf understanding how the
structure of the environment affects the relatiffeativeness heuristics.

This environmental concern, however, was largatking from the influential
research on “heuristics and biases” spearheadetivessky and Kahneman (1974)
(see also Kahneman, Slovic, & Tversky, 1982). Aatesl by these researchers,
“These heuristics are highly economical and usuaffiective, but they lead to
systematic and predictable errors” (Tversky & Kahae, 1974, p. 1131).
Unfortunately, no environmental theory was offespécifying the conditions under
which heuristics were or were not effective (cfagdrth, 1981).

Nonetheless, the positive side of heuristic use &lgo been emphasized.

(Although, here too a concern for explicating eomimental limitations has not been
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paramount.) One line of research has emphasizedl-agighting models, the

effectiveness of which was demonstrated througlulsitions and empirical examples
(Dawes & Corrigan, 1974; Dawes, 1979). In furtbienulations, Payne, Bettman and
Johnson (1993) explored trade-offs between effod accuracy. Using continuous
variables and a weighted additive model as theerooit, they investigated the
performance of several models and specifically destrated the effects of two

important environmental variables, dispersion ia teighting of variables and the
extent to which choices involved dominance. (See @ahorngate, 1980.)

The predictive effectiveness of TTB was first destoated by Gigerenzer and
Goldstein (1996) in an empirical illustration amen subsequently replicated over 18
further datasets (Gigerenzer, Todd, et al., 1999gcifically, these studies showed
that TTB predicted more accurately (on cross-valad than EW and multiple
regression when the criterion was the percentageookct predictions (in binary
choice). However, there was little concern as teetibr these outcomes were the
result of favorable environmental conditions. Vogithese concerns, Shanteau and
Thomas (2000) constructed environments that thagamed would be “friendly” or
“unfriendly” to different models and demonstratb@se effects through simulations.
However, they did not address the issue of theiveldrequencies of friendly and
unfriendly environments in natural decision makaogtexts.

Environmental effects were also demonstrated bsoléa McClelland, and
Todd (in press) in a simulation of multi-attributboice using continuous variables
(involving 21 options characterized by six attrésjt Their goal was to assess how
well choices by models with differing numbers adfriautes could match total utility
and, in doing so, they varied levels of averageriabrrelations among the attributes

and types of weighting functions. Results showegadrtant effects for both. With
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differential weighting, one attribute was suffidielo capture at least 90% of total
utility. With positive inter-correlation among abtutes, there was little difference
between equal and differential weighting. With adge inter-correlation, however,
equal weighting was sensitive to the number oitaites used (the more, the better).

Despite these empirical demonstrations involvemgulated and real data,
there has been relatively littlbeoretical work aimed at elucidating the environmental
conditions under which heuristic models are andreneeffective. Some work has,
however, considered specific cases. Einhorn andakiog(1975), for example,
provided a theoretical rationale for the effectiess of equal weighting relative to
multiple regression. Martignon and Hoffrage (192902) and Katsikopoulos and
Martignon (in press) explored the conditions undéiich TTB or equal weighting
should be preferred in binary choice. Hogarth ardelkaia (2005a; in press, a) and
Baucells, Carrasco, and Hogarth (2006) have examiviey TTB and other simple
models perform well with binary attributes in erfore environments.

Finally, in related work (Hogarth & Karelaia, 2005n press, b), we have
provided an analytical framework for determining avhwe named “regions of
rationality,” i.e., the specification of when hestit models are and are not effective.
The current paper builds on these foundations.

To facilitate presentation of our analytical résuive first briefly explain the
logic of the lens model and the so-called “lens elajuation” (Tucker, 1964). We
then derive equations for the predictive abilitytloé heuristics we examine in terms
of expected predicted correct in binary choice a$§ as squared-error loss functions.
Our strategy involves presenting the key ideasiénrhain text with details provided
in appendices. An important difference betweemlistiof heuristic judgment and

those using the LC framework (or lens model) ig tha empirical criterion for the
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latter — known as “achievement” — is framed witlie context of the correlation
between judgments and outcomes as opposed to pegeenorrect predictions in
binary choice. In comparing paradigms, therefoses transform correlational

achievement into equivalent percentage correcinar choice.

Theoretical development

To motivate the theoretical development, imaginbirary choice situation
that involves selecting one of two job candida#sand B, on the basis of several
characteristics such as level of professional fjoations, years of experience, and so
on. Further, imagine that a criterion variable.,i.a measure of subsequent job
performance, can be observed at a later date atchtborrect decision was taken if
the criterion is greater for the chosen candiflaf2enote the criterion by the random

variableY, such that if A happened to be the correct chaoe, would observge, >

7

Yeb-

Within the lens model framework — see Figure 2 —cae model assessments
of candidates by two equations: one, the modehefdnvironment; the other, the
model of the judge (the person assessing the jobidates). These equations are,

respectively:

Kk
Ye :Zﬁe,jxj +£e (1)
j=1
k
and Y, =D B X, +&, 2)
=1

® In practice one would typically only be able tosebve the criterion on the chosen candidate.
However, there are many other practical cases wiéseis not a problem, e.g., choosing consumer
products.

" We use upper case letters to denote random vesiablg.Y,, and lower case letters to designate
specific values, e.g.y,. As exceptions to this practice, we use lowerdaseek letters to denote

random error variables, e.¢f, as well as parameters, e,@e,j .
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whereY. represents the criterion (subsequent job perfocamann candidates) and is
the judgment of the criterion made by the decisioaker; theX/'s are cues (here
characteristics of the candidates); aadind & are normally distributed error terms

with means of zero and constant variances, indegyeraf each other and of thés.

Insert Figure 2 about here

Assuming linearity, the logic of the lens modelthsit the judge’s decisions
will match the environmental criterion to the esxtérat the weights the judge gives to
the cues match those used by the model of the@maent, i.e., the matches between

Gsj and G for all j = 1,..k. Moreover, the correlation between criterion and

judgment, p,, — the “achievement” index — can be expressed (Tudias4) by

Py, = p\?e\?sReRs t Pee (1_ Rj)(l— RSZ) (3)

where Pyy, (the “matching” index also known &3) is the correlation between the
K K

predictions of both models, i.e., betwednB,; X, and > B, X, ; Reand R are,
=L =

respectively, the multiple correlations of the misd# the environment and the judge,

and capture, on the one hand, environmental pediity (Re), and on the other hand,

the consistency with which the judge executes #wsibn rule R). Assuming that

the error terms of the two models are independeat,o,, =0, achievement is

simply a multiplicative function of three terms: tolaing, environmental
predictability, and response consistency, and yeediptures the effects of both
cognitive and task variables on observed performam@chievement.

Given the above lens model framework, we now devéie probabilities that

our models will make correct predictions within i&emn population or environment.
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As will be seen, these probabilities reflect theaz@ance structure of the cues used as
well as those between the criterion and the clies these covariances that describe
the inferential environment in which judgments arade. At the same time, we also
develop equations for showing the effects of dé@ferevels of errors.

The SV model. The lens model — and the lens model equatior (&ve been
used extensively to illuminate many issues in judgtal research (Brehmer & Joyce,
1988; Cooksey, 1996). However, here we ask ardiftequestion. Imagine that the

judge does not decide by using a linear combinatibe but instead simply chooses
the candidate who is better on a single variabfg, (years of experience, for
example). Thus, the decision rule is to choosectralidate for whomX; is larger,
e.g., choose A ifx, > x,. Our question now becomes, what is the probglhiat A
is better than B using this decision rule in a gieavironment or population, that is,
what is, P{(Y,, >Y,,) n (X,, > X, } ?

To calculate this probability, we follow the mégeesented in Hogarth and
Karelaia (2005b). We first assume thét and X, are both standardized normal
variables (i.e., with means of 0 and variances)ard that the cue used is positively

correlated with the criterioh. Denote the correlation by the parametgr |,
(pyx, >0). Given these facts, it is possible to repre¥gnandYe, by the equations:
Yea = Pyx, Xia +Ven 4)
and Yy = 0y Xop + Ve (5)
where v_and v, are normally distributed error terms, each withamef O and

variance of (1—p$exl), independent of each other andXf, and X, .

