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Abstract 

 

 It is well accepted that people resist evidence that contradicts their beliefs.  

Moreover, despite their training, many scientists reject results that are inconsistent with 

their theories.  This phenomenon is discussed in relation to the field of judgment and 

decision making by describing four case studies. These concern findings that “clinical” 

judgment is less predictive than actuarial models; simple methods have proven superior 

to more “theoretically correct” methods in times series forecasting; equal weighting of 

variables is often more accurate than using differential weights; and decisions can 

sometimes be improved by discarding relevant information. All findings relate to the 

apparently difficult-to-accept idea that simple models can predict complex phenomena 

better than complex ones. It is true that there is a scientific market place for ideas. 

However, like its economic counterpart, it is subject to inefficiencies (e.g., thinness, 

asymmetric information, and speculative bubbles).  Unfortunately, the market is only 

“correct” in the long-run. The road to enlightenment is bumpy.  
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The concept of mental models is a useful way of thinking about how people 

make sense of and understand what happens in the world.  Thus, in dealing with the 

physical world, humans share similar mental models concerning the effects of gravity. 

For example, if you let something slip from your hands, you expect it to fall. Many of 

our models are the result of our interactions with the world and are largely tacit in 

nature (Hogarth, 2001). On the other hand, models can also be formalized and 

communicated explicitly to others. Indeed, this is one way of describing what scientists 

do.       

What happens, however, when events in the world do not conform to the 

predictions (implicit or explicit) of your model?  Imagine, for example, that when you 

let something slip out of your hand, it floats instead of falling.  Do you question your 

eyesight or your model?  Or do you ask whether you are in strange conditions where the 

model “does not apply”?  Note that this, essentially, is what scientists should do when 

they first meet surprising phenomena (where surprising means relative to model-based 

expectations).   

Surprising results can have three causes: (1) the method used to obtain the result 

was flawed (in the example just given, perhaps there is something wrong with your 

eyesight?); (2) the model really is incorrect (left by themselves, objects do float instead 

of fall); and (3) there are specific circumstances – perhaps not previously encountered – 

where the model does not apply (perhaps you observed the object while traveling in a 

space vehicle where gravity has no effect?).  

Relative to our ability to understand, there is no question that the world is 

complicated.  Thus, the models (and theories) we hold represent the accumulation of 

both our own experience and that of our ancestors.  This knowledge – although 
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imperfect – has taken considerable time to develop and thus, when the predictions of 

models fail, one can understand why people do not wish to abandon cherished beliefs.    

When a theory fails, what should one do?  First, it is appropriate to question the 

methodology that yielded the erroneous prediction.  Clearly, one should discount results 

produced by inappropriate methods.  However, what if the methodology is appropriate 

and, in addition, several replications confirm the original results?  If this is the case, it 

seems almost trivial to state that the model should be amended – either rejected as 

incorrect or specified to be more limited than originally thought.  However, the history 

of science is replete with examples where this does not happen.  Indeed, some time ago 

Kuhn (1962) brilliantly described the difficulty of replacing obsolete scientific 

paradigms (see also below).    

The purpose of this chapter is to discuss this phenomenon with respect to the 

field of judgment and decision making.  There are two reasons why this field provides 

an interesting setting for this issue. First, for scientists concerned with how decisions are 

and should be made, one might imagine that there would be little resistance to adopting 

methods that improve decision making by increasing accuracy, simplifying use, or both. 

Second, the studies in which these new results were discovered are empirical and often 

supported by analytical rationales.  A priori, it is not a question of dubious evidence. 

The chapter will discuss four cases of this phenomenon.  These are, first, the 

findings that predictions of “clinical” judgment are inferior to actuarial models; second, 

how simple methods in times series forecasting have proven superior to more 

sophisticated and “theoretically correct” methods advocated by statisticians; third, how 

in combining information for prediction, equal weighting of variables is often more 

accurate than trying to estimate differential weights;  and fourth, the observation that, on 

occasion, decisions can be improved when relevant information is deliberately 
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discarded. As a general statement, one theme underlies all four cases. This is that simple 

models can perform “better” than more complicated ones.  However, this is a difficult 

principle for people to grasp.  When making decisions perceived as complex, there is a 

strong belief that our methods or use of information should match the complexity of the 

situation. Before presenting the four cases, I first comment briefly on how – based on 

the psychological literature – one might expect people to react to evidence that 

disconfirms their theories as well as discussing several notable cases from the history of 

science.  

 

Do scientists revise their theories in light of new evidence?   

The Bayesian model provides a way of thinking about how people should revise 

beliefs in the light of new evidence. The model essentially suggests a three-step process: 

(1) a state of belief  that a particular theory is “correct” or the “best” at time t1; (2) the 

arrival of new evidence at time t2 that is evaluated as being favorable or disfavorable to 

the theory; and (3) the incorporation of (2) with (1) at time t3 such that a new, revised 

level of belief is reached that takes account of both the prior level (1) and the direction 

and strength of the evidence (2).   Abstracting from technical difficulties of applying the 

Bayesian model in practice, we can nonetheless emphasize several important qualitative 

implications. 

