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Abstract

A new parametric minimum distance time-domain estimator for ARFIMA processes is

introduced in this paper. The proposed estimator minimizes the sum of squared correlations

of residuals obtained after filtering a series through ARFIMA parameters. The estimator is

easy to compute and is consistent and asymptotically normally distributed for fractionally

integrated (FI) processes with an integration order d strictly greater than -0.75. Therefore,

it can be applied to both stationary and non-stationary processes. Deterministic components

are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides

an immediate check on the adequacy of the specified model. This is so because the criterion

function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit

statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results

and showing the good performance of the estimator in finite samples are also provided.
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1. Introduction

A new estimation procedure for Autoregressive Fractionally Integrated Moving Average

(ARFIMA) processes is proposed in this paper. First introduced by Granger and Joyeux

(1980) and Hosking (1981), these processes have become very popular due to their ability in

providing a good characterization of the long-run properties of many economic and financial

time series. They are also very useful for modeling multivariate time series, since they can

capture a larger number of long term equilibrium relations among economic variables than

the traditional multivariate ARIMA models. See Henry and Zaffaroni (2002) and Robinson

(2003) for recent surveys on this topic.

The estimator introduced in this paper belongs to the Minimum Distance (MD) class. The

idea of the estimation procedure is quite simple: the parameters of the ARFIMA model are

estimated by minimizing the sum of the squared autocorrelations of the residuals, obtained

after filtering the original series through ARFIMA parameters. The proposed estimator is

closely related to the MD estimator considered in Tieslau, Schmidt and Baillie (1996), and

to the Adjusted MD estimator proposed in Chung and Schmidt (1995). Nevertheless, as it

will be seen shortly, it presents important advantages over those estimators. It is denoted

“Generalized Minimum Distance” (GMD) estimator since it extends previous approaches

in this area to more general setups. In particular, the proposed estimator is easy to com-

pute, has very good asymptotic and finite sample properties and is able to circumvent most

of the problems present in the above-mentioned techniques. It can be applied to FI (d)

series for values of d > −0.75, thus covering stationary as well as non-stationary ranges
of d. This technique has been developed in the time domain, usually preferred in applied

work. Relative to other time domain approaches, such as Maximum Likelihood estimation

(MLE), it presents the advantage that it is not necessary to specify a particular distribution

for the innovation process and that it is computationally faster than exact MLE for more

complex ARFIMA(p, d, q) processes. As a drawback, the proposed estimator is not asymp-

totically efficient as MLE is, although it will be shown that the asymptotic variance of the

former estimator can be arbitrarily close to the inverse of the Fisher information matrix

and therefore, very close to efficiency for all practical purposes.

Frequency domain estimators are also very popular in this literature, mainly due to their

computational simplicity and their good asymptotic properties, as it is the case of the

Whittle estimator (see Fox and Taqqu, (1986) and Dahlhaus, (1989)). This estimator is

efficient only if the memory parameter d is known to lie in the stationary and invertible range

2



and this restriction is correctly imposed. For the general case where d is completely unknown

and possibly non-stationary, Velasco and Robinson (2000) showed that it is needed to resort

to tapered data to achieve consistency. Tapering increases the variance of the estimators

and therefore induces an efficiency loss. This implies that, in the general case where no

information about d is available before estimation, the Whittle estimator is not efficient.

Another interesting feature is that the estimation procedure introduced in this paper

provides, as a by-product, an immediate check on adequacy of the specified parametric

model. This is so because the criterion function, evaluated at the estimated values, yields

the Box-Pierce goodness-of-fit statistic which has been largely used for these purposes in

the literature.

It is also remarkable that the proposed framework can be easily extended to more general

settings. For instance, the estimator can be easily robustified against conditional hetero-

cedasticity, just by introducing a modification in the definition of the residuals used to

compute the autocorrelations. Finally, it can be extended, along the lines of Wright (1999),

to the estimation of the fractionally integrated stochastic volatility model.

The rest of the paper is structured as follows. The ARFIMA model and the definition of

the residuals are introduced in Section 2. The GMD estimation procedure and the asymp-

totic properties of the estimator are discussed in Section 3. The results of some simulation

experiments, designed to evaluate the performance in finite samples of the proposed esti-

mator, are described in Section 4. Section 5 derives the asymptotic distribution of residual

autocorrelations and applies the result to the Box-Pierce (1970) and Box-Ljung (1978)

goodness-of-fit statistics. Section 6 investigates their finite sample performance. An appli-

cation of the described methods to empirical data is provided in Section 7. The conclusions

of the paper are presented in Section 8. All proofs are gathered in Appendix 1. Appendix

2 incorporates the results of other Monte Carlo experiments.

The following conventional notation is adopted throughout the paper. L is the lag op-

erator; ∆ = (1− L) ; Γ (.) denotes the gamma function; “ w→ ” and “
p→ ” denote weak

convergence and convergence in probability, respectively; {πi (d)}∞i=0 represents the se-
quence of coefficients associated with the expansion of ∆d in powers of L, such that

∆d = π0 (d) + π1 (d)L+ π2 (d)L
2 + ..., and

πi (d) =
Γ (i− d)

Γ (−d)Γ (i+ 1) . (1)
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2. The model

The process yt, observed at time t = 1, ...T, is an ARFIMA(p, d0, q) process whose memory

parameter, d0, belongs to the closed interval [∇1,∇2], with −0.75 < ∇1 < ∇2 < ∞. For
stationary values of d0 (d0 < 1/2), yt can be written as,

Φ0 (L)∆
d0 (yt − µ0) = Θ0 (L) εt, t = 0,±1, ..., (2)

where {εt}∞t=−∞ is a sequence of i.i.d. zero-mean random variables with unknown variance