8 We consider the implications of our normality asgtion in the Discussion.
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The question of determinin@’{(Yea>Yeb)m (X1a> le)} can be reframed as
determining P{(d, >0)n (d, >0)} whered, =Y, -Y, > Q andd, = X,, - X, > Q
The variables d, and d, are bivariate normal with variance / covariance

2 vaexl
VA

= j and means of0. Thus the probability of correctly
20y x, 2

selecting A over B can be written as

f(d) dd, (6)

Ot—38
ot—38

-1 1, 4
where f (d) :‘sz_e'zd M7 with d= [jlj
7 2

‘1/2

To calculate the expected accuracy of the SV modal given environment,

it is necessary to consider the cases where bo¥y,>X, and
X > X such  that the  overall probability is  given by
P{((Y., >Y,) 0 (X, > X, ) O((Y, >Y.)n (X, >X,)} which, since both its

components are equal, can be simplified as
2P{(Y,, > Y.p) 0 (X1 > Xy )} = 2[ [ £ (d) dd (7)
00

The LC model. Following the same rationale, we can also detegnthe
probability that using a linear combination of cwéb result in a correct choice. That
is, proceeding in exactly the same manner as alme can exprest, and Yy as

functions ofYs and Yy, define appropriate error terms, and «,, and substitute,
respectively, p,, for p,,, and Y, andY, for X, and X,. Thus, one can

show that2P{(Y., >Y,,) n (Y., >Y,,)} can also be found through expression (7), with

17



F(d) defined as in SV. The only difference between &9 BC lies in the variance-

, : , 2 2py
covariance matrixM that for the LC model i#, . = e

2 Py, 2

The EW model. EW is, of course, a special case of LC. Defipe= X - X, ,

_ k _ Kk
where X, :%Z X, and X, :%ijb, and note thatl, is a normal variable with
j=1 j=1

a mean of 0. Thus, the expected accuracy of EW can be defiyedduation (7)

taking into consideration that the appropriate asmce/covariancematrix is

M _ 2 20,505\ 10
f_Ew 2pYe)?0-)? 20-)% .

The analogous expressions for the CONF and TTBefsoare presented in
Appendix A.

Loss functions. Equation (7) as well as its analogs in Appendigah be used
to estimate the probabilities that the models milke the correct decisions. These
probabilities can be thought of as the averageegmeage correct scores that the
models achieve in choosing between two alternatives such, this measure is
equivalent to a 0/1 loss function which does netidguish between small and large
errors. To overcome this deficiency, we introduge hotion that losses from errors
reflect the degree to which predictions are inazirre

Specifically, to calculate the expected loss rasglfrom using SV across a
given population, we need to consider the posdiidses that can occur when the
model does not select the best alternative. We Mode by a symmetric squared
error loss function but allow this to vary in “ex&agness” or the extent to which the

environment does or does not punish errors sevérggarth, Gibbs, McKenzie, &

® The variabled, for EW is the same as for L@, =Y, =Y, .
'”Note that from equation (3) it follows tha, - = 0; R, (assuming, , =0).
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Marquis, 1991). We note that loss occurs whenX])> X, butY,, <Y, , and (2)
X, < X, butY,, >Y, . Capitalizing on symmetry, the expected loss (&i9ociated
with the population can therefore be written as
ELg, =2P{(Y,, <V, ) n (X, > X, )L (8)

wherel = a(Yeb —Yea)z. In other words, the expected loss is proportiotmalthe
squared difference betwee¥), andY,, weighted by the probability thaYt,, <Y,
andX,, > X, . The constant of proportionalitya (>0), is the “exactingness”
parameter that captures how heavily losses shauttbbnted.

Substituting cr(Yeb—Yea)2 for L and following the same rationale as when

developing the expression for accuracy, the expeldss of the SV model can be

expressed as:

ELS/ = 2a,(Yeb _Yea)2 P{(Yea < Yeb) N (xla > X1b )} =

20'.? Tdff(d) dd 9)

)

As in the expression for accuracy, the functib(d fo) SV involves the variance-
covariance matrik ; , . The expected loss of LC and EW are found anaddigic

using their appropriate variance-covariance megrice

In Table 1, we summarize the expressions for acguaad loss for SV, LC,
and EW. In Appendix B, we present the formulastfar loss functions of CONF and
TTB. Finally, note that expected loss, as expreesseequation (9), is proportional to
the exactingness parameten, that models the extent to which particular

environments punish errors. (We manipulate thitofaloelow.)
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Exploring effects of different environments

We first construct and simulate several task @mwvirents and demonstrate
how our theoretical analyses can be used to maddigtions for all of our models in
terms of both expected percentage correct predetnd expected losses. We also
show how errors in the application of both lineaod®ls and heuristics affect
performance and thus illustrate potential trads-off’olved in using different models.
We further note that, in many environments, heigristodels achieve similar levels of
performance and thus explicitly explore this isas#g simulation. To make the link
from theory to empirical phenomena, we report datan a meta-analysis of lens
model studies that we use to compare the judgmemggbrmance of theoretical
heuristics with that of people using LC models.

Constructed and simulated environments. To demonstrate our approach, we
constructed several sets of different three-cuer@mments using the model implicit

in equation (1), i.e.,
k
Ye:Zﬂe,jxj +£e (1 )
j=1

Our approach was to vary systematically two fact¢ty the weights given to the
variables as captured by the distribution of cubditees; (2) the level of average
inter-cue correlation. As a consequence, we olgauironments with different levels
of predictability as indicated big (from low to high). We could not, of course, vary
these factors in an orthogonal design (due to mmadltieal restrictions), and hence
used several different sets of designs.

For each of these, it is straightforward to catellexpected correct predictions

and losses for all our modélgsee equations above) with one exception. Thids

™ For the TTB model, we defined a threshold of Q\sith standardized variables) to decide whether a
variable discriminated between two alternatives. e¥éhs the choice of 0.50 was subjective,
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LC model which requires specification@):ys, that is, the “achievement index” or the

correlation between the criterion and the persogsponses. However, given the lens

model equation — see equation (3) above — we khatv t
Py, = Pyy, RR (10)
whereRe captures the predictability of the environment gngd Rs the extent to

which the person’s judgment ability meets the deisaof the task, i.e., the product of

“matching” and “consistency** Lindell (1976) referred t@;; Rs as “performance”

because this part of achievement can be consideatately from task predictability
or R.. We prefer to call it “linear cognitive ability’raca to capture the notion that it
measures how well someone is using the linear modétrms of both matching
weights and consistency of executidn.In short, our strategy is to vaca and
observe how well the LC model performs. In otherdsp how accurate would people
be in binary choice when modeled if using a linear combination of cues with
differing levels of “knowledge” (matching of weigf)tand consistency in execution
of their knowledge?

For example, from a psychological perspective dar@sting comparison is
the point where the use of an LC strategy is egulajethat of a single variable (SV).
This occurs when the validity of SV equals thattleé person using LC, that is,

whenp, , = pyy = caRe or whenca = (p, /Re). One way of thinking about this is

to see that, from a predictive viewpoint, it captuthe point of indifference between

making a judgment using all the data (i.e., with) la@d relying on a single cue (SV)

investigation shows quite similar results if thiseshold is varied between 0.25 and 0.75. We use th
threshold of 0.5 in all further calculations ardstrations.

2 The assumption made here is that, = 0, see equation (3).
13 Recall that “using” is employed here ina@sif manner.
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such as representativeness (Kahneman & Tversky?)16i7 affect (Slovic et al.,
2002).

The first set of environmental parameters thatwesider involves four cases
(A, B, C, and D) — see Table 2. Here we examingakgnd differential cue validities
(case A versus the others), low but positive ictge-correlations (cases A and C),
negative inter-cue correlation (case B), and mddbrahigh inter-cue correlation
(case D). These parameters imply different levélsnvironmental predictability (or
lack of “noise”), that idR., which varies from 0.66 to 0.93. In the right Hdazolumn,

we show values of 4, , /Re) which indicate the benchmarks for determining whe

SV or LC performs better. Specifically, LC perfarietter than SV whera exceeds

( Pv.x, IRe).