First, if somebody has a dogmatic belief that a theory is correct or incorrect (p = 

1,0), then no evidence can change this.  Second, assessment of the direction and 

strength of the evidence in (2) should be independent of the level of the beliefs held in 

(1). Third, provided people are not dogmatic, i.e., 0 < p < 1 in (1), by observing the 

same sequence of evidence across time they will eventually converge on the same 

estimate of p.  How long this takes, of course, depends on the dispersion of initial 
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beliefs and the evidential strength of what is observed.  Let us consider some evidence 

on each of these implications. 

Whereas we can use the Bayesian model to examine beliefs in specific 

propositions, it is important to emphasize that any particular belief is likely to be part of 

a system of inter-connected beliefs that a person holds when thinking about the world. 

For example, the famous physicist Lord Kelvin (who also became infamous for his 

refusal to accept several important, scientific discoveries) claimed that he could never 

understand a phenomenon unless he could make a mechanical model of it and, for this 

reason, could not “get the electromagnetic theory;” nor did Kelvin ever abandon “the 

concept that the atom is an indivisible unit” (Barber, 1961, p. 598).  In short, it can be 

difficult for people to view scientific beliefs in “isolation.”  Beliefs are interconnected.  

At the same time, this does not mean that people are incapable of separating beliefs or 

that all belief systems are coherent.  As casual empiricism demonstrates, many people 

hold beliefs simultaneously in different propositions that are mutually contradictory. 

A second issue relates to the precision of beliefs.  In many cases beliefs are not 

precisely formulated nor are they held with precise degrees of belief. For example, 

consider a widespread belief among researchers in judgment and decision making that 

people are “over-confident” (see, e.g., Bazerman, 1997).  What does this really mean?  

That people always express more confidence in their judgments than justified by 

subsequent events? That people are sometimes overconfident?  That some people (who 

might or might not be defined) are overconfident in some situations? And so on.  In 

other words, because the general belief is not stated in precise, operational terms it is 

unclear how it should be affected by subsequent evidence. 

Let us now consider the evaluation of evidence where, in particular, selective 

attention to either parts of the evidence or how the evidence was produced can affect 
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how much someone allows evidence to affect their beliefs.  The “culprit” here is that 

evidence is not assessed independently of prior beliefs. 

 A classic study on this phenomenon was conducted by Lord, Ross, and Lepper 

(1979) who demonstrated, in a social psychology experiment, how the beliefs of 

participants (for or against capital punishment) were strengthened after they heard 

evidence contrary to their beliefs (see also Festinger, Riecken & Schachter, 1956). In 

reviewing literature on this topic in science, Koehler (1993) stated: 

Ian Mitroff (1983) conducted a series of detailed interviews with 42 eminent 
Apollo moon scientists and reported that most were emotionally involved in 
their work. Furthermore, those who held very strong beliefs about the nature of 
the moon appeared most anxious to dismiss evidence that contradicted their 
personal theories. Similarly, Mahoney (1977) studied a group of 75 scientific 
journal reviewers and found that they were strongly biased against manuscripts 
that reported results contrary to their strong behaviorist perspective. In short, 
judgments about the quality of scientific research appear to be quite dependent 
on the fit between a scientist’s own beliefs and the conclusions supported by the 
research, particularly when the beliefs are strongly held. (Koehler, 1993, pp 29-
30). 

 

 In his own research, Koehler (1993) demonstrated how alliance with particular 

scientific theories affects judgments of quality of studies and thus their potential 

evidential impact. Not only did Koehler study two groups of practicing scientists on 

opposite sides of a particular issue. Of greater concern is the fact that he also 

demonstrated that these effects can occur when graduate students in the physical 

sciences are endowed (at random) with opposing theories.    

 In short, there is ample evidence that people – including scientists – violate the 

qualitative implications of the Bayesian model of belief updating.  And, as Armstrong 

(1997) has documented, the peer review process for evaluating scientific work does not 

alleviate and may even exacerbate these dysfunctional tendencies.  
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In a fascinating review, Barber (1961) has documented many cases involving 

scientific giants operating in the physical sciences where, one might suppose, hard 

evidence would be difficult to overcome.  Among the various social influences or 

resistance to new ideas, Barber gives examples due to difficulties of understanding 

substantive concepts, different methodological conceptions, religious ideas, professional 

standing (e.g., failure to accept discoveries by young scientists), professional 

specialization (e.g., work by people outside a discipline), and the dysfunctional role 

sometimes played by professional societies.  He goes on to quote Max Planck who, 

frustrated by the fact that his own ideas were not always accepted, stated  

A new scientific truth does not triumph by convincing its opponents and making 
them see the light, but rather because its opponents eventually die, and a new 
generation grows up that is familiar with it. (Barber, 1961, p. 597). 

 
 

Four case studies 

 

1. Clinical versus statistical prediction. A book published by Paul Meehl in 

1954 is the first case I consider.  In this book, Meehl asked the question whether – in 

predictions made in clinical psychology – clinicians would be better off using statistical 

aggregations of the data available on clients or alternatively to rely on their traditional 

method of unaided clinical judgments, i.e., subjective interpretations based on all data 

available to them.  Meehl reviewed some 20 studies and discovered, provocatively, that 

the statistical method of prediction was superior to what is known as the “clinical” 

method. 

