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Abstract 

 

 

 Research on judgment and decision making presents a confusing picture of 

human abilities. For example, much research has emphasized the dysfunctional 

aspects of judgmental heuristics, and yet, other findings suggest that these can be 

highly effective.  A further line of research has modeled judgment as resulting from 

“as if” linear models. This paper illuminates the distinctions in these approaches by 

providing a common analytical framework based on the central theoretical premise 

that understanding human performance requires specifying how characteristics of the 

decision rules people use interact with the demands of the tasks they face.  Our work 

synthesizes the analytical tools of “lens model” research with novel methodology 

developed to specify the effectiveness of heuristics in different environments and 

allows direct comparisons between the different approaches. We illustrate with both 

theoretical analyses and simulations. We further link our results to the empirical 

literature by a meta-analysis of lens model studies and estimate both human and 

heuristic performance in the same tasks.  Our results highlight the trade-off between 

linear models and heuristics. Whereas the former are cognitively demanding, the latter 

are simple to use. However, they require knowledge – and thus “maps” – of when and 

which heuristic to employ.   

 

Keywords:  Decision making; heuristics; linear models; lens model; judgmental 

biases. 

 

JEL classification: D81, M10. 
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Two classes of models have dominated research on judgment and decision 

making over the last decades.  In one, explicit recognition is given to the costs and 

limits of information processing and people are assumed to use simplifying heuristics 

– typically making use of only part of the information available (Kahneman, Slovic, 

& Tversky, 1982; Gigerenzer, Todd, & the ABC Research Group, 1999).  In the other, 

it is assumed that people can integrate all the information at hand and that this is 

combined and weighted “as if” using an algebraic – typically linear – model 

(Anderson, 1981; Brehmer, 1994; Hammond, 1996).       

Research on these models has been conducted within different traditions with 

few attempts to unify the two approaches (however, see Hammond, 1990). Whereas 

such unification is not our goal, we recognize the validity of both approaches and seek 

to illuminate their complementarities. For example, recent research suggests that 

people can process information in distinctive ways (cf., Chaiken & Trope, 1999),   

variously described as “experiential” vs. “rational” (Epstein, 1994),  “System 1” vs. 

“System 2” (Stanovich & West, 1998), or “tacit” vs. “deliberate” (Hogarth, 2001). 

The former denote processes that are intuitive or heuristic whereas the latter are the 

outcomes of more deliberative processes. We do not propose a one-to-one 

correspondence between the dual process approach, on the one hand, and heuristic 

and algebraic models, on the other hand. However, the analogy emphasizes the 

advantages of seeking complementarities.        

The topic of heuristics has been central to research on judgment and decision 

making and has generated many interesting findings as well as controversy (see, e.g., 

Gigerenzer, 1996; Kahneman & Tversky, 1996.) However, whereas few scholars 

doubt that people make extensive use of heuristics (as variously defined) in everyday 

life, many questions are still unresolved.  One important set of issues centers on 
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understanding the relative efficacy of different heuristics and, in particular, 

explicating the environmental conditions when these are effective.   

At one level, this failure is surprising in that Herbert Simon – whose work is 

held in high esteem by researchers with differing views about heuristics – specifically 

emphasized the importance of environmental factors.   In particular, some 50 years 

ago, Simon stated 

...if an organism is confronted with the problem of behaving approximately 
rationally, or adaptively, in a particular environment, the kinds of 
simplifications that are suitable may depend not only on the characteristics – 
sensory, neural, and other – of the organism, but equally on the nature of the 
environment (Simon, 1956, p. 130).  

 

Interest, however, of most research on heuristics has centered on specific rules 

such as representativeness (Kahneman & Tversky, 1972), availability (Tversky & 

Kahneman, 1973),  recognition (Goldstein & Gigerenzer, 2002), and affect (Slovic, 

Finucane, Peters, & MacGregor, 2002) that limit information processing costs and 

there have been few attempts to understand possible environmental effects.1  

At the same time that Simon was publishing his seminal work on heuristics, 

the use of algebraic, and particularly linear models, to represent psychological 

processes received considerable impetus from Hammond’s (1955) formulation of 

clinical judgment, and was subsequently bolstered by Hoffman’s (1960) argument for 

“paramorphic” representation (see also Einhorn, Kleinmuntz, & Kleinmuntz, 1979).2  

Contrary to work on heuristics, this research has shown concern for environmental 

factors. Specifically, by depicting Brunswik’s (1952) lens model within a linear 

framework, Hammond and his colleagues were able to describe psychological 

                                                
1 As stated ironically by one of our colleagues, it is as though researchers on heuristics suffer 
collectively from the “fundamental attribution error” (Ross, 1977) whereby explanations of behavior 
fail to take environmental factors into consideration.  
 
2 The earliest representation of judgment as a linear model that we know of goes back to Wallace 
(1923). 
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achievement in the form of an equation – the lens model equation – that captures 

effects of both individuals and the environment (Hammond, Hursch, & Todd, 1964; 

Hursch, Hammond, & Hursch, 1964; Tucker, 1964). Moreover, this framework has 

been profitably used by many researchers (see, e.g., Brehmer & Joyce, 1988; 

Cooksey, 1996; Hastie & Kameda, 2005). Other techniques such as conjoint analysis 

(cf., Louvière, 1988) also assume that people process information as though using 

linear models and, in so doing, seek to quantify the relative weights given to different 

variables affecting judgments and decisions (see also, Anderson, 1981). 

In many ways the linear model has been the “work-horse” of judgment and 

decision making research from both descriptive and prescriptive viewpoints. As to the 

latter, consider the influence of linear models in multi-attribute theory (see, e.g., 

Keeney & Raiffa, 1976) as well as the literatures on bootstrapping (Goldberg, 1970; 

Camerer, 1981; Russo & Schoemaker, 2002), equal-weighting (Dawes & Corrigan, 

1974; Einhorn & Hogarth, 1975; Wainer, 1976; Dawes, 1979), and the statistical-

clinical debate (Meehl, 1954; Dawes, Faust, & Meehl, 1989; Kleinmuntz, 1990).   

However, despite the ubiquity of the linear model in representing human 

information integration, its psychological validity has been questioned.  First, when 

the amount of information exceeds a threshold (e.g., three cues in a multiple-cue 

prediction task), people have difficulty in executing linear rules and resort to 

simplifying heuristics. Second, the linear model implies trade-offs between cues or 

attributes and, because people find these difficult to execute – both cognitively and 

emotionally (Hogarth, 1987; Luce, Payne, & Bettman, 1999) – they often resort to 

trade-off avoiding heuristics (Payne, Bettman, & Johnson, 1993).  

This discussion of heuristics and linear models raises many important 

psychological issues. Under what conditions do people use heuristics – and which 
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heuristics – and how effective are these relative to the more cognitively demanding 

linear model?  Moreover, if heuristics neglect information and/or avoid trade-offs, 

how do these features contribute to their success or failure, and when?   

 Our purpose is to illuminate these and related issues within the context of 

predicting (choosing) the better of two alternatives on the basis of several cues 

(attributes).  Moreover, we assume that the criterion is probabilistically related to the 

cues and that the optimal equation for predicting the criterion is a linear function of 

the cues. Thus, if the decision maker weights the cues appropriately (using a linear 

model) she will achieve the maximum predictive performance.  However (as we 

explain below), this is an exacting standard to achieve. Thus, what are the 

consequences of abandoning the linear rule and using simpler heuristics? Moreover, 

when will different heuristics perform relatively well or badly?  

 Specifically, we consider five models and, to simplify the analysis, only 

consider three cues. (We return to this issue in the Discussion.)  Two of these models 

are linear and three are heuristics.  Whereas we could have chosen many variations of 

these models, we believe they are sufficient to illustrate our approach.   

   First, we consider what happens when the decision maker can be modeled as if 

she were using a linear combination of the cues (LC) with respect to the weights 

applied to the variables and is also inconsistent (cf., Hoffman, 1960).  Note carefully 

that we are not saying that the decision maker actually uses a linear formula but can 

be modeled “as if.”  We justify this approach on the grounds that linear models can 

often provide higher-level representations of underlying processes such that their 

outcomes are consistent with a variety of different models (for further elaboration, see 

Einhorn et al., 1979).  Moreover, when the amount of information to be integrated is 



 7 

limited, the linear model can also provide a good process description (Payne, 

Bettman, & Johnson, 1993).    

Second, the decision maker is unable to differentiate the weights that should 

be given to the variables and simplifies by giving equal weight to each (EW).3  EW, 

of course, is a special case of LC and has been demonstrated to have desirable 

properties (Dawes & Corrigan, 1974).   

Third, the decision maker uses the “take-the-best” (TTB) heuristic proposed 

by Gigerenzer and Goldstein (1996). This works as follows.  It is first assumed that 

the decision maker can order attributes or cues by their ability to predict the criterion.  

Choice is then made by the most predictive cue that can discriminate between options. 

If no cues discriminate, choice is made at random.  This model is “fast and frugal” in 

that it typically decides on the basis of one or two cues (Gigerenzer, Todd, & the ABC 

Research Group, 1999).4   

There is experimental evidence that people use TTB-like strategies, although 

not exclusively (Rieskamp & Hoffrage, 1999; 2002; Bröder, 2000; 2003; Bröder & 

Schiffer, 2003; Newell & Shanks, 2003; Newell, Weston, & Shanks, 2003). 

Descriptively, the two most important criticisms are, first, that the stopping rule is 

often violated in that people seek more information than the model specifies, and 

second, people may not be able to rank order the cues by predictive ability (Juslin & 

Persson, 2002). 

The fourth model, CONF (Karelaia, 2006) was developed to overcome the 

descriptive shortcomings of TTB. Its spirit is to consult the cues in the order of their 

                                                
3 In all of the models investigated, we assume that if the decision maker uses a variable, she knows its 
zero-order correlation with the criterion. 
4 In Gigerenzer and Goldstein’s (1996) formulation, TTB operates on cues that can only take binary 
values (i.e., 0/1).  We analyze a version of this model based on continuous cues where discrimination is 
determined by a threshold, i.e., a cue only discriminates between two alternatives if the difference 
between the values of the cues exceeds a specified value t (>0). 
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validity (like TTB) but not to stop the process once a discriminating cue has been 

identified. Instead, the process only stops once the discrimination has been confirmed 

by another cue. With three cues, then, CONF only requires that two cues favor the 

chosen alternative. Moreover, CONF has the advantage that choice is insensitive to 

the order in which cues are consulted.  Thus, the decision maker does not need to 

know the relative validities of the cues.5 

Finally, our fifth model is based solely on the single variable (SV) that the 

decision maker believes to be most predictive.  This therefore also models any 

heuristic that is based on a single variable such as in judgments by representativeness 

(Kahneman & Tversky, 1972), availability (Tversky & Kahneman, 1973), recognition 

(Gigerenzer & Goldstein, 2002), or affect (Slovic et al., 2002).  In these latter cases, 

however, the variable would not necessarily be observable by a third party but would 

represent an intuitive feeling or judgment experienced by the decision maker in the 

situation (e.g., an assessment of similarity, knowledge of recognition, or a feeling of 

liking). 