Figure 3 depicts expected percentage correct gireds of the different
models as a function of linear cognitive abilitycar In addition, Figure 3 recognizes
the possibility that the decision maker could erusing the SV and TTB models —
specifically by failing to order the variables aatiag to their cue validities. This is
shown in respect of SV in the four left-hand sidegls and for TTB in the four right-
hand side panels. Here the lines SVr and TTBr siiquected performance if cues are
selected or ordered at random and the shaded mdiaate the range of possible
performance levels from best (the correct orderyaost (most incorrect order).

A first comment is that, in a relative sense, mopetformance varies by
environments. In case A (equal cue validities & cue inter-correlation), for

example, EW performs best and CONF is also morectfe than TTB. SV lags
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behind. Note that, in this environment, it does matter whether heuristics identify
the correct ordering of cues because each cudbasmime validity.

This picture changes when the cue validities différ case B (with negative
inter-cue correlation), EW is still best, but onslightly, whereas TTB now
outperforms CONF. As cue inter-correlation incesashowever, differences in
model performance decrease — examine cases C andrd EW no longer has the
best performance. As can also be seen, errordimgféo identify the correct ordering
of cues can hinder performance in environments,End D.

Second, consider the performance of LC as a fomatf ca. First note that
equality between LC and SV occurs, for each of ¢hees, at the critical points
enumerated at the right of Table 2. Thus, for gdamLC needs less linear cognitive
ability in case A (0.62) to do better than SV thiarcase C (0.80). Interestingly, in
all the environments illustrated, linear cognitaaility has to be quite high before it
starts to be competitive with the better heuristindeed, it is only in case B that LC
has the best performance and this when linear tegrability starts to exceed 0.85.

The simple conclusion from this analysis — whiah explore further below —
is that unless linear cognitive ability is “highgecision makers are better off using
simple heuristics provided that they implement ¢hesrrectly.

In Figure 4, we show differential performanceemts of expected loss where
the exactingness parameter, is equal to 1.00. A comparison of Figures 3 dnd
shows the same pattern of results in terms ofivelamodel performance. Once again,
we also illustrate the effects of errors in the a6&V and TTB. Figure 5 examines
the effects of less exacting losses wimen 0.30. Compared to Figure 4, we find the

same relative ordering between models but diffeeeno expected loss are much
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smaller. Indeed, the effect of changings to reduce or magnify (as appropriate)
expected losses by a constant multiplier (see 2itdeTable 1).

To provide more insight, we constructed four fartlsets of environments —
cases E, F, G, and H — each of which had eighttasbs (i through viii) as specified
in Table 3. In cases E and F, the distribution oé walidities was quite steep
(decreasing constantly by one-half) and overall cakdity decreased across sub-
cases (i through viii). Cases G and H had a sindigeign except that the distribution
of cue validities was flatter. Cases E and G lmd positive cue inter-correlation
whereas cases F and H had higher cue-intercooelafi consequence of these
specifications was a range of environmental pragitties | from 0.37/0.39 to

0.85/0.88 across all eight sets of sub-cases.

Table 3 also documents expected percentage camecliosses (foor = 1.00)
for all our models including LC which has been o#déed using three different values
for linear cognitive abilityca = 0.5 for LC1;ca = 0.7 for LC2; andta= 0.9 for LC3.
The trends in Table 3 are perhaps better viewedXaynining Figures 6 and 7 that
document percentage correct and expected loseatdsgly, of the different models

as a function of the validity of the most valid cye, , . Since her@, , is highly

correlated withRe, the horizontal axis of the graphs can also beught of as
capturing “noise” (more, on the left, to less,la tight). As with Figures 3 and 4, we
use shaded areas to indicate the ranges of perficaribat can be achieved by SV (on
the left) and TTB (on the right).

Abstracting first from the three LC models, thexe general trend (that could

be expected) for differences in model performancmdrease as noise or error in the
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environment decreases. TTB dominates the otherelsad case E but is, in turn,
dominated by SV in the more redundant case F.ase & (where the distribution of
cue validities is flatter), EW and TTB are the befterforming models, and EW does

better than TTB whenp, , < 0.50. In case H (involving greater redundang&yj,is,

once again, one of the better models. CONF gdgetr@cks EW closely but is
consistently inferior to it. The difference betweoking at percentage correct
(Figure 6) and expected loss with= 1.00 (Figure 7) is that differences between
models are easier to observe with the latter.

In terms of linear cognitive ability, it is cleéand unsurprising) that more is
better than less. Interestingly, however, as thir@mment becomes more predictable
the effectiveness of the LC models drops off re&ato the simpler heuristics. (This

can also be seen by considering g, /Re column in Table 3.) In the environments

examined here, the best LC model (wéth= 0.9) is always outperformed by one of

the other heuristics whep, , > 0.60.

Agreement between models. In many instances, strategies other than LC have
quite similar performance. This raises the questibknowing how often they make
identical predictions. To assess this, we calcdldatee probability that all pairs of
strategies formed by SV, EW, TTB, and CONF wouldkenthe same choices across
several environments. In fact, since calculatihgs tjoint probability is quite
complicated in some cases, we actually simulatedlte based on 5,000 trials for
each environment.

Table 4 specifies the parameters of the environsneveé considered, the

percentage correct predictions for each model ioheanvironment! and the

4 We had also calculated the theoretical probagsiitf the simulated percentage correct predictions.
Given the large sample sizes (5,000), theoreticdlsamulated results were almost identical.
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probabilities that models would make the same dmws As can be seen, there are
two sets of environments, | and J, each with eggit-sets (i through viii). Set | has
low cue inter-correlation; set J has moderate @b ktue inter-correlation. Within each

set, we vary predictabilityRg) from high to low.

We make three remarks. First, whereas there isidenable variation in
percentage correct predictions across differenelgewf predictability, agreement
between pairs of models hardly varies as a funatibR. and is uniformly high. In
particular, the rate of agreement lies between @@ 0.92 across all comparisons
and is probably higher than one might have imagmeuiori. At the same time, this
means that differences between the models occ8r38% of choices and, from a
practical perspective, it is important to know wtltars happens and which model is
more likely to be correct. Second, and as woul@Xgected, the effect of increasing
cue inter-correlation (or redundancy) is to inceeise level of agreement between
models. Third, for the environments illustratedeheghe CONF and EW models have
the highest level of agreement whereas the SV-E&VSAARTTB have the lowest. The
latter result is perhaps surprising in that both &M TTB are so dependent on the
most valid cue.

Comparisons with experimental data. Although instructive, the above analysis
has been at a theoretical level and raises the ssthow good” people are at making
decisions with linear models as opposed to usingist&s. To answer this question,
we undertook a meta-analysis of lens model stuttiesstimateca. This involved
attempting to locate all lens model studies repbite the literature that provided

estimates of the elements of equation (3). Stutiesefore had to have a criterion
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variable and involve the judgments of individuas ppposed to groups of peopfe).

Moreover, we only considered cases where the numberdependent variables or

cues was greater or equal to two (when there s @m cue,p,, = 1.00 necessarily).

In all, we located 77 (mainly) published papers #ibbwed us to examine judgmental
performance across 252 different task environmérdgs environments that vary by
statistical parameters and/or substantive condi}ion
In Table 5, we summarize key statistics from thetaranalysis (for full

details, see Karelaia & Hogarth, in preparatiomirst, we note that these studies
represent much data. They are the result of apmeately 5,000 participants
providing a total of some 320,000 judgments. [kt fanany of these studies involved
learning and, since we characterize judgmentalopmidnce by that achieved in the
last block of experimental trials reported, thetiggrants actually made many more
judgments. Second, we provide several breakdowngifferent lens model and
performance statistics that are the means acradgstof individual data that have
been averaged within studies (i.e., the units afyans are the mean data of particular
studies). We distinguish between expert and noparéicipants, laboratory and field
studies, environments that involved different nursbef cues, different weighting

functions, and different levels of redundancy (oe inter-correlation).