At one level, one might have thought that this finding would have been 

welcome. After all, clinical prediction is both time consuming and important and, if a 

method could be devised that was both cheaper and more accurate, surely this would be 

adopted as being in everyone’s interest.  Nothing could be further from the case.  
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Clinicians were outraged by the implications of Meehl’s study.  The use of statistical 

formulas instead of trained professionals was seen as degrading.  The study also struck 

at the heart of an important debate in the philosophy underlying clinical psychology, 

namely the extent to which the science should be nomothetic (concerned with general 

laws that apply to groups of people) or idiographic (concerned with particular 

individuals).  Many clinicians who found Meehl’s results distasteful were clearly in the 

latter group (Holt, 1962). 

The most eloquent – and persistent – of Meehl’s critics has been Holt (1958; 

2004). It is therefore instructive to consider the kinds of arguments that were brought to 

bear against Meehl’s findings.   In Holt (1958), we find several attempts to suggest that 

comparing clinical and statistical judgment in the manner done by Meehl (1954) was 

just inappropriate. Thus Holt states, 

…clinicians do have a kind of justified grievance against Meehl, growing out of 
his formulation of the issues rather than his arguments, which are sound (p. 1).   

 

Meehl’s comparisons, it is claimed, were unfair to the clinicians because, unlike clinical 

judgments, actuarial predictions had been cross-validated, thus: 

….in none of the studies Meehl cites were the clinical predictions under test 
being cross-validated. This alone is a major reason to expect superior 
performance from the actuarial predictions, and again it is a disadvantage under 
which the clinician by no means has to labor (p. 3). 

   

Holt goes on to argue that the process of clinical prediction involves various phases and 

that Meehl’s comparisons did not match like with like and thus “in none of the 20 

studies Meehl cites were the comparisons pertinent to the point” (p. 4). In other words, 

Holt rejected both the problem, as formulated by Meehl, as well as the specific 

comparisons he made as being irrelevant. He also went on to suggest a conceptual 
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framework for prediction that he claimed was more “scientific” than the studies 

reviewed by Meehl. 

 What is curious is that although Holt’s article contains many good points about 

aspects of the clinical process where human judgment is essential, he never wants to 

accept that there are situations where clinical “intuition” might tradeoff with the 

consistent use of decision rules (cf., Goldberg, 1970).  Also, it is clear that there are 

problems for which it is infeasible to build adequate statistical models and where 

clinical judgment is necessarily better than actuarial formulas (see, e.g., Yaniv & 

Hogarth, 1993). Indeed, from Garb’s (1998) comprehensive review, it is clear that 

clinical judgments are far from being universally ineffective in a relative sense. 

In the half century that followed the publication of Meehl’s book, many studies 

have reinforced the original findings (see, e.g., Sawyer, 1966; Dawes, Faust, & Meehl, 

1989; Kleinmuntz, 1990).  In 2000, a meta-analysis by Grove, Zald, Lebow, Sniz, and 

Nelson summarized the results of 136 studies comparing clinical and statistical 

judgments across a wide range of task environments.  Their findings did not show that 

statistical methods were always better and, in fact, they identified a few studies in which 

clinical judgment was superior. On the other hand, they summarized their results by 

stating  

….we identified no systematic exceptions to the general superiority (or at least 
material equivalence) of mechanical prediction. It holds in general medicine, in 
mental health, in personality, and in education and training settings. It holds for 
medically trained judges and for psychologists. It holds for inexperienced and 
seasoned judges (Grove et al., 2000, p. 25).  
 
As evident from this meta-analysis, it is clear that the implications of Meehl’s 

original insights go beyond the clinical-statistical debate in psychology and apply to any 

area of activity where data need to be aggregated in a consistent manner.  Computers are 

just much better at this task than humans and yet, depending on the kind of task that is 
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considered, people have difficulty in accepting this fact.  Let me illustrate by one further 

study and some observations.  

In 1972 Hillel Einhorn published a study of judgments made by physicians who 

were experts in a certain form of cancer.  The physicians’ task was to view biopsy slides 

taken from patients and to (a) define the level of presence/absence of different 

indicators of disease in the slides and (b) estimate the overall severity of the disease as 

evidenced by the slides.  Einhorn used the study to demonstrate the combined 

effectiveness of humans and computers as opposed to the use of humans or computers 

alone. He did this by showing that a statistical model that aggregated the physicians’ 

judgments of cues, (a) (i.e., levels of indicators), was a more effective predictor of 

outcomes (length of patients’ survival) than the physicians’ judgments alone, i.e., (b). 

Einhorn’s point was that better outcomes could be achieved by a system of “expert 

measurement and mechanical combination” than by a system that only relied on the 

expert physicians.  In this particular case, the physicians’ judgments of (a) were 

essential to the development of the model because there was no other way of measuring 

these cues. Einhorn’s point was not to denigrate the expertise shown by the physicians 

in their reading of the biopsy slides. However, the physicians felt quite clearly that the 

study was an unfair condemnation of their abilities and became quite defensive about it.  

Parenthetically, by a peculiar twist of fate, Einhorn in fact suffered from the 

same disease that the physicians were attempting to predict. Subsequently, I used the 

same dataset in my PhD thesis (Hogarth, 1972; 1974). When I attempted to contact the 

physicians with questions, the initial reaction was that I should not be allowed to use the 

data.     

My second observation arises from an experience involving a large academic 

program.  Here, the director of admissions spent an enormous amount of time each year 
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reading applications before using “clinical” judgment to make decisions.  A faculty 

committee studied the admissions process and suggested using a statistical model based 

on the information in the application files.  The suggestion was not well received even 

though it was stated that the model should only be used to pick the top 10% for 

admission and to reject the lowest 10% (thereby economizing some 20% of application 

reading time).  The director clearly felt that the model was an intrusion into his domain 

of expertise (see also Dawes, 1979).  Moreover, it would no longer allow him to claim 

that he read all files personally. 