σ2 and finite fourth moment, E
¡
ε4t
¢
= µ4 <∞. Φ0 (L) and Θ0 (L) are autoregressive and

moving average polynomials of order p and q, respectively, with all their roots outside the

unit circle. Throughout, it will be assumed that p and q are known natural numbers. For

non-stationary values of d0 (d0 ≥ 0.5), we assume that the process yt begins1 at time t = 1,
that is,

yt = ∆
−m0xt (m0) , t > 0 and = 0 if t ≤ 0,

where

Φ0 (L)∆
ϕ0 (xt (m0)− µ0) = Θ0 (L) εt, t = 0,±1, ... (3)

In the previous definition, the memory parameter, d0, is composed as the sum of an

integer and a fractional part such that d0 = m0 + ϕ0. The integer m0 = bd0 + 1/2c , where
b.c denotes integer part, is the number of times that yt must be differenced to achieve
stationarity (therefore m0 ≥ 0). The parameter ϕ0, the fractional part, lies in the interval
(−0.75, 0.5), in such a way that, for a given d0, ϕ0 = d0 − bd0 + 1/2c. Once the process
yt is differenced m0 times, the differenced process is a stationary fractionally integrated

process with an integration order equal to ϕ0. For m0 = 0, µ0 is the expected value of the

stationary process yt and for m0 ≥ 1, µ0 6= 0 implies a deterministic polynomial trend.
To derive the new estimator we need to define the residuals of the process. For that pur-

pose, we adopt Beran’s (1995) definition of residuals and provide two alternative expressions

according to whether the mean, µ0, is known or unknown.

2.1. Residuals when µ0 is known and equal to zero.

Let ψ =
¡
φ1, ...,φp, θ1, ...θq

¢0 ∈ <p+q be the vector containing the autoregressive and mov-
ing average parameters and λ =

¡
d,ψ0

¢0 ∈ <p+q+1. Also let Λ be a compact set containing
1See Marinucci and Robinson (1999) for the different definitions of non-stationary ARFIMA processes

and their asymptotic implications.
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all possible parameter values λ that verify the conditions above and λ0 =
¡
d0,ψ

0
0

¢0 be an
interior point of Λ representing the true parameter values. The (infinite)2 autoregressive

representation of yt is given by

∞X
j=0

αj (λ0)xt−j (m0) = εt, (4)

where xt (m0) = ∆m0yt and {αj (λ0)}∞j=0 are the coefficients associated to the expansion
of Φ0 (L)Θ0 (L)

−1∆ϕ0 in powers of L. Given the observations y1, ..., yT , the innovations εt

cannot be computed directly, since an infinite sample would be needed. Nevertheless, they

may be estimated by,3

et (λ) =
t−m−1X
j=0

αj (λ)x (m)t−j , t = m+ 1, ..., T. (5)

2.2. Residuals when µ0 is unknown.

When µ0 is unknown the residuals defined above need to be adjusted. Again, following

Beran (1995), we consider,

x̄ (m) =
1

T −m
TX

t=m+1

xt (m) . (6)

Notice that since xt (m0) is stationary and ergodic, the sample mean x̄ (m0) is a consistent

estimator of µ0. Therefore, adjusted residuals can be defined as:

et (λ) =
t−m−1X
j=0

αj (λ) (xt−j (m)− x̄ (m)) , t = m+ 1, ..., T. (7)

where {αj (λ)}∞j=0 are the coefficients associated to the expansion of Φ (L)Θ (L)−1∆ϕ in

powers of L.

2This expansion is valid for all d0 > −1. For values of d0 > −0.5, this is a well known result due to
Hosking (1981). When d0 ∈ (−1,−0.5), Odaki (1993, Theorem 2) shows that although the coefficients

πj (d0) are not square summable and, consequently, the same applies to the coefficients αj (λ0), the process

is still invertible and therefore the autoregressive inversion is well defined.
3Notice that for a given d, m and ϕ are uniquely determined as ϕ = d− bd+ 1/2c and m = d− ϕ.
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3. Generalized Minimum Distance Estimation of ARFIMA processes.

Minimum Distance (MD) is a classical estimation approach in the econometric literature.

This technique encompasses other very popular procedures such as Generalized Method of

Moments (GMM), Non-Linear Least Squares (NLS) or Maximum Likelihood (ML) among

others. In a general framework, this technique would work as follows: If λ0 ∈ Λ is the
vector of parameters of interest, where Λ is the set of possible parameter values, and yt is

the available data, MD estimation provides a class of estimators that minimize the following

criterion function,

VT (λ) = ĝT (λ)
0 Ŵ ĝT (λ) , (8)

where ĝT (λ) is a function of the data, yt, and the parameters of interest, λ, that has to

verify ĝT (λ0)
p→ 0; Ŵ is a positive definite weighting matrix that defines the distance.

Under the standard regularity conditions, it can be proved that the resulting estimators

are
√
T -consistent and asymptotically normally distributed (see, for instance, Newey and

McFaden, 1994). Different choices of the function ĝT (λ) will generate different estimators.

For instance, if ĝT (λ) = T−1
PT
t=1 g(yt,λ), where E (g(yt,λ0)) = 0, the minimization of the

criterion function in (8) would provide a GMM estimator. The function ĝT (λ) considered

in this paper can be interpreted as the difference between the sample and the population

autocorrelations of the residuals defined in (5) or in (7). As it will be proved below, the

function ĝT (λ) defined in this way fulfils the above mentioned requirements. With respect

to the choice of Ŵ , it is a well-known result that if var
³√
T ĝT (λ0)

´
p→ Ω, then the efficient

weighting matrix, We, is given by We = Ω−1, since in this case the asymptotic variance-

covariance matrix of λ̂ simplifies to
¡
J 0λ0Ω

−1Jλ0
¢−1, where Jλ0 is the limit of the Jacobian

matrix of ĝT (see Newey and McFaden, 1994). Therefore, this would be in general a good

choice. Some examples of Ŵ corresponding to particular situations will be provided below.