Insert Table 5 about here

Briefly, we find no differences in performance beem participants who are
experts or novices (the latter, however, are assgesfter learning) nor between
laboratory and field studies. Holding the predidigbof the environment constant

(i.e., Re), performance (both, and LC accuracy) is somewhat better with fewescue

5 We also excluded studies from the interpersonaflico paradigm where the criterion for one’s
person’s judgments is the judgment of another pe¢see, e.g., Hammond, Wilkins, & Todd, 1966).
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and with equal as opposed to differential weightingctions. Parenthetically, in
characterizing the latter, we classify functions remsm-compensatory if, when cue
validities are ordered in magnitude, the validifyeach cue exceeds the sum of those
smaller than it (cf., Martignon & Hoffrage, 1999)@). We define all other functions
as compensatory except for the special case of-egighting.

Overall, the LC accuracy reported in the right haallimn of Table 5 is about
70%. In interpreting this figure, it is importamt bear in mind that it is derived from
an estimate of linear cognitive abilitya(or GRs) of 0.66 and that this figure is a mean
estimate across individual studies each of whichdeéscribed by the mean of
individual data. Table 5 obscures individual vaoiat

To capture the differences in performance betwe@rahd the heuristic models,

one needs specific information on the statisticqapprties of tasks (essentially the
covariation matrix used to generate the environalewgtiterion) and to make
predictions for each environment. Recall also,tlatthe lens model paradigm,
performance — or “achievement” — is measured imseof correlation. We therefore
transformed the measure of achievement into onpedbrmance in binary choice
using the methods described above, that is, byssisgethe performance of LC with
different levels of linear cognitive abilitga. Thus, to measure the effectiveness of
LC relative to any heuristic in a particular envinoent, we considered the difference
in expected predictive ability between LC basedtlom meanca observed in the
environment and that of the heuristic. In otherds, we ask how well thaverage
performance levels of humans using LC comparedselof heuristics.

In Table 6, we summarize this information for eowiments involving three
and two cues (details are provided in Appendicesn@ D). Unfortunately, not all

studies in our meta-analysis provided the infororatieeded and thus we are limited
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to approximately two-thirds of tasks involving tereues, and one-half of tasks
involving two cues. We also note, parentheticaliat although some environments
had identical statistical properties, they can bastered different because they
involved different treatments (e.g., how particifgahad been trained, various forms

of feedback, presentation of information, and sp on

Insert Table 6 about here

The upper panel dfable 6 summarizes the data from Appendix C. Tis fi
column (on the left) shows the maximum performatita could be achieved in
environments characterized by equal-weighting, camsptory, and non-
compensatory functions, respectively. This captutee predictability of the
environments (81% for equal weighting and compemgatnd 82% for non-
compensatory). These environments are also markdittle redundancy. Over 80%
have mean inter-cue correlations of 0.00. In thelybof the table, we present
performance in terms of percentage correct for Litased onmean cognitive ability
observed in each of the experimental studies —edlsas the performance that would
have been achieved by the different heuristich@sé¢ same environments. Thus, one
way of interpreting the LC column is as the perfante that would have been
achieved in binary choice by the mean participanteach study (in terms of
judgmental ability).

As would be expected, the EW strategy performs bestqual weighting
environments (80%) and the TTB strategy best in then-compensatory
environments (77%). Interestingly, in these consp#ory environments, it is the EW

model that performs best (77%). The mean LC madeer has the best
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performance. Compared to the heuristic modelgatiormance is relatively better in
the equal weighting as opposed to the other envieorts.

In the discussion so far, we have concentratedffests of error in using LC
(by focusing onca). However, the columns headed SVr and TTBr ithist the
effects of making errors in using heuristics. Tél®ws that the performance of LC
(at mearca level) is as good as or better than SVr and TTBosall three types of
environments.

In the lower panel of Table 6, we present the 8aed on analyzing studies
with two cues where, once again, most environmientdve orthogonal cues (73%) —
details are provided in Appendix D. Conclusions sirailar to the three cue case.
EW is necessarily best when the environment in®lae equal weighting function
and TTB performs well in the non-compensatory emvinents although it is bettered
here by the SV model (just.

Since most published studies do not report indzidiata, it is difficult to
assess the importance of individual variation irfgrenance in particular tasks and,
specifically, how individual LC performance compamgith heuristics in such tasks.
Two papers involving two-cues did report the neagsslata (Steinmann & Doherty,
1972; York et al., 1987). Table 7 summarizes th@garisons. This shows (reading
from left to right), the number of participantseach task, statistical properties of the
tasks, percentage performance correct by the LCem@dean and range), and the
percentage of participants that have better pedaga with LC than with particular
heuristics. (Note the three tasks reported by Yatrél., 1987 have identical statistical

characteristics but involved different substantive@nipulations of information).

8 The following rule was used to adapt the CONF ehddr two cues: If both cues suggest the same
alternative, choose it. Otherwise, choose at ramdo
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Clearly, one cannot generalize from the four emuments presented in Table
7. However, it is of interest to note that, firshe ranges of individual LC
performances are quite large (24% to 31%), and ngkca limited number of

participants can have better performance with L& twith the heuristics.

Summary. At a theoretical level, we have shown that the qrenince of
heuristic rules is affected by several factors:tipe of weighting function (i.e., how
the environment weights cues); cue redundancyter-gorrelation; the predictability
of the environment; and loss functions. The weirghfunction determines which
heuristic is best suited to specific tasks and tlepends on how its characteristics
match that of the tasks confronted. For exampl&y/ B better in equal
weighting/compensatory environments and TTB and &V non-compensatory
environments. The effect of cue redundancy is gglyeto reduce differences in the
relative predictive abilities of the heuristics. s Aenvironments become more
predictable, all models perform better but differesn between models also increase.
Finally, the effect of loss functions is to accexrtuor dampen differences between
evaluations of model predictions.

We also used simulation to investigate the extenthich models agree with
each other. At one level, all the models we ingastd were “sensible” and used
valid information. As such, it should not be susprg that they exhibited much
agreement. The extent of the agreement, howewas, surprising. Even when the
predictability of the environment varied greatijhetlevel of agreement between
particular models hardly changed (cf., Table 4yonk a predictive viewpoint, this

might be thought comforting. But it also accentsathe need to know which
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heuristic is more likely to be correct in the 8-3@¥%cases in which they disagree —
and thus the importance of identifying when différbeuristics are more effective.
The differential impact of environmental factorsligstrated quantitatively in
Table 8 which reports the results of regressingfoperance of the heuristics
(percentage correct) on environmental factors: type weighting function
(represented by dummy variables), redundancy (coter-correlation), and
predictability R). This is done for the 52 populations specifiedables 2, 3, and 4.
Results show the importance of hon-compensatoryjramments and redundancy on
SV (positive) and EW and CONF (both negative). hegéingly, for the conditions
examined here, the performance of TTB is not affgédby these factors thereby
suggesting a heuristic that is robust to envirortalerariations (for further analysis of
this issue, see Baucells, Carrasco, & Hogarth, RGg6ally, all models benefit from

greater predictability.

An important conclusion from our theoretical anays that unless linear
cognitive ability €a) is high, people are better off relying on trade-@avoiding
heuristics rather than using linear models. Atgame time, however, the application
of heuristic rules can involve error (e.g., vareabhot used in the appropriate order in
TTB). This therefore raised the issue of estintatinear cognitive ability @) from
empirical data and noting when this was “large gihduo do without heuristics.

Our theoretical analyses suggested taaheeded to be larger than about 0.7
for LC models to perform better than heuristicsragss the 252 task environments of
the meta-analysis we estimatealto be 0.66. However, this is a mean and does not

take account of differences in task environmenEor those environments where
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precise predictions could be made, LC models basetdearca estimates performed
at a level inferior to the best heuristics but édaar better than heuristics executed
with error. Unfortunately, the data did not allo& to make a thorough investigation
of individual variation inca values. However, to the extent that we could ls, t

only a minority of individuals appeared capable@ofperforming heuristics using LC.

General discussion

Our goal has been to show how different views afristic decision making
can be reconciled within a framework that also emgasses the representation of
human judgment as linear models. Central to ourkwie the importance of
understanding the effects of different environmethist we have characterized by
statistical properties. Given the inherent unaetyan inference, this approach seems
eminently sensible (cf., Brunswik, 1952). We nowsider implications that are, first,
psychological, second, normative, and third, methagical in nature. We also
outline extensions for further work.