On the other hand, there are situations where the clinical-statistical controversy 

is well understood and has huge economic consequences. Consider, for example, the use 

of credit-scoring by banks and finance companies. For many kinds of accounts, these 

corporations no longer rely on “clinical” procedures when granting credit. Instead, they 

rely on simple models with a handful of variables (sometimes as few as 1 or 2) to 

predict which potential clients are or are not good credit risks. (For an interesting 

application, see Showers & Chakrin, 1981). In these applications, economic incentives 

certainly seem to make a difference.  

2. Simple models in time series.  A critical operational concern in economics and 

business (private and public) is the forecasting of many different time series. Consider, 

for example, data concerning imports and exports across time, the supply and demand 

for specific products and classes of goods, inventories, and various economic indicators. 

Forecasting these variables with a reasonable level of accuracy is essential because, 

without good forecasts, individuals and firms cannot plan and economic activity suffers. 

Since the 1950s and 1960s the availability of computers has considerably 

increased the ability to forecast millions of time series.  At the same time, theoretical 

statisticians have spent considerable effort developing increasingly sophisticated 
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methods for determining patterns in time series with the ostensible objective of   

achieving better predictions. 

However, it was not until the 1970s that statisticians first started to question 

which particular methods might work better for predicting actual series in practice.  

These first studies (e.g., Newbold & Granger, 1974) compared comparatively few 

methods (see below) and, although their results were not unambiguous, were generally 

supportive of the status quo models in the theoretical statistical literature (Box & 

Jenkins, 1976). 

In 1979, Spyros Makridakis and Michèle Hibon (at the time comparatively 

unknown researchers) broke with tradition by presenting a paper at the prestigious   

Royal Statistical Society in which they compared the out-of-sample forecasting 

performance of 22 forecasting methods on 111 time series they had obtained from 

various sources in business and economics. Their methodology was conceptually 

simple: separate each time series into a fitting phase and predictive phase; fit all models 

on the fitting data; use the fitted models to make predictions for the predictive phase; 

and compare predictions with realizations (i.e., similar to cross-validation in using 

multiple regression).   

Results surprised even the authors: “…if a single user had to forecast for all 111 

series, he would have achieved the best results by using exponential smoothing methods 

after adjusting the data for seasonality” (Makridakis & Hibon, 1979, p. 101). In other 

words, a very simple model (that essentially only weights the last few observations) 

outpredicted many complex and statistically sophisticated models that provided closer 

fits to the data in the fitting phase of the analyses.  The essential point made by 

Makridakis and Hibon was also conceptually simple: real-world time series in business 

and economics are not necessarily stationary (in the statistical sense) and thus extreme 
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caution should be observed in predicting out-of-sample. Complicated models may not 

be worth the cost. 

Comments made at the meeting, and afterwards, were published by the Journal 

of the Royal Statistical Society and make interesting reading today. Between the 

compliments for conducting a demanding empirical study and legitimate questions 

about methodology, there were several published statements that were clearly intended 

to dismiss the results. For example, one prominent commentator stated:  

If the series conforms to an ARMA model, and the model has been fitted 

correctly, then the forecast based on this ARMA model must, by definition, be 

optimal. (Apart from the ARMA model, all the other forecasting methods 
considered are of an ad hoc nature. The ARMA method involves model fitting 
and its performance depends to a large extent on the ability of the user to 
identify correctly the underlying model.)  (Italics and parentheses in original, 
Priestley, 1979, p. 128). 
 

As noted, the commentator did not appear to want to be concerned by empirical 

evidence and also hinted that the investigators had not followed appropriate procedures. 

Other commentators wondered whether there was something peculiar about the 

particular time series the authors had assembled. One went so far as to state that 

Makridakis’s competence to perform appropriate time-series analyses should not be 

trusted. 

Makridakis’s reactions since 1979 have been exemplary.  In 1982, he published 

results of the M-competition (Makridakis et al., 1982) in which experts in different 

forecasting methods were invited to predict 1001 series (thereby avoiding the criticism 

that he had used the methods inappropriately). In 1993, results of the M-2 competition 

were made available (Makridakis et al., 1993). This competition was similar to the M 

competition in that experts were invited to use their own methods. It differed, however, 

in that there were fewer forecasts but these were conducted in real time (e.g., you are 

asked now to provide a forecast for next year). Moreover, forecasters could obtain 



 15

background and qualitative data on the series they were asked to forecast (a criticism of 

the M competition was that experts lacked access to important contextual information). 

Finally, results of the M-3 competition appeared in Makridakis and Hibon (2000). In 

this, forecasts were prepared for several models using 3003 time series drawn from 

various areas of economic activity and for different forecast horizons.  In addition to 

these M-competitions, other scholars have conducted their own similar studies and 

essentially replicated the earlier findings of Makridakis and Hibon, namely:  

(a) Statistically sophisticated or complex methods do not necessarily provide 
more accurate forecasts than simpler ones. (b) The relative ranking of the 
performance of the various methods varies according to the accuracy measure 
being used. (c) The accuracy when various methods are being combined 
outperforms, on average, the individual methods being combined and does very 
well in comparison to the other methods. (d) The accuracy of the various 
methods depends on the length of the forecasting horizon involved. (Makridakis 
& Hibon, 2000, p. 452.) 
 