As it becomes clear from the discussion above, one of the main advantages of MD relative

to ML estimation is that the former do not require to assume a particular distribution of

the innovation sequence at any stage.

Several parametric and semiparametric MD techniques can be found in the literature of

fractionally integrated (FI) processes. Robinson (1994a) proposed a semiparametric time

domain procedure that exploits the fact that autocovariances in FI models are proportional

to k2d−1 for large k. Robinson ś estimator minimizes the expression:
Pp+n
k=n

¡
γ̂k − ck2d−1

¢2
.

Hall et al. (1997) have analyzed the rates of convergence of this estimator but its distri-
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butional properties remain to be determined. Of particular relevance to this paper is the

MD estimator proposed by Tieslau, Schmidt and Baillie (1996), henceforth TSB. They in-

troduced a parametric time domain MD estimator that minimizes a distance between the

estimated and the theoretical autocorrelations of an ARFIMA (p, d, q) process:

λ̂ = argmin
λ∈Λ

¡
ρ̂
ky
− ρ

ky
(λ)
¢0
Ŵ
¡
ρ̂
ky
− ρ

ky
(λ)
¢
, (9)

where ρ̂
ky
is the sample autocorrelation function of the (stationary) process yt up to lag

k (for a fixed value of k), ρ
ky (λ) is the theoretical autocorrelation of the corresponding

ARFIMA(p, d, q) process up to the same lag and Ŵ is a positive definite weighting matrix.

The asymptotic optimal weighting matrix isWe = C−1, where C is the asymptotic variance-

covariance matrix of
√
T ρ̂

ky
. Then, a suitable choice for Ŵ in this context would be a

consistent estimator of C−1. Although theoretically very appealing, there remain significant

problems with this procedure. First, it is restricted to stationary series since it requires

the existence of autocorrelations. And second, it is
√
T−consistent and asymptotically

normal only for d0 < 0.25, due to the non-standard behavior of sample autocorrelations

of ARFIMA processes outside this range. Chung and Schmidt (1995) have introduced a

modification (Adjusted Minimum Distance Estimator) to the previous estimator. They

have demonstrated, by applying the results on autocorrelations of Hosking (1996), that it

is possible to obtain a
√
T -consistent and asymptotically normally distributed estimator

of d in the whole invertible and stationary range, −0.5 < d < 0.5, if some functions of

the autocorrelations are employed in the criterion function. Yet, it is only valid in the

invertible and stationary range of values of d and it is computationally almost as demanding

as exact ML (see Sowell, 1992) since it requires the computation of the autocorrelations as

functions of the unknown parameters. Along the same lines, Wright (1999) has proposed

an estimator for the fractionally integrated stochastic volatility model and has proved that

it is
√
T -consistent and asymptotically normally distributed only when d < 0.25. Galbraith

and Zinde-Walsh (1997) have presented a parametric time-domain estimator based on an

autoregressive approximation. This estimator can be applied to nonstationary series, since

the existence of autocorrelations is not required, but its consistency has not been proved

yet in this general framework. Other interesting references on the parametric estimation

of possibly non stationary ARFIMA processes are Beran (1995), Tanaka (1999), Velasco

and Robinson (2000), and Ling and Li (1997). See also Hauser (1999) for a finite sample

comparison among ML estimation techniques.
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Let us now describe the GMD estimator proposed in this paper. Consider the sample

ith-autocorrelation associated with the residuals defined in (5) or in (7) given by:

ρ̂e(λ) (i) =

PT−i
t=1 et(λ)et+i(λ)PT

t=1 et(λ)
2

. (10)

Also define the vector ρ̂
ke(λ) that contains the first k autocorrelations of the residuals :

ρ̂
ke(λ)

=
³
ρ̂e(λ) (1) , ... , ρ̂e(λ) (k)

´0
. (11)

The following theorem will be very useful in the derivation of the subsequent theory:

Theorem 1 Consider the vector defined in (11) evaluated at λ = λ0 ∈ Λ. Under the

assumptions of Section 2, then:

√
T
³
ρ̂
ke(λ0)

− ρ̂
kε

´
= op (1) . (12)

where ρ̂
kε
=
³
ρ̂ε (1) , ... , ρ̂ε (k)

´0
is the vector that contains the sample first k (<∞)

autocorrelations associated to εt.

The result above together with the Slutsky’s Theorem ensure that the asymptotic distri-

bution of ρ̂
ke(λ0)

and ρ̂
kε
is the same. Hence,

√
T ρ̂

ke(λ0)
w→ N (0, Ik) , for k = 1, ...,K

where Ik is the identity matrix of order k, for a finite value of k. This implies that the

truncation in (5) and in (7) has a negligible asymptotic impact. Appendix 2 includes the

results of some Monte Carlo experiments that investigate the small sample behavior of this

approximation.

Following the argument in TSB (1996), we consider the minimization of a distance be-

tween the estimated and theoretical autocorrelations but, in place of the original series, the

correlations of the above defined residuals are considered. Since the asymptotic variance of√
T ρ̂

ke(λ0) is given by Ik, the identity matrix of order k, (Theorem 1), it follows (see (8))

that the efficient weighting matrix is Ik. Moreover, since ρ̂ke(λ0)
p→ 0, the MD criterion

function, Vke, becomes

Vke (λ, y) = ρ̂0
ke(λ)

ρ̂
ke(λ) =

kX
i=1

ρ̂e(λ) (i)
2 , (13)
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and the GMD estimator λ̂k is defined as:

λ̂k = argmin
λ∈Λ

Vke (λ, y) . (14)

Notice that, since all the sample autocorrelations converge to zero and the efficient weight-

ing matrix is the identity matrix, the criterion function simplifies notably with respect to

that defined in (9) , corresponding to the TSB approach. Also, it just requires the existence

of the autocorrelations of the residuals but not those of the original series and therefore it

can also be applied to non-stationary series, in contrast to the TSB estimator.