Psychological implications. All of the models (heuristics) we have examined
can be thought of representing “ideal-types.” Thuss legitimate to ask how their
mathematical representations capture underlyinghasggical processes. This is not
a new issue (see, e.g., Hoffman, 1960; Einhornlet1879) and — apart from
predictive tests — we believe the answer lies sessing logical consistency between
the assumptions of models and the information @msiog operations actually
performed by humans.

Consider, for example, the SV (the simplest) arellt® (arguably the most
complex) models. For the former, we can argue thatpsychological process is

“modeled” correctly if the assumption that the jodEnt is based on a single cue is
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verified. It does not matter, for example, if tinelividual looks at other cues and then
ignores them. For the latter, checking for coesisy is more complex. Were all
cues examined? Were weights attached to the cué#re the weighted sums
aggregated to form a global judgment? Note thatethis no need to say that actual
mathematical formulae were used. All one would néedshow is that mental
operations took place that led to outcomes congistéh the operations. Nor do we
need to indicate the micro-processes that undérdiecognitive operations although,
in an ideal world, these would also be consistdtit the postulated framework. The
evidence that would argue most against the LC muoaelld be the demonstration
that part of the information was ignored.

From a psychological viewpoint, therefore, the rdldhat the different models
capture actual processes is made at a level ofysisathat represents mental
operations in an “as if” manner. Moreover, by defg the statistical properties of
task environments, we show at a theoretical lew& bharacteristics of models and
tasks result in different levels of performancehisTis an important contribution
because it provides the basis for developing amr@mwental theory of judgmental
performance (cf., Brunswik, 1952; Simon, 1956).

The environment, however, is not captured by stedilsproperties alone since
context can be important. Within our framework, teotual effects would be
reflected in how people use heuristics. Consittarexample, what happens when
cue variables are inappropriately labeled. With@ inodels, this would be captured
by reductions in linear cognitive abilityd) because people give less appropriate
weights to the variables. With the TTB model, auld result in using cues in an
inappropriate order. In short, our approach isltbon a statistical analysis of

environmental tasks. The mediating effects of exinare captured by their impact on
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how people use decision rules. Since it is people are differentially susceptible to
contextual effects, we believe this makes sense.

One claim we do make is that the range of modelsaevisidered covers the
types of heuristics that have been discussed ifitdrature as well, of course, as the
linear model. Thus, the SV model captures preciaélgt happens when people make
decisions based on a single cue such as reprasentss (Kahneman & Tversky,
1972), availability (Tversky & Kahneman, 1973), ogoition (Goldstein &
Gigerenzer, 2002) or affect (Slovic et al., 2002)l these models have in common
the notion that people use a single cue that hasrii@ct validity. However, whether
this implies that people are misguided or justifiedelying on a single cue can not be
decided on an a priori basis but depends — inquéati cases — on how valid the single
cue is, what other relevant information is ava#aldnd the costs of making errors.
From our perspective, it is understandable thatesmsearchers see the “glass as half-
empty” while others see it “as half-full.”

An important contribution of our analysis is to hiight the role of error in the
use of different models — as opposed to error oiskf in the environment. Within
LC, error is measured by the extent to which lineagnitive ability ¢a or GR) falls
short of 1.00. Here, error can have two sourcesprrect weighting of variables and
inconsistency in execution. With TTB, the analogoarsor results from using
variables in an inappropriate order (and in SV frasing less valid cues). Thus, the
errors in the two types of models involve both kienlge and execution although in
the latter execution errors are less likely giviem simpler processes involved.

An advantage of our meta-analysis of lens modalistuis that one can say
something about the effects of errors within thefta®nework. Across all our studies,

the mean estimates for bo@ andRs are approximately 0.80 (Table 5). Moreover,
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only 11% ofGRs values exceed 0.90. That is, the meta-analyseate much error in
both knowledge and execution. Note also that afjhaG and Rs are positively
correlated, 0.43p(< .001), neithelG nor Rs are correlated with the predictability of
the environmentRg) — 0.03 forG and 0.09 folRs. In other words, there is a trend for
people to be more consistent in executing strategieen these are more valid.
However, there is no relation between how predletadn environment is and
people’s judgmental strategies other than a kingrobability matching result where,
overall, mearR. andRs are approximately equal.

Given the difficulty of executing the LC model welt is of interest to
speculate when people can rely on this kind of ggec We suspect that many models
of this type — or “as if” versions — are used whedgmental processes have been
automated (or become “tacit,” Hogarth, 2001) susdt people do not need to think
about executing trade-offs. Imagine, for exampbesic processes such as perception
or situations where past practice has been suiti¢@ hone a person’s skills. These
include the judgments that most of us can exemisen driving an automobile, and
that experts exhibit in different activities suck aontrolling complex systems
playing music, or even different sports (cf., Skeantet al., 2005).

An interesting feature of most tasks studied indbeision making literature is
that they are difficult precisely because peoptk e experience necessary to take
action without explicit thought and thus are unaldeinvoke valid, automatic
processes. This issue emphasizes the need tostamrthe natural ecology of
decision making tasks (Dhami, Hertwig, & Hoffra@®04).

Normative implications. Our work has many normative implications in that

spells out the conditions under which differentrinsics are effective. Moreover, the
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fact that this is achieved analytically — insteddhoough simulation — represents an
advance over current practice (see also Hogarttalia, in press b).

An interesting normative implication relates te thade-offs in different types
of error when using heuristics or models. As natbdve, one way of characterizing
our empirical analysis is to say that judgmentafggenance using the cognitively
demanding LC models is roughly equal to that ohgdieuristics with error, that is,
of SVr and TTBr. However, is there a relation bedw linear cognitive abilityc)
and the knowledge necessary to know when and happty heuristic rules?

Given our results, how should a decision maker @agr a predictive task?
Much depends on prior knowledge of task charadtesisnd thus how the individual
acquired the necessary knowledge. Basically — & extreme — if all cues are
approximately equally valid, EW should be used expj. Similarly — at the other
extreme — when facing a non-compensatory weigtitingtion, TTB or SV would be
hard to beat with LC. The problem lies in taskatthave more compensatory
features. The key, therefore, lies in assessimticognitive abilityda). How likely
is the judge to know the relative weights to gikie variables? How consistent is he
or she in using the judgmental strategy? Baseolometa-analysis, we expect that a
minority of persons can meet these conditions latt inuch also depend on the nature
of the task and the individual's predictive expede. For example, one would be
justified in trusting the judgments of the weatlerecasters studied by Stewart,
Roebber, and Bosart (1997) but not those of Einbddr®72) physicians.

Our analysis points to the importance of knowledgabout the kind of task
and the capacity to handle task demands. Thisyrm taises psychological issues of
how people acquire such knowledge or are helpedot®o. Overall, our results

suggest that for many tasks the errors incurredsiyg LC strategies are greater than
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those implicit in using heuristics. Thus, judgmamgerformance could be improved
if people explicitly used appropriate heuristicstéad of relying on what is often their
untested and unaided judgment. However, that peogdist doing so has been
documented many times (Dawes et al., 1989; Kleintmur990). It seems that a high
level of sophistication is needed to understandnadoeignore information and use a
heuristic. Perhaps LC strategies are psychologidttactive precisely because they
allow people to feel they have considered all imfation (cf., Einhorn, 1986).

Methodological implications. Our work involves methodological innovations.
Not only have we developed analytical tools for heons that frequently use
simulation, we have also provided a common fram&waeithin which linear and
heuristic models can be compared. This therebpens the way to compare and
contrast different ways of studying judgment andisien making.

Several issues suggested further work. Firsthi® paper, we have limited
ourselves to a binary choice paradigm involvingeéhcues. This can be extended in
two ways: first, to consider more alternatives, aadond, more cues. Our previous
work (Hogarth & Karelaia, in press a, b), suggesist changing the number of
alternatives will not have a major influence onatele performance of different
models. Increasing the number of cues, however/dcbave important impacts
depending on the nature of inter-cue correlation.