---------------------------------------------- 
Insert Figure 1 about here 

---------------------------------------------- 

It is important to note that all these rules represent feasible psychological 

processes.  Figure 1 specifies and compares what needs to be known for each of the 

models to achieve its maximum performance. As can be seen, this can be decomposed 

between knowledge about the specific cue values taken by the three variables under 

consideration (on the left) and what is needed to weight the variables (on the right).  

Two models require knowing all cue values (LC and EW) and one only needs to 

know one (SV).  The number of cue values required by TTB and CONF depends on 
                                                
5 In our subsequent modeling of CONF, we assume that any difference between cue values is sufficient 
to indicate discrimination or confirmation. In principle, one could also assume a threshold in the same 
way that we model TTB. 
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the characteristics of each choice faced.  As to weights, maximum performance by LC 

requires precise, absolute knowledge; TTB requires the ability to rank-order cues by 

validity; and for SV one needs to identify the cue with the greatest validity (if there is 

more than one). Neither EW nor CONF requires knowledge about weights. 

Whereas it is difficult to tell whether obtaining values of cue variables or 

knowing something about how cues vary in importance is more taxing cognitively, we 

have attempted an ordering of the models in Figure 1 from most to least taxing.  

Clearly, LC is the most taxing and, as noted above, the important issue to understand 

is how sensitive it is to deviations from optimal specification of its parameters. 

CONF, at the other extreme, is not demanding and the only uncertainty centers on 

how many variables need to be consulted for each decision. 

In our analysis, we adopt a Brunswikian perspective by exploiting properties 

of the well known lens model equation (Hammond, Hursch, & Todd, 1964; Hursch, 

Hammond, & Hursch, 1964; Tucker, 1964; Hammond & Stewart, 2001) combined 

with more recent analytic methods that were developed to determine the performance 

of heuristic decision rules (Hogarth & Karelaia, 2005a; in press; Karelaia, 2006). 

Using these tools, we are able to describe how environmental characteristics interact 

with those of the different heuristics in determining the performance of the latter.    

The novelty of our approach is that we are able to compare and contrast 

heuristic and linear model performance within the same analytical framework.  

Moreover, noting that different models require different levels of knowledge (cf. 

Figure 1), we see our work as mapping the demand for knowledge in different regions 

of the environment. In other words, to make effective decisions, how much and what 

knowledge is needed in different types of situations?   
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In brief, our analytical results show that the performance of heuristic rules is 

affected by the type of weighting function (i.e., how the environment weights cues); 

cue inter-correlation; the predictability of the environment; and loss functions.  

Whereas the weighting function determines which heuristic is best suited to specific 

tasks, the other factors moderate the advantages of selecting the correct rule.  Both 

cue redundancy (i.e., inter-correlation) and noise (i.e., lack of predictability) reduce 

differences between model performance but these can be augmented or diminished 

according to the loss function used.  We also show that “sensible” models make 

identical predictions in more cases than might have been imagined a priori. However, 

since they disagree across 8-30% of the cases we examined, it pays to understand the 

differences. 

We exploit the mathematics of the lens model (Tucker, 1964) to ask how 

“well” decision makers need to execute LC rule strategies to perform as well or better 

than heuristics in binary choice.  We find that performance using LC rules generally 

falls short of that of appropriate heuristics unless decision makers have high “linear 

cognitive ability” (which we quantify).  This analysis is supported by a meta-analysis 

of lens model studies in which we estimate linear cognitive ability across some 250 

tasks and also demonstrate that, within the same tasks, individuals vary in their ability 

to outperform heuristics using LC models.             

This paper is organized as follows.  We first briefly review literature that has 

considered the effectiveness of heuristic decision models. For the most part, this has 

been dependent on empirical demonstrations and simulations and, as such, 

conclusions cannot be easily generalized. In contrast, our approach, developed in the 

subsequent section, is based on statistical theory.  This allows us to make theoretical 

predictions of model accuracy in terms of both percentage correct predictions and 
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expected losses. To facilitate the exposition, we present the underlying rationale with 

respect to the SV, LC, and EW models in the main text and the equations for the other 

models in Appendices A and B. We demonstrate the power of our equations with 

theoretical predictions of differential model performance over a wide range of 

environments as well as using simulation.  This is followed by our examination of 

empirical data using meta-analysis of the lens model literature and leads to the 

conclusions summarized above. Finally, we consider psychological, normative, and 

methodological implications of our work as well as suggestions for future research. 

    

Evidence on the effectiveness of simple, heuristic models    

 Interest in the use of heuristic decision models has fueled much research (and 

controversy) in judgment and decision making.  The initial impetus from Simon’s 

work on bounded rationality (Simon, 1955; 1956) was to emphasize the need for 

humans to use heuristic methods (or to “satisfice”) because of inherent cognitive 

limitations. Moreover, Simon stressed the importance of understanding how the 

structure of the environment affects the relative effectiveness heuristics.   

 This environmental concern, however, was largely lacking from the influential 

research on “heuristics and biases” spearheaded by Tversky and Kahneman (1974) 

(see also Kahneman, Slovic, & Tversky, 1982).  As stated by these researchers, 

“These heuristics are highly economical and usually effective, but they lead to 

systematic and predictable errors” (Tversky & Kahneman, 1974, p. 1131).  

Unfortunately, no environmental theory was offered specifying the conditions under 

which heuristics were or were not effective (cf., Hogarth, 1981). 

 Nonetheless, the positive side of heuristic use has also been emphasized.  

(Although, here too a concern for explicating environmental limitations has not been 
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paramount.) One line of research has emphasized equal-weighting models, the 

effectiveness of which was demonstrated through simulations and empirical examples 

(Dawes & Corrigan, 1974; Dawes, 1979).  In further simulations, Payne, Bettman and 

Johnson (1993) explored trade-offs between effort and accuracy. Using continuous 

variables and a weighted additive model as the criterion, they investigated the 

performance of several models and specifically demonstrated the effects of two 

important environmental variables, dispersion in the weighting of variables and the 

extent to which choices involved dominance. (See also Thorngate, 1980.)    

 The predictive effectiveness of TTB was first demonstrated by Gigerenzer and 

Goldstein (1996) in an empirical illustration and then subsequently replicated over 18 

further datasets (Gigerenzer, Todd, et al., 1999). Specifically, these studies showed 

that TTB predicted more accurately (on cross-validation) than EW and multiple 

regression when the criterion was the percentage of correct predictions (in binary 

choice). However, there was little concern as to whether these outcomes were the 

result of favorable environmental conditions. Voicing these concerns, Shanteau and 

Thomas (2000) constructed environments that they reasoned would be  “friendly” or 

“unfriendly” to different models and demonstrated these effects through simulations. 

However, they did not address the issue of the relative frequencies of friendly and 

unfriendly environments in natural decision making contexts. 

 Environmental effects were also demonstrated by Fasolo, McClelland, and 

Todd (in press) in a simulation of multi-attribute choice using continuous variables 

(involving 21 options characterized by six attributes).  Their goal was to assess how 

well choices by models with differing numbers of attributes could match total utility 

and, in doing so, they varied levels of average inter-correlations among the attributes 

and types of weighting functions.  Results showed important effects for both. With 
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differential weighting, one attribute was sufficient to capture at least 90% of total 

utility. With positive inter-correlation among attributes, there was little difference 

between equal and differential weighting.  With negative inter-correlation, however, 

equal weighting was sensitive to the number of attributes used (the more, the better).  

  Despite these empirical demonstrations involving simulated and real data, 

there has been relatively little theoretical work aimed at elucidating the environmental 

conditions under which heuristic models are and are not effective. Some work has, 

however, considered specific cases. Einhorn and Hogarth (1975), for example, 

provided a theoretical rationale for the effectiveness of equal weighting relative to 

multiple regression. Martignon and Hoffrage (1999; 2002) and Katsikopoulos and 

Martignon (in press) explored the conditions under which TTB or equal weighting 

should be preferred in binary choice. Hogarth and Karelaia (2005a; in press, a) and 

Baucells, Carrasco, and Hogarth (2006) have examined why TTB and other simple 

models perform well with binary attributes in error-free environments.   

 Finally, in related work (Hogarth & Karelaia, 2005b; in press, b), we have 

provided an analytical framework for determining what we named “regions of 

rationality,” i.e., the specification of when heuristic models are and are not effective. 

The current paper builds on these foundations. 

 To facilitate presentation of our analytical results, we first briefly explain the 

logic of the lens model and the so-called “lens model equation” (Tucker, 1964).   We 

then derive equations for the predictive ability of the heuristics we examine in terms 

of expected predicted correct in binary choice as well as squared-error loss functions. 

Our strategy involves presenting the key ideas in the main text with details provided 

in appendices.  An important difference between studies of heuristic judgment and 

those using the LC framework (or lens model) is that the empirical criterion for the 
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latter – known as “achievement” – is framed within the context of the correlation 

between judgments and outcomes as opposed to percentage correct predictions in 

binary choice.  In comparing paradigms, therefore, we transform correlational 

achievement into equivalent percentage correct in binary choice.    