One might imagine that, with this weight of evidence, the academic forecasting 

community would have taken on the important task of explicating the empirical 

evidence and developing models that could explain the interaction between model 

performance and task characteristics. However, there seems to be little evidence of this 

occurring. For example, Fildes and Makridakis (1995) used citation analysis in 

statistical journals to assess the impact of empirical forecasting studies on theoretical 

work in time-series analysis. Basically, their question was whether the consistent out-of-

sample performance of simple forecasting models had led to theoretical work on 

illuminating this phenomenon.  The answer was a resounding “no.”  

Empirical validation, comparative modeling and the choice between alternative 
models (and methods) seem to have been regarded as unimportant by 
theoreticians in the field of statistical forecasting. …….the evidence is 
straightforward: those interested in applying forecasting regard the empirical 
studies as directly relevant to both their research and to applications…….those 
interested in developing statistical models….pay little attention or ignore such 
studies.  (Fildes & Makridakis, 1995, p. 300).  

 



 16

Since this study had been published in 1995, I contacted Makridakis as to 

whether the situation had changed in the interim.  The answer was in the negative 

(Spyros Makridakis, personal communication, January 2005).      

Once again, it seems that whereas direct economic incentives have an important 

impact, scientists do not necessarily see the implications of negative evidence. 

3. Unit or equal weighting – the power of averaging.  During their studies, most 

social scientists learn the statistical technique of multiple regression.  Given 

observations on a dependent variable yi (i = 1,…, n) and k independent or predictor 

variables xij (j = 1,…,k), the budding scientists learn that the “best” predictive equation 

for y expressed as a linear function of the x’s is obtained by the well-known least 

squares algorithm.  The use of this technique (and more complex adaptations of it) is 

probably most used for hypothesis testing.  Is the overall relationship statistically 

significant (i.e., is R2 > 0?).  What are the signs and relative sizes of the different 

regression coefficients? Which are more important? And so on. 

In addition to describing data, another important function of multiple regression 

is to make predictions.  Given a new (hold-out) sample of x’s, what are the associated 

predicted y values?  In using a regression equation in this manner, most users 

understand that the R2 achieved on initial fit of the model will not be matched in the 

predictive sample due to “shrinkage” (the smaller the ratio n/k the greater the 

shrinkage). However, they do not question that the regression weights initially 

calculated on the “fitting sample” are the best that could have been obtained and thus 

that this is still the optimal method of prediction. 

In 1974, Dawes and Corrigan reported the following interesting experiment. 

Instead of using weights in a linear model that have been determined by the least 

squares algorithm, use weights that are chosen at random (between 0 and 1) but subject 
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to having the appropriate sign.  The results of this experiment were most surprising to 

scientists brought up in the tradition of least-squares.  The predictions of the quasi-

random linear models were quite good and, in fact, on four datasets, they exceeded the 

predictions made by human judges who had been provided with the same data (i.e., 

values of the predictor variables).  This result, however, did not impress referees at the 

Psychological Review who rejected the paper.  It was deemed “premature.” In addition,   

the authors were told that, despite their results, differential regression coefficients are 

important for describing the strategies of judges. Subsequently, and before the paper 

appeared in the Psychological Bulletin, Dawes presented the results at a TIMS/ORSA 

conference only to be told by distinguished attendees that the results were “impossible.” 

On the other hand, it should be added that some scientists who had heard one of 

Dawes’s earlier talks on this subject tried out the “method” on their own datasets and 

saw that it worked (Robyn Dawes, personal communication, December 2004).   

Dawes and Corrigan outlined four reasons for the success of their method: (1) in 

prediction, having the appropriate variables in the equation may be more important than 

the precise form of the function; (2) each predictor has a conditionally monotone 

relationship with the criterion; (3) the presence of error of measurement; and (4) 

deviations from optimal weighting may not make much practical difference. 

Subsequently, Einhorn and I examined the phenomenon analytically (Einhorn & 

Hogarth, 1975). 

To do so, we first transformed the Dawes and Corrigan model by assuming an 

equal weight model (i.e., all regression coefficients are given equal weight) subject only 

to knowing the correct sign (zero-order correlation) of each variable. (This is the same 

as Dawes and Corrigan’s model if one uses the expected values of the random weights.) 

We then went on to show the rather general conditions under which such equal- or unit-
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weighting models correlate highly with so-called optimal weights calculated using least 

squares. Furthermore, we indicated how predictions based on unit weights are not 

subject to shrinkage on cross-validation and that conditions exist under which such 

simpler models would predict more accurately than ordinary least squares.  In fact, prior 

to the appearance of both our paper and that of Dawes and Corrigan, several other 

papers had hinted at these results (see, in particular, Wilks, 1938; Claudy, 1972; 

Schmidt, 1971). In addition, Wainer (1976) published an article in the Psychological 

Bulletin with the catchy title “Estimating coefficients in linear models: It don’t make no 

nevermind” in which he also showed that least-squares regression weights could often 

be replaced by equal weights with little or no loss in accuracy. 