As mentioned above, Beran (1995), and Velasco and Robinson (2000) also present para-

metric estimators of both stationary and nonstationary fractionally integrated processes.

The first two consider time-domain approximate Gaussian ML estimates, irrespective of

the degree of nonstationarity. However, Beran’s proof of consistency encounters some prob-

lems as Velasco and Robinson (2000) point out. The difficulties arise in the Taylor formula

employed in the proof, since the op (1) term in the expansion of
√
T
³
θ̂T − θ0

´
is only jus-

tified when θ̂T lies in a sufficiently small neighborhood of θ0, which in turn presumes the

consistency to be proved (see for instance, Brockwell and Davis, 1993, proposition 6.1.6).

Nevertheless, the reported simulations support Beran’s conclusions that this estimator is√
T -consistent, asymptotic normally distributed and efficient for all d > −0.5. In the

frequency domain, Velasco and Robinson (2000) show that the Whittle estimate is still

appropriate for non-stationary processes as long as enough tapering is applied to the data.

This induces an efficiency loss, since the introduction of tapering increases the variance of

the estimators.

Theorems 2 and 3 describe the asymptotic properties of the GMD estimator proposed

here. The former theorem states its consistency, while the latter presents its asymptotic dis-

tribution. As in Beran (1995) and Phillips (2000), and in contrast to Velasco and Robinson

(2000), no tapering is required to achieve these results.

Theorem 2 Let yt be an ARFIMA(p, d0, q) process under the hypotheses of Section 2. Also

let λ0 be an interior point of the compact set Λ. Then, as T tends to infinity, it holds that

λ̂k
p→ λ0,

where λ̂k is the GMD estimator defined in (14) and k is a fixed number such that p+q+1 ≤
k ≤ T − 1.
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Theorem 3 Under the hypotheses of the previous theorem, it holds that:

√
T (λ̂k − λ0)

w→ N
¡
0,Ξ−1k

¢
, (15)

where Ξk = J 0k (λ0)Jk (λ0) and,

Jk (λ0) =


−1 1 0 ... 1 ... 0

−1/2 ω1 1 ... ψ1 ... 0

... ... ... ... ... ... ...

−1/k ωk−1 ωk−2 ... ψk−1 ... ψk−q

 . (16)

(see Appendix 1 for the definition of the coefficients ω. and ψ.).

The estimator defined in (14) is not efficient since the matrix Ξk is not the Fisher infor-

mation matrix. Nevertheless, it is easy to check that,

lim
k→∞

Ξk = Ξ, (17)

where Ξ is the Fisher information matrix for ARFIMA processes, (see Fox and Taqqu,

1986), defined as,

Ξ =

Ã
π2/6 Π0

Π Ξpq

!
, (18)

where Π = (πω (0) , ...,πω (p− 1) ,πψ (0) , ...,πψ (q − 1)) and

πω (j) =
∞X
i=0

ωi
j + i+ 1

, πψ (j) =
∞X
i=0

ψi
j + i+ 1

.

The result in (17) implies that for T large enough, it would be possible to select a value

k∗ to compute the estimator for which the matrices Ξ and Ξk∗ were arbitrarily close, which

means that the corresponding estimator λ̂k∗ would be very close to be efficient. To see

this more clearly, consider the ARFIMA(0, d, 0) case. The asymptotic lower bound for the

standard deviation of any estimate of d is given by T−1/2(π2/6)−1/2 while the standard

deviation of λ̂k is given by T−1/2(
Pk
j=1

1
j2 )

−1/2. This implies that the relative efficiency of

the latter with respect to the former would be 94.5%, 97.1%, 98.5% and 99.0% for k = 5,

10, 20 and 30, respectively. This implies that moderate values of k are able to provide a

very good approximation to the Cramer-Rao lower bound and, therefore, that the estimator

proposed in this paper is arbitrarily close to be (asymptotically) efficient.
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Asymptotically, the larger the value of k chosen to compute λ̂k, the better. Nevertheless,

this result is not true in general in finite samples. In the next section, the issue of how to

select the value of k for a given sample size will be analyzed via Monte Carlo simulation.

Finally, it is interesting to recall that many estimation approaches developed for ARFIMA

processes are only valid in the invertible and stationary range of values of d, (−0.5 < d <
0.5). This implies that the researcher should first determine m0 in an exploratory way.

If the latter value is incorrectly guessed, the former family of estimators would become

inconsistent. For this reason, it is safer to use a method that covers the whole range of

values of d. On the other hand, the Box-Jenkins methodology shares the same exploratory

approach for choosing m0 and, once this value has been chosen, inference on the rest of

the ARMA parameters is carried out as if the differencing order was known a priori. This

posses an additional problem since this procedure clearly underestimates the uncertainty

that is actually faced and may lead to unrealistic confidence intervals for the remaining

parameters.

4. Behavior of the GMD estimator in finite samples.

In this section, a Monte Carlo study is conducted to investigate the small-sample perfor-

mance of the MD estimator defined in (14). Processes of the form ∆ϕ0 (∆m0yt − µ0) = ut
were generated, with four different specifications for ut, namely ut = εt, ut = φ1ut−1 + εt,

ut = (1 + θ1L) εt, and ut = φ1ut−1 + φ2ut−2 + εt, εt ∼ NID (0, 1) in all cases. Further, µ0
is set equal to zero but the estimation procedure is carried out both considering that its

value is known (and equal to zero) and also that it is unknown.