Second, all our statistical analyses have beerndumied using normal
distributions and it would be of interest to see ¢ffifects of changing this assumption.
In particular, what would happen if distributiongene skewed and/or had fatter tails
than the normal distribution? Further interestognplications could involve effects

where models have correlated error terms.

38



Third, although our work innovated in this domai showing the effects of
loss functions, we only varied the “exactingnesafagmeter and not the symmetric
nature of losses. It would be of interest to esplsymmetries in loss.

Concluding comments. As noted at the outset of this paper, our gaal mot
been to “unify” different traditions of judgmentaésearch. However, we have
developed a framework in which to compare resiilsis, we have been able to make
direct comparisons between research in the lonudstg lens model tradition with
the more recent work on heuristic decision maki@gntral to our approach has been
the need to specify and model characteristics s tmvironments for it is this that
determines which and why particular heuristics rame or less successful. It also
provides guidance as to the level of expertise e@ed use the more demanding LC
models. At the same time, we emphasize the neeénowledge — or maps — to
know when to use specific heuristics. How peopdeetbp such maps is key to

understanding much judgmental activity.
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Table 1 — Key formulas for three models: SV, LCd &#W

Model variance-covariance matrix
(M)
Single variable (SV) 2 2py,
20y x, 2
Linear Combination (LC) 2 2p,
20y, 2
Equal weights (EW) 2 20,40
2p, 50y 20y

Notes
1. The expected accuracy of models is estimated as the probability of cdiyec
selecting A over B, and is found as:

2” f(d) dd,

‘M _1‘1/2 “la'mi d

= f e 277" with d= L .
21 d,
2. The expected loss of models is found as:

ZaTTdff(d) dd,

)

wheref (d)

where a (> 0) isthe “exactingness” parameter.
3. The variance-covariance matrill ; is specific for each model.

N k _ . _
4. Pz = Pyx m where k = number of X variables, o, ,

average correlation betweery and the X's, and Pxx, = average
intercorrelations amongst thés.

o

o = Lo,
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Case A
Case B
Case C

Case D

Table 2 -- Environmental parameters: Cases A, Bd,D

Cue validities

Pvx, Pvx, Py,
0.5 0.5 0.5
0.6 0.4 0.3
0.6 0.4 0.3
0.6 0.4 0.3

Cue inter-correlations

Pxx, Pxx, Px,x,
0.1 0.1 0.1
-0.4 0.1 0.1
0.1 0.1 0.1
0.5 0.5 0.5

R,

0.81
0.93
0.75

0.66

:0\(e><1 R

0.62

0.64

0.80

0.91
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Table 3 -- Environmental parameters: Cases E, Bn@ H; and performance (expected percentage t@mecexpected losses)

Loss

Cue validities Cue inter-correlations R, _Pyx, IR Percentage correct
Poxi Pyx, Pyxe Pxx, Pxxs Pxox, LC1* LC2* LC3* SV EW TTB CONF LC1* LC2* LC3*
Case E
i 0.8 0.4 0.2 0.88 0.91 64 71 79 80 76 82 74 0.5 0.3 0.1
i 0.7 035 0.175 0.78 0.90 63 68 75 75 72 77 70 0.5 0.3 0.2
i 0.6 0.3 0.15 0.69 0.87 61 66 71 70 69 72 67 0.6 0.4 0.3
iv 05 025 0.125 all equal t0 0.1 0.60 0.83 60 64 _ 68 67 65 68 64 0.6 05| 03
v 04 0.2 0.1 ’ 052 0.76 58 62 _ 66 63 62 64 61 0.7 05 04
vi 0.3 0.15 0.075 0.45 0.66 57 60 _ 63 60 59 61 58 0.7 06 05
vii 0.2 0.1 0.05 041 0.49 56 _59 62 56 56 57 55 0.7 06 06
vii 0.1 0.05 0.025 0.37 0.27 _56 58 61 53 53 54 53 0.8 0.7 0.6
Case F
i 0.85 0.94 64 70 78 80 69 76 69 0.5 0.3 0.1
ii 0.76  0.92 62 68 74 75 67 72 66 0.5 0.4 0.2
iii 0.67 0.89 61 66 _71 70 64 68 64 0.6 04 _03
iv same as in Case E all equal 0 0.5 0.59 0.85 59 63 _68 67 62 65 61 0.6 0.5 0.4
v 0.51 0.78 58 62 _65 63 59 62 59 0.7 06 _04
vi 0.45 0.67 57 60 63 60 57 59 57 0.7 _0.6 05
vii 0.40 0.49 56 59 62 56 55 56 54 0.7 0.6 0.6
viii 0.37 0.27 56 58 61 53 52 53 52 0.8 0.7 0.6
Case G
i 0.8 0.4 0.2 0.88 0.91 64 71 79 80 76 82 74 0.5 0.3 0.1
i 0.7 0.4 0.2 0.80 0.88 63 69 76 75 74 78 71 0.5 0.3 0.2
i 0.6 0.4 0.2 0.73 0.83 62 67 _ 73 70 72 73 69 0.6 0.4 0.2
iv 05 0.4 0.2 all equal t0 0.1 0.66 0.75 61 65 _ 70 67 70 70 67 0.6 04 | 03
v 04 0.4 0.2 ’ 0.61 0.65 60 64 _ 69 63 68 66 66 0.6 05 03
vi 0.3 0.3 0.2 0.52 0.57 58 62 _ 66 60 64 62 62 0.7 05 04
vii 0.2 0.2 0.2 0.45 0.44 57 _60 63 56 60 58 59 07 | 06 05
vii 0.1 0.1 0.1 0.39 0.26 _56 59 61 53 55 54 55 0.8 0.7 0.6
Case H
i 0.85 0.94 64 70 78 80 69 76 69 0.5 0.3 0.1
ii 0.76  0.93 62 68 74 75 68 73 67 0.5 0.4 0.2
iii 0.67 0.89 61 66 _71 70 66 70 66 0.6 04 | 03
iv same as in Case G all equal to 0.5 0.60 0.83 60 64  _68 67 65 67 64 0.6 05| 03
054 074 59 62  _66 63 63 64 63 0.7 05| 04
vi 0.47 0.64 58 61 64 60 61 61 60 0.7 06 05
vii 0.41 0.48 57 | 59 62 56 58 57 58 0.7 0.6 0.5
viii 0.37 0.27 56 58 61 53 54 54 54 0.8 0.7 0.6

*For LC1, ¢ = 0.5; for LC2, ¢ = 0.7; for LC3, cG=9.
Notes: The performance of the best heuristeach environment is highligted witlold characters.

The performance of LC underlinecand presented on a darker background when ipsrgxr or equal to that of "the best performer” agbeuristics

=1.00
sV

0.1

0.2

0.3
0.4
0.5
0.6
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.€
0.8
0.9

0.1

0.2

0.3
0.4
0.5
0.6
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.8
0.9

EW

0.2

0.2

0.3
0.4
0.5
0.7
0.8
0.9

0.3
0.4
0.5
0.6
0.6
0.7
0.8
0.9

0.2

0.2

0.3
0.2
0.4
0.5
0.6
0.8

0.3
0.4
0.4
0.5
0.5
0.6
0.7
0.8
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0.1
0.2
0.3
0.4
0.t
0.6
0.7
0.¢

0.2
0.2
0.3
0.4
0.5
0.7
0.8
0.9

0.1
0.1
0.2
0.3
0.4
0.6
0.7
0.8

0.2
0.2
0.3
0.4
0.t
0.6
0.7
0.9

CONF

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.4
0.4
0.5
0.6
0.7
0.7
0.8
0.9

0.2
0.3
0.3
0.4
0.4
0.5
0.6
0.8

0.4
0.4
0.4
0.5
0.5
0.6

0.7
0.9



Table 4 -- Rates of agreement between heurisatesiies for different environments*

Cue validities

Cue inter-correlations R,

Percentage correct

Prx, Pvx, Pyxs Pxx, Pxxs Pxx sV

Case |
i 0.8 0.6 0.2 0.96 80
i 0.7 0.5 0.2 0.84 75
i 0.6 0.4 0.2 0.73 71
iv 05 0.3 0.2 all equa| to 0.1 0.63 66
v 04 0.2 0.2 0.54 62
vi 0.3 0.2 0.2 0.49 59
vii 0.2 0.2 0.2 0.45 57
vii 0.1 0.1 0.1 0.38 53
Means 65

Case J
i 0.90 80
ii 0.78 74
il 0.67 71
iv . 0.58 67
v same as in Case | all equal to 0.5 0.50 64
vi 0.44 59
Vii 0.42 58
viii 0.38 53
Means 66

Overall means _66

82
77
72
67
63
61
59
54

67

73
70
67
64
61
59
59
54

63
65

* Results are from simulations with 5,000 trials é&ach environment.