 

Theoretical development 

To motivate the theoretical development, imagine a binary choice situation 

that involves selecting one of two job candidates, A and B, on the basis of several   

characteristics such as level of professional qualifications, years of experience, and so 

on.  Further, imagine that a criterion variable, i.e., a measure of subsequent job 

performance, can be observed at a later date and that a correct decision was taken if 

the criterion is greater for the chosen candidate.6  Denote the criterion by the random 

variable Ye such that if A happened to be the correct choice, one would observe yea > 

yeb.
7  

Within the lens model framework – see Figure 2 – we can model assessments 

of candidates by two equations: one, the model of the environment; the other, the 

model of the judge (the person assessing the job candidates). These equations are, 

respectively: 

e

k

j
jjee XY εβ +=∑

=1
,       (1) 

and     s

k

j
jjss XY εβ +=∑

=1
,       (2) 

                                                
6 In practice one would typically only be able to observe the criterion on the chosen candidate. 
However, there are many other practical cases where this is not a problem, e.g., choosing consumer 
products.   
7 We use upper case letters to denote random variables, e.g., eY , and lower case letters to designate 

specific values, e.g., ey .  As exceptions to this practice, we use lower case Greek letters to denote 

random error variables, e.g., eε  as well as parameters, e.g., je,β . 
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where Ye represents the criterion (subsequent job performance of candidates) and Ys is 

the judgment of the criterion made by the decision maker; the Xj’s are cues (here 

characteristics of the candidates); and εe and εs are normally distributed error terms 

with means of zero and constant variances, independent of each other and of the X’s.  

------------------------------------------ 
Insert Figure 2 about here 

----------------------------------------- 

 Assuming linearity, the logic of the lens model is that the judge’s decisions 

will match the environmental criterion to the extent that the weights the judge gives to 

the cues match those used by the model of the environment, i.e., the matches between 

βs,j and βe,j for all j = 1,…k. Moreover, the correlation between criterion and 

judgment,  
seYYρ – the “achievement” index – can be expressed (Tucker, 1964) by      

   
( )( )22

ˆˆ 11 seseYYYY RRRR
sesese

−−+= εερρρ    (3) 

where 
seYY ˆˆρ  (the “matching” index also known as G) is the correlation between the 

predictions of both models, i.e., between ∑
=

k

j
jje X

1
,β and ∑

=

k

j
jjs X

1
,β ; Re and Rs are, 

respectively, the multiple correlations of the models of the environment and the judge, 

and capture, on the one hand, environmental predictability (Re), and on the other hand, 

the consistency with which the judge executes the decision rule (Rs).  Assuming that 

the error terms of the two models are independent, i.e., 0=
seεερ , achievement is 

simply a multiplicative function of three terms: matching, environmental 

predictability, and response consistency, and neatly captures the effects of both 

cognitive and task variables on observed performance or achievement. 

Given the above lens model framework, we now develop the probabilities that 

our models will make correct predictions within a given population or environment. 
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As will be seen, these probabilities reflect the covariance structure of the cues used as 

well as those between the criterion and the cues.  It is these covariances that describe 

the inferential environment in which judgments are made.  At the same time, we also 

develop equations for showing the effects of different levels of errors.   

The SV model. The lens model – and the lens model equation (3) – have been 

used extensively to illuminate many issues in judgmental research (Brehmer & Joyce, 

1988; Cooksey, 1996).  However, here we ask a different question.  Imagine that the 

judge does not decide by using a linear combination rule, but instead simply chooses 

the candidate who is better on a single variable, 1X , (years of experience, for 

example).  Thus, the decision rule is to choose the candidate for whom 1X  is larger, 

e.g., choose A if  ba xx 11 > .  Our question now becomes, what is the probability that A 

is better than B using this decision rule in a given environment or population, that is, 

what is, ( ) ( ){ }babeae XXYYP 11 >∩> ?   

  To calculate this probability, we follow the model presented in Hogarth and 

Karelaia (2005b). We first assume that eY  and 1X  are both standardized normal 

variables (i.e., with means of 0 and variances of 1) and that the cue used is positively 

correlated with the criterion.8 Denote the correlation by the parameter
1XYe

ρ , 

( 0
1

>XYe
ρ ).  Given these facts, it is possible to represent Yea and Yeb by the equations: 

eaaXYea vXY
e

+= 11
ρ         (4) 

and  ebbXYeb vXY
e

+= 11
ρ         (5) 

where eav and ebv  are normally distributed error terms, each with mean of 0 and   

variance of  ( )2

1
1 XYe

ρ− , independent of each other and of aX1  and bX1 . 

                                                
8 We consider the implications of our normality assumption in the Discussion. 
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 The question of determining ( ) ( ){ }babeae XXYYP 11 >∩>
 can be reframed as 

determining ( ) ( ){ }00 21 >∩> ddP  where 01 >−= ebea YYd , and 0112 >−= ba XXd .    

The variables 1d  and 2d  are bivariate normal with variance / covariance 











=

22

22

1

1

_
XY

XY

SVf

e

eM ρ
ρ

, and means of 0. Thus the probability of correctly 

selecting A over B can be written as   

∫ ∫
∞ ∞

0 0

)( dddf ,               (6) 

where 
dMdf f

e
M

df
1

2

1
2/11

2
)(

−′−
−

=
π

 with .
2

1









=

d

d
d                   

To calculate the expected accuracy of the SV model in a given environment,                           

it is necessary to consider the cases where both ba XX 11 >  and                                

ab XX 11 >  such that the overall probability is given by      

( ) ( )( ) ( ) ( )( ){ }abeaebbabeae XXYYXXYYP 1111 >∩>∪>∩>  which, since both its 

components are equal, can be simplified as       

  ( ) ( ){ }=>∩> babeae XXYYP 112 ∫ ∫
∞ ∞

0 0

)(2 dddf    (7) 

The LC model. Following the same rationale, we can also determine the 

probability that using a linear combination of cues will result in a correct choice.  That 

is, proceeding in exactly the same manner as above, one can express Yea and Yeb as 

functions of Ysa and Ysb, define appropriate error terms, aω  and bω , and substitute, 

respectively,  
seYYρ   for 

1XYe
ρ , and  saY  and sbY   for  aX1  and bX1 .  Thus, one can 

show that ( ) ( ){ }bsasbeae YYYYP >∩>2  can also be found through expression (7), with 
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)(dF  defined as in SV. The only difference between SV and LC lies in the variance-

covariance matrix  fM  that for the LC model is 









=

22

22
_

se

se

YY

YY

LCfM ρ
ρ

.  

The EW model. EW is, of course, a special case of LC.  Define ba XXd −=2 , 

where  ∑
=
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a mean of 0.9 Thus, the expected accuracy of EW can be defined by equation (7)   

taking into consideration that the appropriate variance/covariance matrix is 
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 The analogous expressions for the CONF and TTB models are presented in 

Appendix A. 

 Loss functions.  Equation (7) as well as its analogs in Appendix A can be used 

to estimate the probabilities that the models will make the correct decisions.  These 

probabilities can be thought of as the average percentage correct scores that the 

models achieve in choosing between two alternatives. As such, this measure is 

equivalent to a 0/1 loss function which does not distinguish between small and large 

errors. To overcome this deficiency, we introduce the notion that losses from errors 

reflect the degree to which predictions are incorrect.   

Specifically, to calculate the expected loss resulting from using SV across a 

given population, we need to consider the possible losses that can occur when the 

model does not select the best alternative. We model loss by a symmetric squared 

error loss function but allow this to vary in “exactingness” or the extent to which the 

environment does or does not punish errors severely (Hogarth, Gibbs, McKenzie, & 
                                                
9 The variable 1d  for EW is the same as for LC: ebea YYd −=1 . 
10 Note that from equation (3) it follows that eXYXY R

ee
ˆρρ =  (assuming 0=

seεερ ).  
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Marquis, 1991). We note that loss occurs when (1) ba XX 11 >  but beae YY < , and (2) 

ba XX 11 <  but beae YY > . Capitalizing on symmetry, the expected loss (EL) associated 

with the population can therefore be written as 

       ( ) ( ){ }LXXYYPEL babeaeSV 112 >∩<=      (8) 

where ( )2
eaeb YYL −= α . In other words, the expected loss is proportional to the 

squared difference between beY  and aeY  weighted by the probability that beae YY <  

and ba XX 11 > . The constant of proportionality, α (> 0), is the “exactingness” 

parameter that captures how heavily losses should be counted.   

Substituting ( )2
eaeb YY −α  for L and following the same rationale as when 

developing the expression for accuracy, the expected loss of the SV model can be 

expressed as:  

 ( ) ( ) ( ){ }=>∩<−= babeaeeaebSV XXYYPYYEL 11
22α  

∫ ∫
∞−

∞0

0

2
1 )(2 dddfdα     (9) 

As in the expression for accuracy, the function )(df  for SV involves the variance-

covariance matrix SVfM _ . The expected loss of LC and EW are found analogically, 

using their appropriate variance-covariance matrices.   

-------------------------------------------------- 
Insert Table 1 about here 

------------------------------------------------- 

In Table 1, we summarize the expressions for accuracy and loss for SV, LC, 

and EW. In Appendix B, we present the formulas for the loss functions of CONF and 

TTB.  Finally, note that expected loss, as expressed by equation (9), is proportional to 

the exactingness parameter, α, that models the extent to which particular 

environments punish errors. (We manipulate this factor below.)  
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Exploring effects of different environments     

 We first construct and simulate several task environments and demonstrate 

how our theoretical analyses can be used to make predictions for all of our models in 

terms of both expected percentage correct predictions and expected losses.  We also 

show how errors in the application of both linear models and heuristics affect 

performance and thus illustrate potential trade-offs involved in using different models. 

We further note that, in many environments, heuristic models achieve similar levels of 

performance and thus explicitly explore this issue using simulation. To make the link 

from theory to empirical phenomena, we report data from a meta-analysis of lens 

model studies that we use to compare the judgmental performance of theoretical 

heuristics with that of people using LC models. 

 Constructed and simulated environments. To demonstrate our approach, we 

constructed several sets of different three-cue environments using the model implicit 

in equation (1), i.e.,   

e

k

j
jjee XY εβ +=∑

=1
,   (1´) 

Our approach was to vary systematically two factors: (1) the weights given to the 

variables as captured by the distribution of cue validities; (2) the level of average 

inter-cue correlation. As a consequence, we obtain environments with different levels 

of predictability as indicated by Re (from low to high).  We could not, of course, vary 

these factors in an orthogonal design (due to mathematical restrictions), and hence 

used several different sets of designs. 