Before estimating the above-mentioned models, it is necessary to select the number of

correlations (k) to be included in the criterion function Vke. Although increasing k always

improves efficiency asymptotically, the suitable choice of k in finite-sample applications

depends on the sample size T and both on the number (p+ q + 1) and the values of the

parameters. Asymptotic theory does not help much with respect to the right choice of k and,

therefore, this is a question that should be addressed via Monte Carlo simulation. Table

1 presents the bias and the square root of the mean square error (SRMSE) of the GMD

estimator in the case where ut = εt, for two different sample sizes, T = 100 and T = 400.

The number of replications was 5000. Different values of k were used, namely, the closest

integer to the quantities: T 1/4, T 1/3, T 1/2 (more precisely k = 3, 5, 10 and k = 4, 7, 20 for

T = 100, 400 respectively). Table 2 presents analogous results for the case where µ0 is
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unknown and has to be estimated. Tables 3, 4 and 5 display the figures obtained from

similar experiments for the case where ut is an AR (1), MA (1) or an AR (2) process with

parameters φ1 = 0.6, θ1 = 0.5 or φ1 = 0.65 and φ2 = −0.6 respectively, and k = T 1/4. The
value of the parameters have been chosen in order to facilitate comparison with the ones

used in previous studies. Other values of k were also tried and they are not reported for

economy of space but they are available upon request.

Figures in Tables 1 to 5 show the good performance of the proposed method. From

Tables 1 and 2 it can be seen that the GMD estimator is surprisingly robust across different

values of k. Moderate values of k provide the best results. For T = 100, the SRMSE is

in general smaller for those estimates computed with k = T 1/4, although for T = 400 the

SRMSE is very similar and even smaller for those computed with T 1/3. With respect to

efficiency, the asymptotic (efficient) standard deviations for the ARFIMA(0, d, 0) defined

in (18) are π−1
p
(6/T ), which equals 0.078 and 0.039 for T = 100 and 400, respectively.

The reported SRMSE in Table 1 are a very reasonable approximation to these values. It

is also remarkable the small bias of the estimates, even for very large values of d. These

values are usually negative which suggests that the GMD method slightly underestimates

the memory parameter. Also note that the figures for the case where µ0 is unknown do not

differ significantly from the case where it is known.

(Table 1 about here)

(Table 2 about here)

For the more general case where AR and MA terms are allowed for, different values

of k were used and similar results were obtained. Again, the estimator performs better

in terms of SRMSE when moderate values of k are used in the criterion function. The

estimates in Table 3 to 5 have been calculated with k = T 1/4. The asymptotically efficient

variance-covariance matrix (Asymp. V ar) for the ARFIMA(1, d, 0) process is given by

Asymp. V ar

Ã
d̂

φ̂1

!
=
1

T

 π2

6 − 1
φ1
log (1− φ1)

− 1
φ1
log (1− φ1)

1
1−φ21

−1 , (19)

which delivers, for a value of φ1 = 0.6, asymptotic standard deviations equal to 0.256 and

0.262 for T = 100, and 0.128 and 0.131 for T=400, corresponding to d̂ and φ̂1 respectively.

As for the ARFIMA(0, d, 1) case, asymptotic standard deviations can be computed from an

analogous expression and, for θ1 = 0.5, they are equal to 0.222 and 0.246 for T = 100 and
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0.1108, and 0.1231 for T = 400 corresponding also to d̂ and θ̂1 respectively. It can be seen

again that the reported SRMSEs are a reasonable approximation to these values.

(Table 3 about here)

(Table 4 about here)

(Table 4 about here)

Table 6 compares the SRMSE of different estimators of d for the ARFIMA(0, d, 0) case.

More specifically we consider the Whittle estimator (with Zhurbenko taper of order 2)

proposed by Velasco and Robinson (VR), the ML estimators proposed by Sowell (SOW)

and Beran (BER) and the minimum distance estimators by Tieslau et al. (TSB) and by

Galbraith and Zinde-Walsh (GZW). The DGP used in this experiment was a fractional

white noise with known mean equal to zero. The missing values in Table 6 stem from

methods that are not defined for the whole range of values of d. It can be observed that

the GMD estimator behaves similarly to the ML estimators and better than the remaining

ones. It is also remarkable the good performance of the GMD estimator in the range of

values of d in which other estimators are not defined.

(Table 6 about here)

5. Residual-based statistics for diagnosing checking.

Although parametric estimates present in general better properties than semiparametric

ones, these good properties rely heavily on the correct specification of the parametric model.

For this reason, a formal test to check the adequacy of the proposed model is very often

carried out. A common way of testing it is by checking the assumption of white noise

residuals (see Milhoj (1981) and Chen and Deo (2000) for other approaches that do not

require the computation of residuals from the fitted model). Box and Pierce (1970) intro-

duced a goodness-of-fit procedure that tests for significant residual autocorrelations. The

Box-Pierce (BP) statistic is defined as

Q (k) = T
kX
i=1

ρ̂2
e(λ̂)

(i) . (20)
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They proved that, in the context of ARIMA processes, this statistic is asymptotically

χ2-distributed with k − p− q degrees of freedom, for large k. Ljung and Box (1978) intro-
duced a modification to the Q (k)−statistic that improves the approximation to the χ2k−p−q
distribution. This is defined as

Q̃ (k) = T (T + 2)
kX
i=1

(T − k)−1ρ̂2
e(λ̂)

(i) .