86
79
73
67
63
61
58
53

68

79
74
70
66
63
60
58

EW TTB CONF

79
74
69
66
61
61
58
53

65

71
68
65
63
60
59
59

SV-
EW

0.72
0.73
0.72
0.71
0.73
0.70
0.72
0.71

0.72

0.81
0.81
0.81
0.80
0.80
0.81
0.80
0.80

.81
7

o

o

o

Rates of agreement

SV-
CONF

0.77
0.77
0.77
0.76
0.77
0.76
0.78
0.77

0.77

0.83
0.84
0.83
0.83
0.83
0.84
0.83
0.83

0.83
0.80

SV- CONF- TTB- CONF-
B EW EW TTB
072 087 080 0.77
073 086 080 0.77
072 086 080 0.77
071 085 078 0.76
073 086 080 0.78
070 085 078 0.76
072 086 079 0.76
071 085 079 0.76
0.r2 086 079 0.77
081 091 088 0.85
081 091 088 0.85
081 091 088 0.84
080 091 0.88 0.85
080 091 087 084
081 091 087 084
080 091 088 0.85
080 092 088 0.84
081 091 088 0.8
076 0.88 0.84 0.81
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Table 5: Description of studies in lens model raatalysis

No. of  Average number of: Mean lens model statistics LC accuracy
studies judges judgments Fa* G* Re Rs Cc* GRs %

Characteristics of tasks

Participants:
Experts 59 23 102 0.57 0.80 0.82 0.79 0.06 0.65 71
Novices 192 19 92 0.55 0.81 0.79 0.81 0.06 0.66 70
Unclassified 4

Type of study:
Laboratory 200 21 93 0.56 0.82 0.80 0.79 0.04 0.67 70
Field 51 15 95 0.55 0.76 0.77 0.85 0.11 0.66 70
Unclassified 4

Number of cues:
2 67 26 58 0.63 0.88 0.80 0.79 0.07 0.70 73
3 84 19 98 0.55 0.87 0.81 0.80 0.00 0.72 70
>3 96 16 111 0.51 0.71 0.79 0.81 0.08 0.58 68
Unclassified 8

Type of weighting function:
Equal weighting 40 31 82 0.66 0.90 0.82 0.80 0.02 0.74 75
Compensatory 84 16 102 0.58 0.84 0.81 0.83 0.04 0.70 71
Non-compensatory 50 23 41 0.50 0.79 0.84 0.72 0.04 0.60 67
Unclassified 81

Cue redundancy:**
None 92 22 56 0.61 0.88 0.83 0.80 0.03 0.72 72
Low-medium 79 19 98 0.53 0.79 0.79 0.83 0.03 0.66 68
High 26 25 105 0.54 0.77 0.75 0.80 0.10 0.64 69
Unclassified 58

Notes:

*These statistics correspond to the sample estgydtthe elements of the lens model equation pteden the text -- equation (3).
(ra is the estimate of the "achievement” indé,, ;G is the estimate of the matching index; «C is the estimate of the correlat
between residuals of the models of the personteménvironment,Ps .. ).
** \We define redundancy by the level of averageiirdue correlation. None implies the absolute valugverage intercorrelation of O;
low-medium -- the absolute value of <=0.4 dadescribed in text as "low", "moderate”, "some");
and high -- the absolute value of >0.4 (alsscdbed in text as "a lot", "high").
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Table 6: Performance of heuristics and mean LGéne8and 2-cue environments

Maximum
possible Performance -- Percentage correct using:
percentage Numbers of
Weighting function correct Lct SV SVr EW CONF TTB TTBr environments
3- cue environments
Equal weighting 81 72 65 65 80 74 71 70 9
Compensatory 81 68 69 64 77 72 73 68 19
Non-compensatory 82 67 73 63 74 70 77 67 26
Subtotal 54
2 - cue environmernts
Equal weighting 94 79 73 73 92 73 80 80 12
Non-compensatory 84 69 76 67 73 67 75 70 21
Subtotal 33
Total 87
Notes:

1 -- Based on empirically observed mean lineanitivg ability (ca).

2 -- Averages calculated on the 54 environmentsiléetin Appendix C.
3 -- Averages calculated on the 33 environmentzgilde in Appendix D.
Bold indicates largest percentage correct in each row.
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Table 7: Levels of individual performance relati@eheuristics

LC performance Percentage of participants

Number Statistical properties of
of tasks (% correct) with better performance than:
participants. R Aux, Prx, Pxx, Mean Max Min SV Svr TIB TTBr EW CONF
Steinmann & Doherty (1972) 22 0.95 0.69 0.65 0.00 73 85 58 5 450 18 18 0 50
York et al. (1987)
Group 1 15 0.86 0.78 0.37 0.00 70 84 53 7 57 7 36 7 57
Group 2 15 0.86 0.78 0.37 0.00 67 78 54 0 29 0 21 0 29
Group 3 15 0.86 0.78 0.37 0.00 72 80 54 14 71 0 57 0 71
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Table 8 -- Regression of model performance (peacgntorrect) on environmental characteristics

for populations in Tables 2, 3, and 4

SV EW ITB CONF
Regression coefficients
Intercept 34.1 43.0 36.7 43.1
t - statistic 311 46.2 443 48.7
Dummy: compensatory 2.0*
t - statistic 25
Dummy: non-compensatory 3.5 2.4 -1.7
t - statistic 4.3 -5.3 -3.9
Redundancy 6.3 -6.1 -3.2
t - statistic 4.9 -5.6 -3.0
Predictability (R) 45.2 40.5 48.9 36.3
t - statistic 27.0 314 375 29.6
Adjusted B 0.95 0.96 0.97 0.95
Notes: (1) The regressions are based on 52 olikgryaThe dummy variables for compensatory and

non-compensatory weighting functions are egped relative to equal weighting which is
captured within the intercept term.
(2) There are only three levels of redundancy:mieger-cue correlation of -0.07, 0.1, and 0.5.
(3) Only statistically significant coefficients ashown. All coefficients are significant (p < .001)
except when marked * for p < .05.



Figure 1: Knowledge required to achieve upper bnoit model performance

Values of variables Weights Ordering
Model Cue 1 Cue 2 Cue 3 "Exact® Firsf All® None
Linear combination (LC) Yes Yes Yes Yes
Equal weighting (EW) Yes Yes Yes Yes
Take-the-best (TTB) Yes Yes/No  Yes/No Yes
Single variable (SV) Yes Yes
CONF Yes Yes Yes/No Yes

! Yes = value of cue required; Yes/No = valuews# may be required.
2 Exact values of cue weights required.
% First = most important cue identified; All = rankder of all cues known a priori.
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Figure 2: Diagram of lens model.

cues

SN

criterion value = Oy x subject response =
Ye pyexj o pYSXj Ys

environmental Px, Pix, response
predictability linearity
Re = 10 YeYAe Xk RS = 10 YSYAS
predicted criterion value = predicted subject response E
Y Y,
° Fa = Py, °
i} achievement index )
Ye:z:ge,jxj-i-‘ge Ys:Zﬁs,ij +£s
j=1 j=1
N N
Ye = YS
G=py,

matching inde
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expected percentage correct

expected percentage comect

Figures 3: Models performance: Cases A, B, C, affieiXipected percentage corfect

with lower and upper limits of accuracy for SV (fqanels on left) and TTB (four panels on right).
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Figure 4: Models performance: Cases A, B, C, arfd’pected loss fan=1.00),

with lower and upper limits of losses for SV (fquanels on left) and TTB (four panels on right).
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Figure 5: Models performance: Cases A, B, C, ardXpected loss fan=0.30)

expected loss
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Figure 6: Models performance: Cases E, F, G, afekbected percentage corfect

with lower and upper limits of accuracy for SV (fqanels on left) and TTB (four panels on
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Figure 7: Models performance: Cases E, F, G, afekbected loss fan=1.00)

with lower and upper limits of losses for SV (fquanels on left) and TTB (four panels on right).
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Appendix A — The expected accuracy of CONF and TTB.