 For each of these, it is straightforward to calculate expected correct predictions 

and losses for all our models11 (see equations above) with one exception.  This is the 

                                                
11 For the TTB model, we defined a threshold of 0.50 (with standardized variables) to decide whether a 
variable discriminated between two alternatives. Whereas the choice of 0.50 was subjective, 
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LC model which requires specification of
seYYρ , that is, the “achievement index” or the 

correlation between the criterion and the person’s responses.  However, given the lens 

model equation – see equation (3) above – we know that  

seYYρ  = 
seYY ˆˆρ

se RR       
                                            (10)  

where Re  captures the predictability of the environment and 
seYY ˆˆρ Rs  the extent to 

which the person’s judgment ability meets the demands of the task, i.e., the product of 

“matching” and “consistency.” 12  Lindell (1976) referred to 
seYY ˆˆρ Rs   as “performance” 

because this part of achievement can be considered separately from task predictability 

or Re. We prefer to call it “linear cognitive ability” or ca to capture the notion that it 

measures how well someone is using the linear model in terms of both matching 

weights and consistency of execution.13  In short, our strategy is to vary ca and 

observe how well the LC model performs. In other words, how accurate would people 

be in binary choice when modeled as if using a linear combination of cues with 

differing levels of “knowledge” (matching of weights) and consistency in execution 

of their knowledge? 

For example, from a psychological perspective an interesting comparison is 

the point where the use of an LC strategy is equaled by that of a single variable (SV). 

This occurs when the validity of SV equals that of the person using LC, that is, 

when
1XYe

ρ  = 
seYYρ = caRe   or when ca = (

1XYe
ρ /Re).  One way of thinking about this is 

to see that, from a predictive viewpoint, it captures the point of indifference between 

making a judgment using all the data (i.e., with LC) and relying on a single cue (SV) 

                                                                                                                                       
investigation shows quite similar results if this threshold is varied between 0.25 and 0.75. We use the 
threshold of 0.5 in all further calculations and illustrations.  
12 The assumption made here is that 

seεερ = 0, see equation (3).   
13  Recall that “using” is employed here in an as if manner. 
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such as representativeness (Kahneman & Tversky, 1972) or affect (Slovic et al., 

2002).       

 The first set of environmental parameters that we consider involves four cases 

(A, B, C, and D) – see Table 2.  Here we examine equal and differential cue validities 

(case A versus the others), low but positive inter-cue correlations (cases A and C), 

negative inter-cue correlation (case B), and moderately high inter-cue correlation 

(case D). These parameters imply different levels of environmental predictability (or 

lack of “noise”), that is Re, which varies from 0.66 to 0.93.  In the right hand column, 

we show values of (
1XYe

ρ /Re) which indicate the benchmarks for determining when 

SV or LC performs better.  Specifically, LC performs better than SV when ca exceeds 

(
1XYe

ρ /Re).   

------------------------------------------------------------------- 
Insert Table 2 and Figures 3, 4, and 5 about here 

-------------------------------------------------------------------
 

 Figure 3 depicts expected percentage correct predictions of the different 

models as a function of linear cognitive ability or ca. In addition, Figure 3 recognizes 

the possibility that the decision maker could err in using the SV and TTB models – 

specifically by failing to order the variables according to their cue validities.  This is 

shown in respect of SV in the four left-hand side panels and for TTB in the four right-

hand side panels. Here the lines SVr and TTBr show expected performance if cues are 

selected or ordered at random and the shaded areas indicate the range of possible 

performance levels from best (the correct order) to worst (most incorrect order). 

A first comment is that, in a relative sense, model performance varies by 

environments.  In case A (equal cue validities and low cue inter-correlation), for 

example, EW performs best and CONF is also more effective than TTB.  SV lags 
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behind.  Note that, in this environment, it does not matter whether heuristics identify 

the correct ordering of cues because each cue has the same validity. 

This picture changes when the cue validities differ.  In case B (with negative 

inter-cue correlation), EW is still best, but only slightly, whereas TTB now 

outperforms CONF.  As cue inter-correlation increases, however, differences in 

model performance decrease – examine cases C and D – and EW no longer has the 

best performance. As can also be seen, errors in failing to identify the correct ordering 

of cues can hinder performance in environments B, C, and D. 

 Second, consider the performance of LC as a function of ca. First note that 

equality between LC and SV occurs, for each of the cases, at the critical points 

enumerated at the right of Table 2.  Thus, for example, LC needs less linear cognitive 

ability in case A (0.62) to do better than SV than in case C (0.80).   Interestingly, in 

all the environments illustrated, linear cognitive ability has to be quite high before it 

starts to be competitive with the better heuristics. Indeed, it is only in case B that LC 

has the best performance and this when linear cognitive ability starts to exceed 0.85. 

 The simple conclusion from this analysis – which we explore further below – 

is that unless linear cognitive ability is “high,” decision makers are better off using 

simple heuristics provided that they implement these correctly.     

 In Figure 4, we show differential performance in terms of expected loss where 

the exactingness parameter, α, is equal to 1.00.  A comparison of Figures 3 and 4 

shows the same pattern of results in terms of relative model performance. Once again, 

we also illustrate the effects of errors in the use of SV and TTB.  Figure 5 examines 

the effects of less exacting losses when α = 0.30.  Compared to Figure 4, we find the 

same relative ordering between models but differences in expected loss are much 



 24 

smaller.  Indeed, the effect of changing α is to reduce or magnify (as appropriate) 

expected losses by a constant multiplier (see note 2 to Table 1). 

 To provide more insight, we constructed four further sets of environments – 

cases E, F, G, and H – each of which had eight sub-cases (i through viii) as specified 

in Table 3. In cases E and F, the distribution of cue validities was quite steep 

(decreasing constantly by one-half) and overall cue validity decreased across sub-

cases (i through viii). Cases G and H had a similar design except that the distribution 

of cue validities was flatter.  Cases E and G had low positive cue inter-correlation 

whereas cases F and H had higher cue-intercorrelation. A consequence of these 

specifications was a range of environmental predictabilities (Re) from 0.37/0.39 to 

0.85/0.88 across all eight sets of sub-cases.  

------------------------------------------------------------ 
Insert Table 3 and Figures 6 and 7 about here 

------------------------------------------------------------ 

 Table 3 also documents expected percentage correct and losses (for α = 1.00) 

for all our models including LC which has been calculated using three different values 

for linear cognitive ability: ca = 0.5 for LC1; ca = 0.7 for LC2; and ca= 0.9 for LC3.  

The trends in Table 3 are perhaps better viewed by examining Figures 6 and 7 that 

document percentage correct and expected loss, respectively, of the different models 

as a function of the validity of the most valid cue, 
1XYe

ρ .  Since here
1XYe

ρ  is highly 

correlated with Re, the horizontal axis of the graphs can also be thought of as 

capturing “noise” (more, on the left, to less, at the right).  As with Figures 3 and 4, we 

use shaded areas to indicate the ranges of performance that can be achieved by SV (on 

the left) and TTB (on the right). 

 Abstracting first from the three LC models, there is a general trend (that could 

be expected) for differences in model performance to increase as noise or error in the 
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environment decreases.  TTB dominates the other models in case E but is, in turn, 

dominated by SV in the more redundant case F.  In case G (where the distribution of 

cue validities is flatter), EW and TTB are the better performing models, and EW does 

better than TTB when  
1XYe

ρ  < 0.50.  In case H (involving greater redundancy), SV is, 

once again, one of the better models.  CONF generally tracks EW closely but is 

consistently inferior to it.  The difference between looking at percentage correct 

(Figure 6) and expected loss with α = 1.00 (Figure 7) is that differences between 

models are easier to observe with the latter. 

 In terms of linear cognitive ability, it is clear (and unsurprising) that more is 

better than less. Interestingly, however, as the environment becomes more predictable 

the effectiveness of the LC models drops off relative to the simpler heuristics. (This 

can also be seen by considering the 
1XYe

ρ /Re column in Table 3.)  In the environments 

examined here, the best LC model (with ca = 0.9) is always outperformed by one of 

the other heuristics when 
1XYe

ρ > 0.60.   

 Agreement between models. In many instances, strategies other than LC have 

quite similar performance. This raises the question of knowing how often they make 

identical predictions. To assess this, we calculated the probability that all pairs of 

strategies formed by SV, EW, TTB, and CONF would make the same choices across 

several environments.  In fact, since calculating this joint probability is quite 

complicated in some cases, we actually simulated results based on 5,000 trials for 

each environment. 

Table 4 specifies the parameters of the environments we considered, the 

percentage correct predictions for each model in each environment,14 and the 

                                                
14 We had also calculated the theoretical probabilities of the simulated percentage correct predictions. 
Given the large sample sizes (5,000), theoretical and simulated results were almost identical. 
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probabilities that models would make the same decisions.  As can be seen, there are 

two sets of environments, I and J, each with eight sub-sets (i through viii).  Set I has 

low cue inter-correlation; set J has moderate to high cue inter-correlation. Within each 

set, we vary predictability (Re) from high to low.   

-------------------------------------------------- 
Insert Table 4 about here 

-------------------------------------------------- 

We make three remarks. First, whereas there is considerable variation in 

percentage correct predictions across different levels of predictability, agreement 

between pairs of models hardly varies as a function of Re and is uniformly high. In 

particular, the rate of agreement lies between 0.70 and 0.92 across all comparisons 

and is probably higher than one might have imagined a priori. At the same time, this 

means that differences between the models occur in 8-30% of choices and, from a 

practical perspective, it is important to know when this happens and which model is 

more likely to be correct. Second, and as would be expected, the effect of increasing 

cue inter-correlation (or redundancy) is to increase the level of agreement between 

models. Third, for the environments illustrated here, the CONF and EW models have 

the highest level of agreement whereas the SV-EW and SV-TTB have the lowest. The 

latter result is perhaps surprising in that both SV and TTB are so dependent on the 

most valid cue.    

 Comparisons with experimental data.  Although instructive, the above analysis 

has been at a theoretical level and raises the issue of “how good” people are at making 

decisions with linear models as opposed to using heuristics.  To answer this question, 

we undertook a meta-analysis of lens model studies to estimate ca. This involved   

attempting to locate all lens model studies reported in the literature that provided 

estimates of the elements of equation (3). Studies therefore had to have a criterion 
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variable and involve the judgments of individuals (as opposed to groups of people).15 

Moreover, we only considered cases where the number of independent variables or 

cues was greater or equal to two (when there is only one cue, 
seYY ˆˆρ = 1.00 necessarily).  

In all, we located 77 (mainly) published papers that allowed us to examine judgmental 

performance across 252 different task environments (i.e., environments that vary by 

statistical parameters and/or substantive conditions). 