By this time, with both empirical and analytical results available, one might 

imagine that users of regression techniques would now know that sets of regression 

coefficients cannot be interpreted unambiguously.  Moreover, to show real effects of 

differential sizes of coefficients, one should put estimated models to predictive tests 

where equal weight models provide a baseline.  However, it is hard to find examples of 

this level of understanding in the literature.  It is not true to say that the original papers 

have been ignored. Indeed, on February 24, 2005, the ISI Web of Knowledge reported 

that Dawes and Corrigan (1974) had been cited 663 times. Moreover, a number of 

studies in the decision making literature have exploited the results. However, the 

implications of this work have had surprisingly little impact on the methods of scientists 

who make great use of regression analysis.  

Economists, for example, are among the most sophisticated users of regression 

analysis.  I therefore sampled five standard textbooks in econometrics to assess what 

young economists are taught about ambiguity in regression weights and whether the 

benchmarks of equal or unit-weighting models for prediction were explained.  The 
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specific textbooks were by Greene (1991), Griffiths, Hull, and Judge (1993), 

Goldberger (1991), Johnston (1991), and Mittelhammer, Judge, and Miller (2000). The 

answer was an overwhelming “no.”  The major concern of the texts seems to lie in 

justifying parameter estimates through appropriate optimization procedures.  The topic 

of prediction using regression is given little space, and when it is, emphasis is placed on 

justifying regression coefficients in the prediction equations that have been estimated on 

the data available.  None of the books gives any attention to equal- or unit-weighting; 

nor are any references made to the work of Dawes (let alone of Einhorn and Hogarth).  

My hopes rose when I located a chapter on “Evaluating the predictive accuracy of 

models” in a handbook whose contributors were leading econometricians.  However, 

the chapter on this topic by Fair (1986) showed no awareness of the equal-weight 

findings. Paradoxically, I remember meeting Fair in France in the 1970’s and telling 

him about the equal weights results.  Our conversation clearly had no impact. 

In psychology, on the other hand, the development of test theory has meant that 

students are implicitly instructed in the properties and use of equally-weighted 

composite variables (cf., Ghiselli, Campbell, & Zedeck, 1981).  Indeed, the 3rd edition 

of Nunnally and Bernstein’s Psychometric Theory (1994) explicitly devotes a section of 

a chapter (p. 154) to equal weighting citing, among others, Dawes and Corrigan (1974) 

and Wainer (1976).  Interestingly, they emphasize that using equal weights is important 

when questions center on prediction in applied problems.   

How does one explain the relative lack of interest in equal weights?  In 

particular, contrary to the two cases examined above where evidence was restricted to 

empirical results, the case against naively accepting estimates of regression coefficients 

has been made on both empirical and analytical grounds. Perhaps, the reason is that 

there is a huge “industry” propagating the use of regression analysis involving 
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textbooks, computer software, and willing consumers who accept analytical results with 

little critical spirit, somewhat similar in manner to the use of significance tests in   

reports of psychological experiments (cf., Gigerenzer, 1998). Just because ideas are 

“good,” does not mean that they will be presented in textbooks and handed down to 

succeeding generations of scientists (see, for example, the discussion by Dhami, 

Hertwig, & Hoffrage, 2004 concerning the concept of representative design).  

Finally, above I referred to this case as involving “the power of averaging” 

because, in effect, the equal weighting model correlates perfectly with the arithmetic 

mean of the x variables (assuming that they have equal standard deviations).  Curiously, 

people have poor intuitions about how useful the average can be when aggregating data. 

For example, as noted above by Makridakis and Hibon (2000), the average of several 

forecasts is typically one of the more accurate of the forecasts averaged (see also 

Hogarth, 1978). Indeed, some time ago social psychologists discovered that to guess a 

quantity (e.g., the number of jelly beans in a jar), one of the best methods was simply to 

average the estimates of different individuals (Gordon, 1924). Similarly, Larrick and 

Soll (2006) have documented that if a person wants to make a prediction and can also 

obtain the advice of an expert, he or she is often better off averaging both their opinions 

as opposed to differentially weighting one or the other.  The underlying rationale for the 

power of averaging several judgments, forecasts, or variables, is simple.  Basically, 

imagine that a prediction by one of k forecasters can be expressed as  

zj= µ + δj + εj             (1) 

where µ represents the overall average of all k forecasters; δj represents any bias 

specific to forecaster j ; and εj  is an idiosyncratic error term associated with forecaster j.  

Now, if one simply assumes that δj and εj are uncorrelated and have means of zero 

across the k forecasters, it follows that taking the arithmetic average is an optimal 
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strategy (since the expected value of the criterion is equal to µ).  Clearly such 

assumptions will not hold perfectly but, even if they are approximately true, the 

arithmetic average is a powerful predictor.      

It is puzzling why people have such trouble in appreciating the power of the 

mean but perhaps this also explains, in part, why there is still such a belief in finding the 

different weights in regression analysis.  

  4. Discarding relevant information or when “less” can be “more.”  In 

normative theories of choice, the values of alternatives are typically assessed by 

calculating a weighted sum of outcomes. Thus, in expected utility theory, the utilities of 

outcomes are weighted by their probabilities of occurrence. Similarly, in the additive 

form of multi-attribute utility theory, the utility of an alternative yi = (xi1, xi2, …, xik) is 

determined by the function. 

∑
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)()(                                                                         (2) 

where U(.) denotes utility and the  wj  are weighting  parameters subject to the constraint 

that ∑
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1  (see, e.g., Keeney & Raiffa, 1993).  