CONF examines cues sequentially and makes a choice wwvencues
favoring one alternative are encountered. Therefthis model selects the better

alternative out of two with probability of:

_P{(Yea >Yeb) n (Xla > X]b) n (XZa > Xzb)} +
P{(Yea >Yeb) n (xla > xlb) n (x2a < xzb) n (x3a > x3b)}+ =
_P{(Yea <Yeb) N (xla > xlb) N (XZa < xzb) n (XSa < x3b)}

2]0]0]0 f,(d) dd+TT fj f,(d) dd+ﬁfjo f,(d) dd (A1)

where both f(d)= f(d,d,,d, ) and f,(d)=f,(d,d,,d;,d,) are defined by

M
2n

1/2
19
-=dM¢d . . . .
‘ e2 ', the variance/ covariance matrix specific to elagimg:

2 28, 2Px, 284,
2:0\(ex1 2 2:0x1x2 2:0x1x3
200x, 2Pxx, 2 20y, |
2:0Yex3 2:0x1x3 pr2x3 2

2 ZpYexl 2pYex2
M =| 20,4, 2 20, x, | @andM, =

2pYeX2 210X1X2 2

TTB also assesses cues sequentially. It makes a ohbme a discriminating

cue is found. In this paper, we consider TTB withxad threshold (>0). Thus, the

model stops consulting cues and makes a decisi@n/wh-x,|>t. This involves

cases when botlx, —x, >t and(x, —x, >t). Since the two cases are symmetric,

the probability that TTB selects the better alté@ueais:
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P{(¥.. )ﬂ(Xla Xy >t +

P{ qxla lb| <t) N (XZa - x2b 2 t)}+ +
P{ qxla | <t) N QXZa - x2b| <t) n (x3a - x3b 2 t)}

N (X~ x3b| <t)} =
jjj f,(d) dd (A2)

t-t-t

ﬂ
ea ﬂ

P{(Yea>Y )n Qx Xy <t) 0 (X0 = Xo| <)

” f,(d) dd+m f,(d) dd+]°jj'T f,(d) dd} j
0t 0ttt 0

where both f,(d) = f,(d,,d,,d;) and f,(d) = f,(d,,d,,d;,d,) are the same as in

CONF, and f,(d) = f,(d,,d,) is found similarly, using the appropriate variarice

2 2,0Yex1
20, 4, 2 |

covariance matrixM :(
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Appendix B — The expected loss of CONF and TTB

The expected loss @ONF is:

_P{(Yea <Yeb) n (Xla > le) n (XZa > Xzb)} +

2L P{(Yea <Yeb) n (xla > X:Ib) n (x2a < xzb) n (x3a > x3b)}+ =
_P{(Yea >Yeb) n (xla > x]b) n (x2a < xzb) N (x3a < x3b)}

2a_TTTdffl(d) dd+JqT Jquffz(d) dd+ﬁﬁd f,(d) dd| (B1)

with f,(d) and f,(d) are as defined in Appendix A.

The expected loss afTB is:

P{(Y.. eb) N (Xye = Xy >t)}+
2| P{(,, anla— Xop| <) (Xp0 = X 2 )} + +
Pl <Y (%o~ X <00 (X~ X <) (X X 20}

LP{ ea eb N qxla - X]b| < t) X X2b| <t) N X3a 3b| < t)} =

(
( jjd f,(d) dd+md f,(d) dd+ﬁﬁd f,(d) dd}ﬂﬁdffz(d) dd}
(B2)

where f,(d), f,(d), and f,(d )are as defined in Appendix A.
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Appendix C — Selected 3-cue studies.

across conditions (range)

No. Study Task Number of Total number of Stimuli per R across conditions
conditions/tasks participants participant (range) ry _GRs
Equal weighting environments
1 Ashton (1981) Predicting prices 3 138 30 0.01-0.98 17@.19 0.01-0.87
2a Brehmer & Hagafors (1986) Avrtificial predictiorska 10 15 1.00 0.97 0.95
3 Chasseigne et al. (1999) Artificial predictionktas 220 120 0.57-0.98 0.37-0.78 0.67-0.82
Compensatory environments
4 Chasseigne et al. (1977) - Experiment 1 Artifipiegdiction task 6 96 26 0.96 0.34-0.70 0.35-0.73
5 Kessler & Ashton (1981) Prediction of corporate ¢hoatings 4 69 34 0.74 0.52-0.64 0.71-0.88
6a* Steinmann (1974) Artificial prediction task 9 11 300 0.63-0.78 0.45-0.57 0.68-0.84
Non-compensatory environments
2b Brehmer & Hagafors (1986) Artificial predictiorsta 2 20 15 0.77-1.00 0.74-0.78 0.71-0.75
7 Deane et al. (1972) - Experiment 2 Artificial pretébn task 2 40 20 0.94 0.59-0.84 0.65-0.89
8 Hammond et al. (1973) Artificial prediction task 3 03 20 0.92 0.05-0.78 0.14-0.83
9 Hoffman et al. (1981) Artificial prediction task 9 a8 25 0.94 0.09-0.71 0.15-0.78
6b* Steinmann (1974) Artificial prediction task 6 11 100 0.63-0.74 0.44-0.65 0.70-0.85
10 Youmans & Stone (2005) Prediction of income levels 4 117 50 0.44 0.35-0.42 0.88-0.97
Total 54 944

Notes:
1. All studies reported involved between-subjedigies unless studies No. 6a & 6b (indicated by *).
2. Three studies -- No. 7, 8, and 9 -- were saithbiee identical parameters. However, there mugt baen some rounding differences because of nahgifferent values reported for Re.
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No. Study

Appendix D — Selected 2-cue studies.

Mean human performance

Equal weighting environments
1 Jarnecke & Rudestam (1976)
2 Lafon et al. (200¢
3 Rothstein (1986)
4 Summers et al. (1969)

Non-compensatory environments

5 Armelius & Armelius (1974)
6 Doherty et al. (1988)

7 Hammond & Summers (1965)
8 Lee & Yates (1992)
9 Muchinsky & Dudycha (1975)

10 Steinmann & Doherty (1972)

11 York et al. (1987)

Notes:

Predict academic achiave
Artificial prediction tasl

Artificial prediction task
Judging the age of bloog cell

Artificial prediction &k
Artificial prediction task
Experiment 2
Experiment 6
Artificial prediction task
Post-dicting student success
Artificial predictiongla
Experiment 1
Experiment 2
Assessing subjectiababilities
in a bookbag and poker chip t.
Artificial prediction task

Total

Number of Total number of Stimuli per R, across conditions ~ across conditions (range)
conditions/tasks  participants  participant (range) Iy _GRs
1 15 50 0.42 0.28 0.71
4 43¢ 30 0.9¢€ 0.00-0.9( 0.00-0.9:
6 72 100 .0a 0.81-1.00 0.80-1.00
1 16 64 0.99 0.73 0.73
3 63 25 0.99-1.00 0.32-0.96 0.32-0.95
3 45 25 0.79-1.00 0.70-0.73 0.74-0.92
2 30 50 0.87-1.00 0.53-0.66 0.58-0.73
3 30 20 0.71 0.49-0.85 0.48-0.59
2 40 A N 0.38 0.24-0.29 0.51-0.59
2 160 150 0.72 0.04-0.30 0.11-0.54
2 160 150 0.96 0.03-0.45 0.01-0.32
1 22 192 0.9t 0.67* 0.70*
3 45 52 0.86 0.53-0.64 0.62-0.74
33 1137

1. The number of participants in studies No. 3 &rde approximations since this information is ailable.
2. In study No. 10, "human performance" was meastirough medians (marked with *).
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