In Table 5, we summarize key statistics from the meta-analysis (for full 

details, see Karelaia & Hogarth, in preparation).  First, we note that these studies 

represent much data. They are the result of approximately 5,000 participants 

providing a total of some 320,000 judgments.  In fact, many of these studies involved 

learning and, since we characterize judgmental performance by that achieved in the 

last block of experimental trials reported, the participants actually made many more 

judgments.  Second, we provide several breakdowns of different lens model and 

performance statistics that are the means across studies of individual data that have 

been averaged within studies (i.e., the units of analysis are the mean data of particular 

studies).  We distinguish between expert and novice participants, laboratory and field 

studies, environments that involved different numbers of cues, different weighting 

functions, and different levels of redundancy (or cue inter-correlation).  

------------------------------------------- 
Insert Table 5 about here 

------------------------------------------ 

Briefly, we find no differences in performance between participants who are 

experts or novices (the latter, however, are assessed after learning) nor between 

laboratory and field studies. Holding the predictability of the environment constant 

(i.e., Re), performance (both ra and LC accuracy) is somewhat better with fewer cues, 

                                                
15 We also excluded studies from the interpersonal conflict paradigm where the criterion for one’s 
person’s judgments is the judgment of another person (see, e.g., Hammond, Wilkins, & Todd, 1966). 
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and with equal as opposed to differential weighting functions.  Parenthetically, in 

characterizing the latter, we classify functions as non-compensatory if, when cue 

validities are ordered in magnitude, the validity of each cue exceeds the sum of those 

smaller than it (cf., Martignon & Hoffrage, 1999; 2002). We define all other functions 

as compensatory except for the special case of equal-weighting. 

Overall, the LC accuracy reported in the right hand column of Table 5 is about 

70%. In interpreting this figure, it is important to bear in mind that it is derived from 

an estimate of linear cognitive ability (ca or GRs) of 0.66 and that this figure is a mean 

estimate across individual studies each of which is described by the mean of 

individual data. Table 5 obscures individual variation.    

To capture the differences in performance between LC and the heuristic models, 

one needs specific information on the statistical properties of tasks (essentially the 

covariation matrix used to generate the environmental criterion) and to make 

predictions for each environment.  Recall also that, in the lens model paradigm, 

performance – or “achievement” – is measured in terms of correlation.  We therefore 

transformed the measure of achievement into one of performance in binary choice 

using the methods described above, that is, by assessing the performance of LC with 

different levels of linear cognitive ability, ca.  Thus, to measure the effectiveness of 

LC relative to any heuristic in a particular environment, we considered the difference 

in expected predictive ability between LC based on the mean ca observed in the 

environment and that of the heuristic.   In other words, we ask how well the average 

performance levels of humans using LC compare to those of heuristics.  

In Table 6, we summarize this information for environments involving three 

and two cues (details are provided in Appendices C and D).  Unfortunately, not all   

studies in our meta-analysis provided the information needed and thus we are limited 
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to approximately two-thirds of tasks involving three cues, and one-half of tasks 

involving two cues.  We also note, parenthetically, that although some environments 

had identical statistical properties, they can be considered different because they 

involved different treatments (e.g., how participants had been trained, various forms 

of feedback, presentation of information, and so on).   

------------------------------------------- 
Insert Table 6 about here 

------------------------------------------ 

The upper panel of Τable 6 summarizes the data from Appendix C.  The first 

column (on the left) shows the maximum performance that could be achieved in     

environments characterized by equal-weighting, compensatory, and non-

compensatory functions, respectively.  This captures the predictability of the 

environments (81% for equal weighting and compensatory and 82% for non-

compensatory). These environments are also marked by little redundancy. Over 80% 

have mean inter-cue correlations of 0.00. In the body of the table, we present 

performance in terms of percentage correct for LC – based on mean cognitive ability 

observed in each of the experimental studies – as well as the performance that would 

have been achieved by the different heuristics in those same environments.  Thus, one 

way of interpreting the LC column is as the performance that would have been 

achieved in binary choice by the mean participant in each study (in terms of 

judgmental ability).   

As would be expected, the EW strategy performs best in equal weighting 

environments (80%) and the TTB strategy best in the non-compensatory 

environments (77%).  Interestingly, in these compensatory environments, it is the EW 

model that performs best (77%).  The mean LC model never has the best 
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performance.  Compared to the heuristic models, its performance is relatively better in 

the equal weighting as opposed to the other environments.   

In the discussion so far, we have concentrated on effects of error in using LC 

(by focusing on ca).  However, the columns headed SVr and TTBr illustrate the 

effects of making errors in using heuristics.  This shows that the performance of LC 

(at mean ca level) is as good as or better than SVr and TTBr across all three types of 

environments.   

In the lower panel of  Table 6, we present the data based on analyzing studies 

with two cues where, once again, most environments involve orthogonal cues (73%) – 

details are provided in Appendix D. Conclusions are similar to the three cue case.  

EW is necessarily best when the environment involves an equal weighting function 

and TTB performs well in the non-compensatory environments although it is bettered 

here by the SV model (just).16  

Since most published studies do not report individual data, it is difficult to 

assess the importance of individual variation in performance in particular tasks and, 

specifically, how individual LC performance compares with heuristics in such tasks.  

Two papers involving two-cues did report the necessary data (Steinmann & Doherty, 

1972; York et al., 1987).  Table 7 summarizes the comparisons.  This shows (reading 

from left to right), the number of participants in each task, statistical properties of the 

tasks, percentage performance correct by the LC model (mean and range), and the 

percentage of participants that have better performance with LC than with particular 

heuristics. (Note the three tasks reported by York et al., 1987 have identical statistical 

characteristics but involved different substantive manipulations of information). 

                                                
16  The following rule was used to adapt the CONF model for two cues: If both cues suggest the same 
alternative, choose it.  Otherwise, choose at random. 
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Clearly, one cannot generalize from the four environments presented in Table 

7. However, it is of interest to note that, first, the ranges of individual LC 

performances are quite large (24% to 31%), and second, a limited number of 

participants can have better performance with LC than with the heuristics.  

--------------------------------------- 
Insert Table 7 about here 

--------------------------------------- 

Summary. At a theoretical level, we have shown that the performance of 

heuristic rules is affected by several factors: the type of weighting function (i.e., how 

the environment weights cues); cue redundancy or inter-correlation; the predictability 

of the environment; and loss functions.  The weighting function determines which 

heuristic is best suited to specific tasks and this depends on how its characteristics 

match that of the tasks confronted.  For example, EW is better in equal 

weighting/compensatory environments and TTB and SV in non-compensatory 

environments.  The effect of cue redundancy is generally to reduce differences in the 

relative predictive abilities of the heuristics.  As environments become more 

predictable, all models perform better but differences between models also increase. 

Finally, the effect of loss functions is to accentuate or dampen differences between 

evaluations of model predictions.   

We also used simulation to investigate the extent to which models agree with 

each other.  At one level, all the models we investigated were “sensible” and used 

valid information. As such, it should not be surprising that they exhibited much 

agreement.  The extent of the agreement, however, was surprising. Even when the 

predictability of the environment varied greatly, the level of agreement between 

particular models hardly changed (cf., Table 4).  From a predictive viewpoint, this 

might be thought comforting.  But it also accentuates the need to know which 
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heuristic is more likely to be correct in the 8-30% of cases in which they disagree – 

and thus the importance of identifying when different heuristics are more effective.    

The differential impact of environmental factors is illustrated quantitatively in 

Table 8 which reports the results of regressing performance of the heuristics 

(percentage correct) on environmental factors: type of weighting function 

(represented by dummy variables), redundancy (cue inter-correlation), and 

predictability (Re).  This is done for the 52 populations specified in Tables 2, 3, and 4. 

Results show the importance of non-compensatory environments and redundancy on 

SV (positive) and EW and CONF (both negative). Interestingly, for the conditions 

examined here, the performance of TTB is not affected by these factors thereby 

suggesting a heuristic that is robust to environmental variations (for further analysis of 

this issue, see Baucells, Carrasco, & Hogarth, 2006). Finally, all models benefit from 

greater predictability. 

----------------------------------------- 
Insert Table 8 about here 

----------------------------------------- 

An important conclusion from our theoretical analysis is that unless linear 

cognitive ability (ca) is high, people are better off relying on trade-off avoiding 

heuristics rather than using linear models.  At the same time, however, the application 

of heuristic rules can involve error (e.g., variables not used in the appropriate order in 

TTB).  This therefore raised the issue of estimating linear cognitive ability (ca) from 

empirical data and noting when this was “large enough” to do without heuristics.    

Our theoretical analyses suggested that ca needed to be larger than about 0.7 

for LC models to perform better than heuristics. Across the 252 task environments of 

the meta-analysis we estimated ca to be 0.66. However, this is a mean and does not 

take account of differences in task environments.  For those environments where 
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precise predictions could be made, LC models based on mean ca estimates performed 

at a level inferior to the best heuristics but equal to or better than heuristics executed 

with error.  Unfortunately, the data did not allow us to make a thorough investigation 

of individual variation in ca values.  However, to the extent that we could do this, 

only a minority of individuals appeared capable of outperforming heuristics using LC.    

 

General discussion  

 Our goal has been to show how different views of heuristic decision making 

can be reconciled within a framework that also encompasses the representation of 

human judgment as linear models.  Central to our work is the importance of 

understanding the effects of different environments that we have characterized by 

statistical properties.  Given the inherent uncertainty in inference, this approach seems 

eminently sensible (cf., Brunswik, 1952). We now consider implications that are, first, 

psychological, second, normative, and third, methodological in nature. We also 

outline extensions for further work. 

Psychological implications.  All of the models (heuristics) we have examined 

can be thought of representing “ideal-types.”  Thus, it is legitimate to ask how their 

mathematical representations capture underlying psychological processes.  This is not 

a new issue (see, e.g., Hoffman, 1960; Einhorn et al., 1979) and – apart from 

predictive tests – we believe the answer lies in assessing logical consistency between 

the assumptions of models and the information processing operations actually 

performed by humans.  