 Models such as (2) have a “gold standard” status in decision making because 

they essentially define what is “optimal.” Moreover, they seem to make good sense in 

that they consider all the information and weight it appropriately.  But do people need to 

consider all the information when they make a decision?  Could they actually do 

“better” if they ignored some information? 

 One of the first researchers to examine this issue was Thorngate (1980). Using 

simulations, Thorngate investigated how often various heuristic strategies would select 

the highest expected value alternatives from different choices sets.  In short, the 

criterion was a weighted sum (i.e., similar to equation 2 above) and the heuristic models 
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only used part of this information. For example, the most successful strategy in the 

simulation was one that assumed all probabilities were equal.  Thorngate’s results were 

surprising in that the more successful models had success rates of 75% and more when 

selecting the best from two to four alternatives.  Clearly, for models to be effective, it 

was not necessary to use all the information. 

 Payne, Bettman, and Johnson (1993) conducted more simulations of the same 

type but also specifically considered the extent to which different heuristics involved 

varying levels of effort (conceptualized by the number of mental operations used in 

implementing them). These investigators also used the criterion of a weighted sum (e.g., 

similar to equation 2) and further investigated how different heuristics were subject to 

different task factors (e.g., levels of intercorrelations between variables and the relative 

presence/absence of dominated alternatives in choice sets). Once again, several 

heuristics that did not use all available information performed quite well. However, as 

in Thorngate’s study, no heuristic could possibly perform better than the weighted sum 

of all information that was used as the criterion. 

 The conclusion from these studies was that heuristics could perform quite 

effectively but could never be better than using all information (indeed, this was how 

the studies were constructed). However, would it be possible to remove this design 

constraint and observe situations where “less” was “more”?  Moreover, whereas one 

might justify models that use less information by accepting an accuracy-effort tradeoff, 

are there situations where one does not have to make this tradeoff? 

 In a 1996 paper, Gerd Gigerenzer and Daniel Goldstein indicated two ways in 

which “less” might be “more.”  Significantly, both involve the use of a heuristic 

decision rule exploiting an environmental “niche” (or task) to which it is well adapted. 
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The first example involves the use of the recognition heuristic (see also Goldstein & 

Gigerenzer, 2002).   

At the extreme, imagine two people who have to choose between two 

alternatives. One person knows very little about the situation but does recognize one of 

the alternatives. She therefore chooses it. The second person, on the other hand, 

recognizes both alternatives and is generally quite knowledgeable about them.  

Normally, one would expect the second person to be more likely to make the correct 

choice. However, imagine that the first person’s recognition knowledge is fairly highly 

correlated with the criterion.  As the second person cannot use recognition to 

discriminate between the alternatives, he must use his additional knowledge. But, if he 

cannot use this additional knowledge to discriminate between the alternatives more 

accurately than the first person’s “recognition knowledge,” his choice will be less 

accurate.  Paradoxically, although the first person has “less” knowledge, her predictive 

ability is “more” than that of the first.     

 The second phenomenon illustrated by Gigerenzer and Goldstein was the 

surprising predictive ability of the “take the best” heuristic (TTB). This is a simple, 

lexicographic decision rule for binary choices where selection depends on the first piece 

of information examined that discriminates between alternatives (information or cues 

are, however, consulted in the order of their predictive ability). When choosing between 

options characterized by binary attributes or cues, TTB is remarkably predictive and 

typically uses only a fraction of the information available. In the tests conducted by 

Gigerenzer and Goldstein (see also Gigerenzer, Todd, and the ABC Research Group, 

1999), TTB generally outperforms equal weighting (that uses all the information, see 

above) and even regression models on cross-validation. 
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 Gigerenzer and Goldstein did not claim that the predictive ability of TTB would 

hold in all environments and thus their demonstration was more by way of a 

“possibility.” Nonetheless, although the effectiveness of TTB-like models have been 

demonstrated in areas of medical decision making (Breiman, Friedman, Olshen, & 

Stone, 1993), it is not clear that the implications have been realized to the advantage of 

both patients and physicians (i.e., faster and more accurate diagnoses).  In medicine, in 

particular, professionals would appear to want to be seen to examine all information 

even if unnecessary. 

 Research, however, has not stopped at simply noting that less can be more.  

Importantly, different researchers have explored the conditions under which TTB and 

generalizations thereof are effective.  Martignon and Hoffrage (1999; 2002) showed 

that, when the environment weights cues in a non-compensatory manner, TTB has 

optimal properties (by non-compensatory is meant that the implicit importance weight 

attached to each variable is greater than the sum of the weights of all variables less 

important than it).  Natalia Karelaia and I showed that, for problems involving between 

three and five cues (or attributes), and choices involving between two and five 

alternatives TTB, and its generalization DEBA, are also effective over wide ranges of 

compensatory functions (Hogarth & Karelaia, 2005a; in press, a. See also Baucells, 

Carrasco, & Hogarth, 2006). Moreover, theoretical analyses done with a variety of 

simple models (where cues or attributes are both binary and continuous) show the 

general effectiveness of TTB-like models as well as illustrating further “less is more” 

effects (Hogarth & Karelaia, 2005b; in press, b).   