Hong (1996) proposed a generalization of the BP test given by

HT =

T k(T )X
i=1

h2 (i/k) ρ̂2
e(λ̂)

(i)−CT (h)
/2DT (h)1/2 ,

where h (.) is a suitable chosen kernel and k (T ) verifies that limT→∞ k (T ) = ∞ and

limT→∞ k (T ) /T → 0 (for the definition of CT and DT see Hong, 1996). When h (.) is

the truncated kernel, i.e., h (z) = 1 for |z| ≤ 1 and 0 for |z| > 1, it is obtained

H∗T =

T k(T )X
i=1

ρ̂2
e(λ̂)

(i)− k (T )
 / (2k (T ))1/2 , (21)

a generalization of BP’s test when k (T ) → ∞. Hong (1996) establishes the asymptotic
normality of HT for AR models when k (T )→∞ and k (T ) /T → 0.

The estimation procedure described in Section 3 provides an immediate check on the

adequacy of the specified model, since the criterion function defined in (13), evaluated at

the estimated values and multiplied by the sample size, coincides with the BP goodness-of-fit

statistic in (20). Due to its simplicity, it is worth analyzing the behavior of this statistic. In

the context of stationary ARFIMA processes with known mean, the asymptotic distribution

of residual autocorrelations have been examined by Li and McLeod (1986). The following

theorem is an extension of Li and McLeod’s result to the case where the process is allowed

to be nonstationary and to have an unknown mean.

Theorem 4 Let ρ̂
ke(λ̂) be the vector containing the autocorrelations up to lag k of the

residuals, defined in (5) or (7) , such that:

ρ̂
ke(λ̂) =

³
ρ̂e(λ̂) (1) , ... , ρ̂e(λ̂) (k)

´0
(22)

where ρ̂e(λ̂) (i) is defined as in (10) . Then, for any fixed k,
√
T ρ̂

ke(λ̂) is asymptotically

normally distributed, with zero mean and variance-covariance matrix given by:

Σ = Ik − Jk (λ0)
¡
J 0k (λ0)Jk (λ0)

¢−1
J 0k (λ0)
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where Jk (λ0) is the limit as T tends to infinity of the Jacobian matrix of ρ̂e(λ0).

Applying standard results, it is easily seen that Σ is approximately idempotent with

rank k − p − q − 1, for k large enough. Hence, both Q (k) and Q̃ (k) are approximately
χ2-distributed with k − p− q − 1 degrees of freedom for large T.

The previous results imply that the minimum value of the criterion function (13), Vke
³
λ̂
´
,

can be used to test the adequacy of the specified model. Under the null hypothesis of

correct specification, the above-mentioned value multiplied by the sample size is distributed

approximately χ2k−p−q−1, for large T, where k is the number of autocorrelations considered in

the criterion function. It is also straightforward to compute the Hong’s statistic in (21) from

this value, just by multiplying it by the sample size, substracting the number of included

autocorrelations and dividing by the squared root of 2k (T ). Although the asymptotic

properties of this statistic remain unknown where long memory processes are considered

and their derivation goes beyond the scope of this paper, the following section explores by

simulation its finite sample behavior. It also discusses the finite sample properties of both

Q (k) and Q̃ (k) statistics.

6. Behavior of the Goodness-of-fit tests in finite samples

To evaluate the performance in terms of size and power of the goodness-of-fit tests examined

in Section 5, the following experiments have been carried out. First, processes of the form

∆d0yt = εt, εt ∼ NID (0, 1) were generated for different values of d0. This parameter was
estimated in accordance with the method presented in Section 3 and the Q (k) statistic

was computed using the corresponding residuals. The value k was set equal to 3, 4 and 5

for sample sizes T = 150, 400 and 500, respectively (that is, k ∼ T 1/4). Empirical size

at the 5% signification level is calculated using the χ2k−1,0.95 value. Since the Ljung-Box

statistic improves the approximation to the χ2 distribution, it is usually preferred to the

Box-Pierce statistic in applications. Therefore, the values of the Q̃ (k) are also computed

in order to compare the behavior of both tests. Table 7 reports the empirical size of both

the Box-Pierce (BP) and Ljung-Box (LB) tests. In agreement with the findings of Li and

McLeod (1986), the empirical size is close to the nominal size in both tests. Although

the approximation to the χ2k−1 distribution is slightly better for the LB test, the difference

between both tests decreases as T increases.

With respect to the power of the test, it will obviously depend on how close is the DGP to

the null hypothesis. An ARFIMA(1, d0, 0) is been chosen as the true DGP with a value of
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the autoregressive parameter φ1 equal to 0.5, for different values of d0. An ARFIMA(0, d, 0)

was estimated instead. Table 8 reports the power of both the Box-Pierce (BP) and Ljung-

Box (LB) tests at the 5% nominal signification level. Therefore power has been calculated

with the asymptotic critical values and it has not been size-adjusted. Since both tests are in

general undersized, better results would have been achieved after size adjustment. It is seen

both tests perform quite similarly. For small sample sizes (T = 150) the power is similar

to that obtained by other methods proposed in the literature (see, for instance, Delgado

and Hidalgo, (1999)). It improves considerably when larger samples sizes are considered,

providing good results for sample sizes around 400 or 500.

(Table 7 about here)

(Table 8 about here)

Tables 9 and 10 report the results of analogous simulations based on Hong’s statistic

defined in (21). To compute the size, critical values from a N (0, 1) distribution have been

employed. Since in this case k is allowed to go to infinity, different values of k have been

employed, namely k (T ) = T 1/4, T 1/3 and T 1/2. It is seen that the empirical size is lower that

the nominal one but the approximation improves for faster k(T ) and larger sample sizes.

Size-corrected power is been reported in order to facilitate comparison among different

values of k. Large sample sizes, (T = 400, 500), are needed to obtain a reasonable power.

Also, it can be observed that a slower k (T ) provides better power, result which agrees with

Hong’s (1996) findings.