Consider, for example, the SV (the simplest) and the LC (arguably the most 

complex) models. For the former, we can argue that the psychological process is 

“modeled” correctly if the assumption that the judgment is based on a single cue is 
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verified. It does not matter, for example, if the individual looks at other cues and then 

ignores them.  For the latter, checking for consistency is more complex.  Were all 

cues examined? Were weights attached to the cues?  Were the weighted sums 

aggregated to form a global judgment?  Note that there is no need to say that actual 

mathematical formulae were used. All one would need to show is that mental 

operations took place that led to outcomes consistent with the operations.  Nor do we 

need to indicate the micro-processes that underlie the cognitive operations although, 

in an ideal world, these would also be consistent with the postulated framework.  The 

evidence that would argue most against the LC model would be the demonstration 

that part of the information was ignored. 

From a psychological viewpoint, therefore, the claim that the different models 

capture actual processes is made at a level of analysis that represents mental 

operations in an “as if” manner.  Moreover, by defining the statistical properties of 

task environments, we show at a theoretical level how characteristics of models and 

tasks result in different levels of performance.  This is an important contribution 

because it provides the basis for developing an environmental theory of judgmental 

performance (cf., Brunswik, 1952; Simon, 1956). 

The environment, however, is not captured by statistical properties alone since 

context can be important. Within our framework, contextual effects would be 

reflected in how people use heuristics.  Consider, for example, what happens when 

cue variables are inappropriately labeled. Within LC models, this would be captured 

by reductions in linear cognitive ability (ca) because people give less appropriate 

weights to the variables.  With the TTB model, it could result in using cues in an 

inappropriate order.  In short, our approach is built on a statistical analysis of 

environmental tasks.  The mediating effects of context are captured by their impact on 
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how people use decision rules. Since it is people who are differentially susceptible to 

contextual effects, we believe this makes sense. 

One claim we do make is that the range of models we considered covers the 

types of heuristics that have been discussed in the literature as well, of course, as the 

linear model. Thus, the SV model captures precisely what happens when people make 

decisions based on a single cue such as representativeness (Kahneman & Tversky, 

1972), availability (Tversky & Kahneman, 1973), recognition (Goldstein & 

Gigerenzer, 2002) or affect (Slovic et al., 2002).  All these models have in common 

the notion that people use a single cue that has imperfect validity. However, whether 

this implies that people are misguided or justified in relying on a single cue can not be 

decided on an a priori basis but depends – in particular cases – on how valid the single 

cue is, what other relevant information is available, and the costs of making errors.  

From our perspective, it is understandable that some researchers see the “glass as half-

empty” while others see it “as half-full.”    

An important contribution of our analysis is to highlight the role of error in the 

use of different models – as opposed to error or “noise” in the environment.  Within 

LC, error is measured by the extent to which linear cognitive ability (ca or GRs) falls 

short of 1.00. Here, error can have two sources:  incorrect weighting of variables and 

inconsistency in execution. With TTB, the analogous error results from using 

variables in an inappropriate order (and in SV from using less valid cues).  Thus, the 

errors in the two types of models involve both knowledge and execution although in 

the latter execution errors are less likely given the simpler processes involved. 

An advantage of our meta-analysis of lens model studies is that one can say 

something about the effects of errors within the LC framework. Across all our studies,   

the mean estimates for both G and Rs are approximately 0.80 (Table 5). Moreover, 
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only 11% of GRs values exceed 0.90.  That is, the meta-analysis reveals much error in 

both knowledge and execution.  Note also that although G and Rs are positively 

correlated, 0.43 (p < .001), neither G nor Rs are correlated with the predictability of 

the environment (Re) – 0.03 for G and 0.09 for Rs. In other words, there is a trend for 

people to be more consistent in executing strategies when these are more valid. 

However, there is no relation between how predictable an environment is and 

people’s judgmental strategies other than a kind of probability matching result where, 

overall, mean Re and Rs are approximately equal.   

Given the difficulty of executing the LC model well, it is of interest to 

speculate when people can rely on this kind of process.  We suspect that many models 

of this type – or “as if” versions – are used when judgmental processes have been 

automated (or become “tacit,” Hogarth, 2001) such that people do not need to think 

about executing trade-offs.  Imagine, for example, basic processes such as perception 

or situations where past practice has been sufficient to hone a person’s skills. These 

include the judgments that most of us can exercise when driving an automobile, and 

that experts exhibit in different activities such as controlling complex systems   

playing music, or even different sports (cf., Shanteau et al., 2005).     

An interesting feature of most tasks studied in the decision making literature is 

that they are difficult precisely because people lack the experience necessary to take 

action without explicit thought and thus are unable to invoke valid, automatic 

processes.  This issue emphasizes the need to understand the natural ecology of 

decision making tasks (Dhami, Hertwig, & Hoffrage, 2004). 

 Normative implications.  Our work has many normative implications in that it 

spells out the conditions under which different heuristics are effective.  Moreover, the 
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fact that this is achieved analytically – instead of through simulation – represents an 

advance over current practice (see also Hogarth & Karelaia, in press b).  

 An interesting normative implication relates to the trade-offs in different types 

of error when using heuristics or models.  As noted above, one way of characterizing 

our empirical analysis is to say that judgmental performance using the cognitively 

demanding LC models is roughly equal to that of using heuristics with error, that is, 

of SVr and TTBr.  However, is there a relation between linear cognitive ability (ca) 

and the knowledge necessary to know when and how to apply heuristic rules? 

Given our results, how should a decision maker approach a predictive task? 

Much depends on prior knowledge of task characteristics and thus how the individual 

acquired the necessary knowledge. Basically – at one extreme – if all cues are   

approximately equally valid, EW should be used explicitly.  Similarly – at the other 

extreme – when facing a non-compensatory weighting function, TTB or SV would be 

hard to beat with LC.  The problem lies in tasks that have more compensatory 

features. The key, therefore, lies in assessing linear cognitive ability (ca).  How likely 

is the judge to know the relative weights to give the variables?  How consistent is he 

or she in using the judgmental strategy?  Based on our meta-analysis, we expect that a 

minority of persons can meet these conditions but that much also depend on the nature 

of the task and the individual’s predictive experience. For example, one would be 

justified in trusting the judgments of the weather forecasters studied by Stewart, 

Roebber, and Bosart (1997) but not those of Einhorn’s (1972) physicians.   

Our analysis points to the importance of knowledge – about the kind of task 

and the capacity to handle task demands. This, in turn, raises psychological issues of 

how people acquire such knowledge or are helped to do so.  Overall, our results 

suggest that for many tasks the errors incurred by using LC strategies are greater than 
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those implicit in using heuristics.  Thus, judgmental performance could be improved 

if people explicitly used appropriate heuristics instead of relying on what is often their 

untested and unaided judgment.  However, that people resist doing so has been 

documented many times (Dawes et al., 1989; Kleinmuntz, 1990).  It seems that a high 

level of sophistication is needed to understand when to ignore information and use a 

heuristic. Perhaps LC strategies are psychologically attractive precisely because they 

allow people to feel they have considered all information (cf., Einhorn, 1986).     

 Methodological implications. Our work involves methodological innovations.  

Not only have we developed analytical tools for problems that frequently use 

simulation, we have also provided a common framework within which linear and 

heuristic models can be compared.   This therefore opens the way to compare and 

contrast different ways of studying judgment and decision making.  

 Several issues suggested further work.  First, in this paper, we have limited 

ourselves to a binary choice paradigm involving three cues.  This can be extended in 

two ways: first, to consider more alternatives, and second, more cues.  Our previous 

work (Hogarth & Karelaia, in press a, b), suggests that changing the number of 

alternatives will not have a major influence on relative performance of different 

models. Increasing the number of cues, however, could have important impacts 

depending on the nature of inter-cue correlation.   

 Second, all our statistical analyses have been conducted using normal 

distributions and it would be of interest to see the effects of changing this assumption. 

In particular, what would happen if distributions were skewed and/or had fatter tails 

than the normal distribution?  Further interesting complications could involve effects 

where models have correlated error terms.    
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 Third, although our work innovated in this domain by showing the effects of 

loss functions, we only varied the “exactingness” parameter and not the symmetric 

nature of losses.  It would be of interest to explore asymmetries in loss. 

 Concluding comments.  As noted at the outset of this paper, our goal has not 

been to “unify” different traditions of judgmental research.  However, we have 

developed a framework in which to compare results. Thus, we have been able to make 

direct comparisons between research in the long-standing lens model tradition with 

the more recent work on heuristic decision making.  Central to our approach has been 

the need to specify and model characteristics of task environments for it is this that 

determines which and why particular heuristics are more or less successful.  It also 

provides guidance as to the level of expertise needed to use the more demanding LC 

models.  At the same time, we emphasize the need for knowledge – or maps – to 

know when to use specific heuristics.  How people develop such maps is key to 

understanding much judgmental activity.   
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Table 1 – Key formulas for three models: SV, LC, and EW 
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Notes: 
1. The expected accuracy of models is estimated as the probability of correctly 

selecting A over B, and is found as: 
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2. The expected loss of models is found as:  
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where  α (> 0) is the “exactingness” parameter.  

3. The variance-covariance matrix  fM   is specific for each model.  
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Re          /Re

                                                            

Case A 0.5 0.5 0.5 0.1 0.1 0.1 0.81 0.62

Case B 0.6 0.4 0.3 -0.4 0.1 0.1 0.93 0.64

Case C 0.6 0.4 0.3 0.1 0.1 0.1 0.75 0.80

Case D 0.6 0.4 0.3 0.5 0.5 0.5 0.66 0.91

Cue inter-correlationsCue validities 1XYe
ρ

2XYe
ρ 

1XYe
ρ  

3XYe
ρ

21XXρ  
32 XXρ 

31XXρ

Table 2 -- Environmental parameters: Cases A, B, C, and D 
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Re            /Re

                                                            LC1* LC2* LC3* SV EW TTB CONF LC1* LC2* LC3* SV EW TTB CONF 
Case E

i 0.8 0.4 0.2 0.88 0.91 64 71 79 80 76 82 74 0.5 0.3 0.1 0.1 0.2 0.1 0.2
ii 0.7 0.35 0.175 0.78 0.90 63 68 75 75 72 77 70 0.5 0.3 0.2 0.2 0.2 0.2 0.3
iii 0.6 0.3 0.15 0.69 0.87 61 66 71 70 69 72 67 0.6 0.4 0.3 0.3 0.3 0.3 0.4
iv 0.5 0.25 0.125 0.60 0.83 60 64 68 67 65 68 64 0.6 0.5 0.3 0.4 0.4 0.4 0.5
v 0.4 0.2 0.1 0.52 0.76 58 62 66 63 62 64 61 0.7 0.5 0.4 0.5 0.5 0.5 0.6
vi 0.3 0.15 0.075 0.45 0.66 57 60 63 60 59 61 58 0.7 0.6 0.5 0.6 0.7 0.6 0.7
vii 0.2 0.1 0.05 0.41 0.49 56 59 62 56 56 57 55 0.7 0.6 0.6 0.8 0.8 0.7 0.8
viii 0.1 0.05 0.025 0.37 0.27 56 58 61 53 53 54 53 0.8 0.7 0.6 0.9 0.9 0.9 0.9