In short, there are environments in which simple models can perform well 

relative to so-called “optimal” benchmarks. The key to understanding when this occurs 

lies in matching the features of simple rules with the demands of the environments in 
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which they operate (cf., the discussion of Makridakis’s results above).  From our work, 

we now know that much depends on: first, how “nature” or the environment weights 

cues; second, the amount of data available to estimate the “true” model; third, the level 

of  redundancy amongst the cues; fourth, the amount of error in the environment; and 

fifth, the assumed loss function or how errors are penalized.  Fortunately, all these 

factors can be quantified and it is possible to develop analytical results showing when 

particular simple rules do or do not work well (Hogarth & Karelaia, 2006; in press, b).   

Being “rational” therefore involves having sufficient knowledge to know what 

to do in particular circumstances (i.e., matching one’s decision rule to the demands of 

the environment). Noting, however, that often people may not know precisely what to 

do, Karelaia (2006) has suggested the use of strategies that hedge against one’s lack of 

knowledge.  Using both simulation and theoretical analyses, she has shown that one 

such strategy (that she calls CONF) performs quite well relative to other rules such as 

TTB or equal-weighting across several task environments (Hogarth & Karelaia, 2006; 

Karelaia, 2006). 

It is interesting to note that many of these results contradict the intuitions of 

experts. For example, I made a presentation on this topic in a poster session at a 

professional conference attended by many leading researchers in decision analysis (the 

BDRM conference held at Duke University in 2004).  Instead of presenting results, I 

created a competition by asking people to guess results given descriptions of simple 

environments and decision rules. There was also a $20 prize for the best set of 

estimates. Guesses, even by experienced decision analysts, did not match reality.  There 

was considerable underestimation of the effectiveness of the simple models. 

Empirically, “less is more” effects have been demonstrated and, theoretically, 

reasons why and when this occurs have been established for some cases.  Perhaps it is 
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too soon to say yet how the scientific community will react to these findings. Based on 

past experience, the best bet is that it will take some time before these ideas are 

accepted. 

 

Concluding comments 

 As the evidence reviewed above indicates, people – both in science and 

everyday life – are slow to accept evidence that challenges their beliefs and particularly 

when they have a stake in the latter.   At one level, I see this as the inevitable 

consequence of a dilemma that has to be managed continuously by all living systems. 

This is the simultaneous need to adapt to change and yet maintain continuity and 

stability across time.  Moreover, adapting to perceived change can involve two kinds of 

errors (i.e., adapting when one should not, and not adapting when one should) and the 

costs of error are not necessarily symmetric.  Thus, without trying to rationalize what 

might seem to be dysfunctional behavior, it is legitimate to ask what conditions favor 

the adoption of new ideas that challenge the status quo and what, if anything, scientists 

can do to improve present practice. 

 From a descriptive viewpoint, economic incentives play an important role.  For 

example, from the forecasting case study above, it is clear that practitioners in industry 

accept the implications of the time-series competitions even though theoretical 

statisticians might not share their enthusiasm.  For scientists and others not faced by 

direct economic incentives, preserving reputation seems to be the greatest concern.  The 

paradox, however, is that scientists who acknowledge that their theories are mistaken 

should – in principle – enhance their long-term reputations as scientists.  Instead, there 

seems to be a larger short-term concern to preserve the status quo. 
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 Two related suggestions have been made to overcome these difficulties. Some 

twenty years ago, Hofstee (1984) suggested that scientists engage in a system of 

reputational bets. That is, scientists with contradictory theories can jointly define how 

different outcomes of a future experiment should be interpreted (i.e., which theory is 

supported by the evidence). In Hofstee’s scheme, the scientists assess probabilistic 

distributions over the outcomes (thereby indicating “how much” of their reputational 

capital they are prepared to bet) and a third, independent scientist runs the experiment.  

The outcomes of the experiment then impact on the scientists’ reputational capitals or 

“ratings.” However, I know of no cases where this system has actually been 

implemented. 

 A similar scheme involves a proposal labeled “adversarial collaboration.”  Here 

again, the disagreeing parties agree on what experiments should be run. An independent 

third party then runs the experiment which all three publish jointly.  Unfortunately, it is 

not clear that this procedure resolves disputes. The protagonists may still disagree about 

the results (see, e.g., Mellers, Hertwig, & Kahneman, 2001).   

 Possibly one way to think about the situation is to use the analogy of the market 

place for ideas where, in the presence of efficiency, ideas that are currently “best” are 

adopted quickly.  However, like real markets in economics and finance, the market for 

scientific ideas is not necessarily efficient.  There are many situations where the market 

is “thin” and not all traders (i.e., scientists) have access to information. There are 

speculative “bubbles” or fashions as some theories become extremely popular for a time 

and then fade away (consider what happened to many learning models in psychology or 

applications of chaos theory in the social sciences). Great rewards are also to be had for 

identifying certain ideas that could become popular (e.g., cold fusion) and this too could 

distort information that is made public. Finally, despite attempts made to regulate the 
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exchange of ideas and the rules for doing science, people still find ways to circumvent 

regulations.  In the final analysis, the market for scientific ideas can only become 

efficient in a long run sense.  Unfortunately, as implied in a famous statement by Lord 

Keynes, our lives do not extend that far.  

 Finally, it is important not to consider the previous paragraph as suggesting a 

pessimistic cynicism. Each generation does see scientific progress and the accessibility 

of information has increased exponentially in recent years.  The road to enlightenment, 

however, is bumpy. 
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