(Table 9 about here)

(Table 10 about here)

7. Empirical applications.

In order to illustrate the application of the techniques proposed in this paper, two empirical

studies have been carried out. Firstly, to provide a further comparison with previous es-

timation techniques, the empirical series analyzed by Beran (1995), Velasco and Robinson

(2000) and Robinson (1994b) have been considered, namely the chemical process temper-

ature readings (Series C) and the chemical process concentration readings (Series A) from
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Box and Jenkins (1976). Secondly, the orders of fractional integration of the GDP per

capita series of several countries have been estimated.

With respect to the first application, our conclusions are in fair agreement with those of

the above-mentioned studies. For series C, Box and Jenkins (BJ), fitted an ARIMA(1, 1, 0)

model, with an estimated value of the AR parameter φ1 = 0.8. The corresponding estimates

for an ARFIMA(1, d, 0) process according with the GMD method are: d̂ = 1.005 with a 95%

confidence interval (C.I.) of [0.7497, 1. 2617] and φ̂1 is 0.798 with a 95% C.I. of [0. 563, 0.972],

in close agreement with BJ’s conclusions. Nevertheless, the recognition of the uncertainty on

d, increases substantially the standard deviation of the AR parameter. Similar conclusions

are reached both in Beran (1995) and Velasco and Robinson (2000).

For series A, BJ fitted an ARIMA(0, 1, 1) , which yields a significative value for the MA

parameter equal to -0.7. This large negative value suggests that the model could be overdif-

ferenced. If an ARFIMA(0, d, 1) is fitted instead, the GMD estimates are 0.43 and -0.038

with 95% C.I.s of [0.241,0.612] and [-0.27,0.196] for d̂ and θ̂1, respectively. Therefore, d = 1

is not included in the C.I., which reinforces the believe that the series in the BJ model is

overdifferenced. Since the MA parameter is not significant in this second case, we have also

fitted an ARFIMA(0, d, 0) to the data. In this case, the estimated value of d drops to 0.401

with a 95% C.I. of [0.292,0.51]. Also in this case, our results follow closely the ones obtained

in Velasco and Robinson (2000) and Beran (1995).

In the second application, some of the series of Maddison’s (1995) data set have been

analyzed. This data set contains the annual GDP per capita series for OECD countries

during the period 1870-1994 (125 observations). This data set has also been analyzed by

Micchelaci and Zaffaroni (2000) and Dolado et al. (2005) among others. In particular, three

countries have been considered, namely Canada, Japan and Germany. Since these series are

clearly trended, the estimation has been carried out as if the mean was different from zero

and unknown. They have been estimated according to the following parametric methods:

the GMD method presented in this paper, the Sowell’s exact ML procedure (with the series

in first differences when they are nonstationary), the NLS method by Beran (1995) and

the Velasco and Robinson (2000) Whittle estimator (with Zhurbenko taper of order 2).

Also, several ARFIMA(p, d, q) processes have estimated for values of p, q in the range 0 to

2, and the results reported correspond to the preferred model according to the AIC lag-

length criterion. Table 11 reports the value of the estimates and their standard errors (in

brackets). As it can be seen from this table, all methods deliver very similar estimates of
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the parameters. With the exception of Japan, it seems to be the case that Canada and

Germany are clear cases where the GDP per capita series are fractionally integrated, with

a value of d around 0.5 for the former and in the range d ∈ (0.5, 1) for the latter. It is also
noticeable that there is a negative relation between the values of d and the values of the

remaining parameters across the different methods. Standard deviations are also similar

across methods with the exception of the Velasco and Robinson technique which shows

slightly higher values due to the tapering employed.

Table 11. Estimation results from various estimation techniques

Canada Japan Germany

Model (AIC) ARFIMA(1, d, 0) ARFIMA(0, d, 0) ARFIMA(0, d, 1)

GMD d̂ = 0.40; φ̂1 = 0.78
(0.217; 0.174)

d̂ = 1.083
(0.006)

d̂ = 0.87; θ̂1 = 0.49
(0.195; 0.218)

SOW d̂ = 0.48; φ̂1 = 0.72
(0.239; 0.213)

d̂ = 1.064
(0.006)

d̂ = 0.80; θ̂1 = 0.51
(0.201; 0.222)

BER d̂ = 0.50; φ̂1 = 0.67
(0.242; 0.230)

d̂ = 1.067
(0.006)

d̂ = 0.78; θ̂1 = 0.55
(0.214; 0.229)

V-R d̂ = 0.41; φ̂1 = 0.64
(0.345; 0.340)

1.030
(0.101)

d̂ = 0.62; θ̂1 = 0.62
(0.330; 0.341)

8. Conclusions

In this paper we have proposed a new method for estimating the parameters of an

ARFIMA(p, d0, q) process with d0 > −0.75. It covers a very wide range of values of d0,
providing therefore a unified framework for the construction of confidence intervals and

tests for the memory parameter. The proposed estimator belongs to the MD class and

it is based on the minimization of the residuals obtained after filtering a process through

ARFIMA parameters. Its asymptotic properties as well as its finite sample performance are

discussed and it is shown that it is
√
T -consistent and asymptotically normally distributed

without making strong assumptions on the distribution of the process under study. Monte

Carlo experiments show that it is also well-behaved in finite samples and that it compares

well to other existing estimators in the literature. Another interesting feature of the esti-

mator is that the criterion function evaluated in the estimate coincides with the Box-Pierce

(1970) goodness-of-fit statistic, providing therefore, and immediate tool to evaluate the ad-

equacy of the model specification. The asymptotic properties of this statistic, as well as the

ones of the Ljung-Box (1978) statistic, are discussed and some simulations are provided in

order to evaluate their accuracy in finite samples.
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Finally, another nice attribute of the proposed estimator is its flexibility to be extended

to more general settings. For instance, the estimator can be easily robustified against con-

ditional heterocedasticity, simply by considering the sample autocorrelations of the stan-

dardized residuals. Also, following the lines of Wright (1999), it can be adapted to deal

with the fractionally integrated stochastic volatility model. Further research should also be

undertaken to extend the previous framework to the multivariate case.
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Appendix 1

Proof of Theorem 1.