Case F
i 0.85 0.94 64 70 78 80 69 76 69 0.5 0.3 0.1 0.1 0.3 0.2 0.4
ii 0.76 0.92 62 68 74 75 67 72 66 0.5 0.4 0.2 0.2 0.4 0.2 0.4
iii 0.67 0.89 61 66 71 70 64 68 64 0.6 0.4 0.3 0.3 0.5 0.3 0.5
iv 0.59 0.85 59 63 68 67 62 65 61 0.6 0.5 0.4 0.4 0.6 0.4 0.6
v 0.51 0.78 58 62 65 63 59 62 59 0.7 0.6 0.4 0.5 0.6 0.5 0.7
vi 0.45 0.67 57 60 63 60 57 59 57 0.7 0.6 0.5 0.6 0.7 0.7 0.7
vii 0.40 0.49 56 59 62 56 55 56 54 0.7 0.6 0.6 0.8 0.8 0.8 0.8
viii 0.37 0.27 56 58 61 53 52 53 52 0.8 0.7 0.6 0.9 0.9 0.9 0.9

Case G
i 0.8 0.4 0.2 0.88 0.91 64 71 79 80 76 82 74 0.5 0.3 0.1 0.1 0.2 0.1 0.2
ii 0.7 0.4 0.2 0.80 0.88 63 69 76 75 74 78 71 0.5 0.3 0.2 0.2 0.2 0.1 0.3
iii 0.6 0.4 0.2 0.73 0.83 62 67 73 70 72 73 69 0.6 0.4 0.2 0.3 0.3 0.2 0.3
iv 0.5 0.4 0.2 0.66 0.75 61 65 70 67 70 70 67 0.6 0.4 0.3 0.4 0.3 0.3 0.4
v 0.4 0.4 0.2 0.61 0.65 60 64 69 63 68 66 66 0.6 0.5 0.3 0.5 0.4 0.4 0.4
vi 0.3 0.3 0.2 0.52 0.57 58 62 66 60 64 62 62 0.7 0.5 0.4 0.6 0.5 0.6 0.5
vii 0.2 0.2 0.2 0.45 0.44 57 60 63 56 60 58 59 0.7 0.6 0.5 0.8 0.6 0.7 0.6
viii 0.1 0.1 0.1 0.39 0.26 56 59 61 53 55 54 55 0.8 0.7 0.6 0.9 0.8 0.8 0.8

Case H
i 0.85 0.94 64 70 78 80 69 76 69 0.5 0.3 0.1 0.1 0.3 0.2 0.4
ii 0.76 0.93 62 68 74 75 68 73 67 0.5 0.4 0.2 0.2 0.4 0.2 0.4
iii 0.67 0.89 61 66 71 70 66 70 66 0.6 0.4 0.3 0.3 0.4 0.3 0.4
iv 0.60 0.83 60 64 68 67 65 67 64 0.6 0.5 0.3 0.4 0.5 0.4 0.5
v 0.54 0.74 59 62 66 63 63 64 63 0.7 0.5 0.4 0.5 0.5 0.5 0.5
vi 0.47 0.64 58 61 64 60 61 61 60 0.7 0.6 0.5 0.6 0.6 0.6 0.6
vii 0.41 0.48 57 59 62 56 58 57 58 0.7 0.6 0.5 0.8 0.7 0.7 0.7
viii 0.37 0.27 56 58 61 53 54 54 54 0.8 0.7 0.6 0.9 0.8 0.9 0.9

* For LC1, c = 0.5; for LC2, c = 0.7; for LC3, c = 0.9.
Notes:       The performance of the best heuristic in each environment is highligted with bold characters. 

The performance of LC is underlined and presented on a darker background when it is superior or equal to that of "the best performer" among heuristics. 

same as in Case G

same as in Case E

all equal to 0.1

all equal to 0.5

all equal to 0.1

all equal to 0.5

Cue validities Cue inter-correlations Percentage correct Loss (α = 1.00) 

2XYe
ρ 

1XYe
ρ  

3XYe
ρ

21XXρ  
32XXρ 

31XXρ
 

1XYe
ρ

Table 3 -- Environmental parameters: Cases E, F, G, and H; and performance (expected percentage correct and expected losses) 
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Cue validities Cue inter-correlations Re

                                                            SV EW TTB CONF SV- SV- SV- CONF- TTB- CONF- 
Case I EW CONF TTB EW EW TTB

i 0.8 0.6 0.2 0.96 80 82 86 79 0.72 0.77 0.72 0.87 0.80 0.77
ii 0.7 0.5 0.2 0.84 75 77 79 74 0.73 0.77 0.73 0.86 0.80 0.77
iii 0.6 0.4 0.2 0.73 71 72 73 69 0.72 0.77 0.72 0.86 0.80 0.77
iv 0.5 0.3 0.2 0.63 66 67 67 66 0.71 0.76 0.71 0.85 0.78 0.76
v 0.4 0.2 0.2 0.54 62 63 63 61 0.73 0.77 0.73 0.86 0.80 0.78

vi 0.3 0.2 0.2 0.49 59 61 61 61 0.70 0.76 0.70 0.85 0.78 0.76
vii 0.2 0.2 0.2 0.45 57 59 58 58 0.72 0.78 0.72 0.86 0.79 0.76

viii 0.1 0.1 0.1 0.38 53 54 53 53 0.71 0.77 0.71 0.85 0.79 0.76

Means 65 67 68 65 0.72 0.77 0.72 0.86 0.79 0.77
Case J

i 0.90 80 73 79 71 0.81 0.83 0.81 0.91 0.88 0.85
ii 0.78 74 70 74 68 0.81 0.84 0.81 0.91 0.88 0.85
iii 0.67 71 67 70 65 0.81 0.83 0.81 0.91 0.88 0.84
iv 0.58 67 64 66 63 0.80 0.83 0.80 0.91 0.88 0.85
v 0.50 64 61 63 60 0.80 0.83 0.80 0.91 0.87 0.84

vi 0.44 59 59 60 59 0.81 0.84 0.81 0.91 0.87 0.84
vii 0.42 58 59 58 59 0.80 0.83 0.80 0.91 0.88 0.85

viii 0.38 53 54 53 53 0.80 0.83 0.80 0.92 0.88 0.84

Means 66 63 65 62 0.81 0.83 0.81 0.91 0.88 0.85

Overall means 66 65 66 64 0.76 0.80 0.76 0.88 0.84 0.81

* Results are from simulations with 5,000 trials for each environment.

all equal to 0.5same as in Case I

Rates of agreementPercentage correct

all equal to 0.1

2XYe
ρ 

1XYe
ρ  

3XYe
ρ

21 XXρ  
32XXρ 

31XXρ

Table 4 -- Rates of agreement between heuristic strategies for different environments* 
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No. of LC accuracy
studies judges judgments       * G* Re Rs C* GRs (%)

Characteristics of tasks

Participants:
Experts 59 23 102 0.57 0.80 0.82 0.79 0.06 0.65 71
Novices 192 19 92 0.55 0.81 0.79 0.81 0.06 0.66 70
Unclassified 4

Type of study:
Laboratory 200 21 93 0.56 0.82 0.80 0.79 0.04 0.67 70
Field 51 15 95 0.55 0.76 0.77 0.85 0.11 0.66 70
Unclassified 4

Number of cues:
2 67 26 58 0.63 0.88 0.80 0.79 0.07 0.70 73
3 84 19 98 0.55 0.87 0.81 0.80 0.00 0.72 70
> 3 96 16 111 0.51 0.71 0.79 0.81 0.08 0.58 68
Unclassified 8

Type of weighting function:
Equal weighting 40 31 82 0.66 0.90 0.82 0.80 0.02 0.74 75
Compensatory 84 16 102 0.58 0.84 0.81 0.83 0.04 0.70 71
Non-compensatory 50 23 41 0.50 0.79 0.84 0.72 0.04 0.60 67
Unclassified 81

Cue redundancy:** 
None 92 22 56 0.61 0.88 0.83 0.80 0.03 0.72 72
Low-medium 79 19 98 0.53 0.79 0.79 0.83 0.03 0.66 68
High 26 25 105 0.54 0.77 0.75 0.80 0.10 0.64 69
Unclassified 58

Notes: 
*These statistics correspond to the sample estimates of the elements of the lens model equation presented in the text -- equation (3). 
(ra  is the estimate of the "achievement" index,          ;G  is the estimate of the matching index; and C  is the estimate of the correlation
between residuals of the models of the person and the environment,           ).
** We define redundancy by the level of average inter-cue correlation. None implies the absolute value of average intercorrelation of 0; 
     low-medium -- the absolute value of <=0.4 (also described in text as "low", "moderate", "some"); 
    and high -- the absolute value of >0.4 (also described in text as "a lot", "high").

Average number of: Mean lens model statistics

seYYρ
seεερ

ar

Table 5:  Description of studies in lens model meta-analysis 
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Maximum
possible 

percentage Numbers of

Weighting function correct LC1 SV SVr EW CONF TTB TTBr environments

3- cue environments2

Equal weighting 81 72 65 65 80 74 71 70 9
        

Compensatory 81 68 69 64 77 72 73 68 19
  

Non-compensatory 82 67 73 63 74 70 77 67 26
         

       Subtotal 54

2 - cue environments3

Equal weighting 94 79 73 73 92 73 80 80 12

Non-compensatory 84 69 76 67 73 67 75 70 21

Subtotal 33

Total 87
Notes:
1 --  Based on empirically observed mean linear cognitive ability (ca ).
2 -- Averages calculated on the 54 environments detailed in Appendix C.
3 --  Averages calculated on the 33 environments detailed in Appendix D.
Bold indicates largest percentage correct in each row.

Performance -- Percentage correct using:

Table 6: Performance of heuristics and mean LC in 3-cue and 2-cue environments 
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Number
of

participants                                        Mean Max Min SV SVr TTB TTBr EW CONF

Steinmann & Doherty (1972) 22 0.95 0.69 0.65 0.00 73 85 58 45 50 18 18 0 50

York et al. (1987)
Group 1 15 0.86 0.78 0.37 0.00 70 84 53 7 57 7 36 7 57
Group 2 15 0.86 0.78 0.37 0.00 67 78 54 0 29 0 21 0 29
Group 3 15 0.86 0.78 0.37 0.00 72 80 54 14 71 0 57 0 71

tasks  (% correct) with better performance than:
Percentage of participants LC performanceStatistical properties of 

eR
1XYe

ρ
2XYe

ρ
21XXρ

Table 7: Levels of individual performance relative to heuristics 
 

 

 

 

 

 

 

 

 

 

 



 54 

SV EW TTB CONF
Regression coefficients

Intercept 34.1 43.0 36.7 43.1

t - statistic 31.1 46.2 44.3 48.7

Dummy: compensatory 2.0*

t - statistic 2.5

Dummy: non-compensatory 3.5 -2.4 -1.7

t - statistic 4.3 -5.3 -3.9

Redundancy 6.3 -6.1 -3.2
t - statistic 4.9 -5.6 -3.0

Predictability (Re) 45.2 40.5 48.9 36.3
t - statistic 27.0 31.4 37.5 29.6

Adjusted R2  0.95 0.96 0.97 0.95
     

Notes:  (1) The regressions are based on 52 observations. The dummy variables for compensatory and
      non-compensatory weighting functions are expressed relative to equal weighting which is
      captured within the intercept term.

 (2) There are only three levels of redundancy: mean inter-cue correlation of -0.07, 0.1, and 0.5. 
(3) Only statistically significant coefficients are shown. All coefficients are significant (p < .001)  
      except when marked * for p < .05.

Table 8 -- Regression of model performance (percentage correct) on environmental characteristics  
for populations in Tables 2, 3, and 4 
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Figure 1: Knowledge required to achieve upper limits of model performance 

 

 

 Values of variables1  Weights Ordering 

Model Cue 1 Cue 2 Cue 3  "Exact"2 First3 All 3 None 

         
Linear combination (LC) Yes Yes Yes  Yes    

Equal weighting (EW) Yes Yes Yes     Yes 

Take-the-best (TTB) Yes Yes/No Yes/No        Yes   

Single variable (SV) Yes           Yes    

CONF Yes Yes Yes/No     Yes 

         
         

1 Yes = value of cue required;   Yes/No = value of cue may be required.     
2 Exact values of cue weights required.       
3 First = most important cue identified; All = rank order of all cues known a priori.  
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Figure 2: Diagram of lens model.  
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Figures 3: Models performance: Cases A, B, C, and D (expected percentage correct),  

with lower and upper limits of accuracy for SV (four panels on left) and TTB (four panels on right).  
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Figure 4: Models performance: Cases A, B, C, and D (expected loss for α=1.00),  

with lower and upper limits of losses for SV (four panels on left) and TTB (four panels on right). 
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Figure 5: Models performance: Cases A, B, C, and D (expected loss for α=0.30)  
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Figure 6: Models performance: Cases E, F, G, and H (expected percentage correct),  

with lower and upper limits of accuracy for SV (four panels on left) and TTB (four panels on right). 
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Figure 7: Models performance: Cases E, F, G, and H (expected loss for α=1.00)   

with lower and upper limits of losses for SV (four panels on left) and TTB (four panels on right). 
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Appendix A – The expected accuracy of CONF and TTB. 

 

CONF examines cues sequentially and makes a choice when two cues 

favoring one alternative are encountered. Therefore, this model selects the better 

alternative out of two with probability of:  
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TTB also assesses cues sequentially. It makes a choice when a discriminating 

cue is found. In this paper, we consider TTB with a fixed threshold t (>0). Thus, the 

model stops consulting cues and makes a decision when txx ibia >− . This involves 

cases when both )( txx ibia >−  and )( txx iaib >− . Since the two cases are symmetric, 

the probability that TTB selects the better alternative is:  



 63 

( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }=<−∩<−∩<−∩>

+
















≥−∩<−∩<−∩>

+≥−∩<−∩>
+>−∩>

tXXtXXtXXYYP

tXXtXXtXXYYP

tXXtXXYYP

tXXYYP

babababeae

babababeae

bababeae

babeae

332211

332211

2211

11

2

∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫
∞

− − −

∞

− −

∞∞

−

∞∞ ∞

+







++

0

2

0

2

0

1

0

3 )()()()(2 dddfdddfdddfdddf
t

t

t

t

t

t

t

t

t

t t

t

t tt

  (A2)  

where both ),,()( 32111 dddfdf =  and ),,,()( 432122 ddddfdf =  are the same as in 

CONF, and ),()( 2133 ddfdf =  is found similarly, using the appropriate variance / 

covariance matrix: 
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Appendix B – The expected loss of CONF and TTB 

 

The expected loss of CONF is:  

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

=
















<∩<∩>∩>
+>∩<∩>∩<

+>∩>∩<

babababeae

babababeae

bababeae

XXXXXXYYP

XXXXXXYYP

XXXXYYP

L

332211

332211

2211

2  









++ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫

∞ ∞

∞− ∞−∞−

∞

∞−

∞

∞−

∞ ∞

0

2

0

0 0
2
1

0

2

0

0

0

2
1

0

1

0 0

2
1 )()()(2 dddfddddfddddfdα   (B1) 

with )(1 df  and )(2 df  are as defined in Appendix A.  

 

The expected loss of TTB is:  

( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }=<−∩<−∩<−∩<

+
















≥−∩<−∩<−∩<

+≥−∩<−∩<
+>−∩<

tXXtXXtXXYYLP

tXXtXXtXXYYP

tXXtXXYYP

tXXYYP

L

babababeae

babababeae

bababeae

babeae

332211

332211

2211

11

2
 














+







++ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫

∞− − − −∞− − −

∞

∞− −

∞

∞−

∞ 0

2
2
1

0

2
2
1

0

1
2
1

0

3
2
1 )()()()(2 dddfddddfddddfddddfd

t

t

t

t

t

t

t

t

t

t t

t

t tt

α

            (B2)  

where )(1 df , )(2 df , and )(3 df  are as defined in Appendix A.  
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No. Study Task Number of Total number of Stimuli per          across conditions 

conditions/tasks participants participant (range) GRs

Equal weighting environments 
1 Ashton (1981) Predicting prices 3 138 30 0.01-0.98 -0.17-0.19 0.01-0.87

2a Brehmer & Hagafors (1986) Artificial prediction task 1 10 15 1.00 0.97 0.95

3 Chasseigne et al. (1999) Artificial prediction task 5 220 120 0.57-0.98 0.37-0.78 0.67-0.82

Compensatory environments 

4 Chasseigne et al. (1977) - Experiment 1 Artificial prediction task 6 96 26 0.96 0.34-0.70 0.35-0.73
5 Kessler & Ashton (1981) Prediction of corporate bond ratings 4 69 34 0.74 0.52-0.64 0.71-0.88

6a* Steinmann (1974) Artificial prediction task 9 11 300 0.63-0.78 0.45-0.57 0.68-0.84

Non-compensatory environments 

2b Brehmer & Hagafors (1986) Artificial prediction task 2 20 15 0.77-1.00 0.74-0.78 0.71-0.75
7 Deane et al. (1972) - Experiment 2 Artificial prediction task 2 40 20 0.94 0.59-0.84 0.65-0.89
8 Hammond  et al. (1973) Artificial prediction task 3 30 20 0.92 0.05-0.78 0.14-0.83
9 Hoffman et al. (1981) Artificial prediction task 9 182 25 0.94 0.09-0.71 0.15-0.78

6b* Steinmann (1974) Artificial prediction task 6 11 100 0.63-0.74 0.44-0.65 0.70-0.85
10 Youmans & Stone (2005) Prediction of income levels 4 117 50 0.44 0.35-0.42 0.88-0.97

Total 54 944
Notes:
1. All studies reported involved between-subject designs unless studies No. 6a & 6b (indicated by *).
2. Three studies -- No. 7, 8, and 9 -- were said to have identical parameters.  However, there must have been some rounding differences  because of marginally different values reported for Re.

across conditions (range) eR
ar

Appendix C – Selected 3-cue studies. 
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No. Study Task Number of Total number of Stimuli per        across conditions 

conditions/tasks participants participant (range) GRs

Equal weighting environments 

1 Jarnecke & Rudestam (1976) Predict academic achievement 1 15 50 0.42 0.28 0.71
2 Lafon et al. (2004) Artificial prediction task 4 439 30 0.96 0.00-0.90 0.00-0.94
3 Rothstein (1986) Artificial prediction task 6 72 100 1.00 0.81-1.00 0.80-1.00
4 Summers et al. (1969) Judging the age of blood cells 1 16 64 0.99 0.73 0.73

Non-compensatory environments 

5 Armelius & Armelius (1974) Artificial prediction task 3 63 25 0.99-1.00 0.32-0.96 0.32-0.95
6 Doherty et al. (1988) Artificial prediction task

Experiment 2 3 45 25 0.79-1.00 0.70-0.73 0.74-0.92
Experiment 6 2 30 50 0.87-1.00 0.53-0.66 0.58-0.73

7 Hammond & Summers (1965) Artificial prediction task 3 30 20 0.71 0.49-0.85 0.48-0.59
8 Lee & Yates (1992) Post-dicting student success 2 40 NA 0.38 0.24-0.29 0.51-0.59
9 Muchinsky & Dudycha (1975) Artificial prediction task

Experiment 1 2 160 150 0.72 0.04-0.30 0.11-0.54
Experiment 2 2 160 150 0.96 0.03-0.45 0.01-0.32

10 Steinmann & Doherty (1972) Assessing subjective probabilities
 in a bookbag and poker chip task 1 22 192 0.95 0.67* 0.70*

11 York et al. (1987) Artificial prediction task 3 45 25 0.86 0.53-0.64 0.62-0.74

Total 33 1137
Notes: 
1. The number of participants in studies No. 3 and 8 are approximations since this information is not available. 
2. In study No. 10, "human performance" was measured through medians (marked with *). 

Mean human performance
across conditions (range) eR

ar

Appendix D – Selected 2-cue studies.  

 

 

 

 

 

 

 

 