The residuals et (λ) in (7) evaluated at λ = λ0 can be written as

et (λ0) =

t−m0−1X
j=0

αj (λ
∗
0) (∆

m0yt−j − µ0)+
¡
∆m0y − µ0

¢ t−m0−1X
j=0

αj (λ
∗
0) , t = m0+1, ..., T.

This allows us to write

et (λ0) = εt + ηt,

where ηt is given by

ηt = −
∞X

j=t−m0

αj (λ
∗
0) (∆

m0yt−j − µ0) +
¡
∆m0y − µ0

¢ t−m0−1X
j=0

αj (λ
∗
0) ,

and ∆m0y denotes the sample mean of ∆m0yt. To simplify the notation, assume without

loss of generality that m0 = 0 (when this is not the case, define the process xt = ∆m0yt and

the following arguments will remain valid just by substituting yt by xt). Then, d0 = ϕ0.

Let
√
TΥT be the vector that contains the differences in expression (12), that is,

√
TΥT =

√
T
³
ρ̂
ke(λ0)−ρ̂kε

´
,

and consider the i − th element of the vector √TΥT . The denominator is given by the
sample variance of et (λ0) that converges to the innovation variance as long as d0 > −1 (see
Odaki, 1993). With respect to the numerator, it is given by

T−1/2
Ã
T−iX
t=1

εt+iηt +
T−iX
t=1

εtηt+i +
T−iX
t=1

ηtηt+i

!
. (23)

Let us first consider the case where µ0 is known and equal to zero. In this case ηt

collapses to ηt = −
P∞
i=t αi (λ

∗
0) yt−i. By repeated substitution, Odaki (1993) shows that

this expression can be rewritten as

ηt =
∞X
j=0

ψj,t−1ε−j, (24)

(for the precise form of the sequence of coefficients {ψj,t−1}∞j=0, see Odaki, 1993, p. 704).
He also shows that the orders of magnitude of the sum of squares of these coefficients are,

23



 ∞X
j=0

ψ2j,t−1

 =


O
¡
t−1
¢
if ϕ0 ∈ (−0.5, 0.5) ,

O
¡
(log t) t−1

¢
if ϕ0 = −0.5,

O
¡
t−2(1+ϕ0)

¢
if ϕ0 < −0.5.

(25)

Now we check that the three terms in (23) converge in mean square to zero. Noticing that

only terms of εt with t ≤ 0 enter the definition of ηt, it follows that T−1/2
PT−i
t=1 E (εt+iηt) =

T−1/2
PT−i
t=1 E (εt+i)E (ηt) = 0, by independence of the processes ηt and {εt}∞t=1. Taking

into account (25),4 it follows that,

T−1E

Ã
T−iX
t=1

ε2t+iη
2
t

!
= σ4T−1

T−iX
t=1

 ∞X
j=0

ψ2j,t−1

 p→ 0, (26)

since it follows from (25) that,

T−iX
t=1

 ∞X
j=0

ψ2j,t−1

 =


O (log(T − i)) for ϕ0 ∈ (−0.5, 0.5)
O
³
(log(T − i))2

´
for ϕ0 = −0.5

O
¡
(T − i)−2(1+ϕ0)+1¢ for ϕ0 < −0.5.

(27)

A similar argument holds for the second term in (23), since in this case ηt+i =
P∞
j=0 ψj,t+i−1ε−j

and again no contemporaneous terms of ε are found in the product εtηt+i. With respect to

the third term in (23) ,

T−1/2
T−iX
t=1

E
¯̄
ηtηt+i

¯̄ ≤ T−1/2 T−iX
t=1

E
¡
η2t
¢
= T−1/2σ2

T−iX
t=1

 ∞X
j=0

ψ2j,t−1

 p→ 0. (28)

To check that the variance also converges to zero, notice that

T−1E

Ã
T−iX
t=1

ηtηt+i

!2
≤ 2T−1

T−iX
r=1

T−iX
s≥r

E
¡
ηrηr+iηsηs+i

¢
, (29)

E
¡
ηrηr+iηsηs+i

¢ ≤ µ4

∞X
j=0

¯̄
ψj,r−1ψj,r+i−1ψj,s−1ψj,s+i−1

¯̄
+ (30)

+σ4
∞X
j=0

¯̄
ψj,r−1ψj,s−1

¯̄ ∞X
j=0

¯̄
ψj,r+i−1ψj,s+i−1

¯̄
4Since

P∞
j=0E

¡
ψ2j,t−1ε

2
−j
¢
<∞, it is possible to interchange the expectation and the summation in order

to obtain (26) . See Rao, (1973) , p.111.
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+σ4
∞X
j=0

¯̄
ψj,r−1ψj,s+i−1

¯̄ ∞X
j=0

¯̄
ψj,r+i−1ψj,s−1

¯̄
+σ4

∞X
j=0

¯̄
ψj,r−1ψj,r+i−1

¯̄ ∞X
j=0

¯̄
ψj,s−1ψj,s+i−1

¯̄
.

It can be checked that the coefficients {ψj,t} strictly decreasing in both subindexes (j, t) .
Using these results and Cauchy’s inequality it is obtained that, for s ≥ r, it follows that,

E
¡
ηrηr+iηsηs+i

¢ ≤ µ4
 ∞X
j=0

ψ4j,r−1

1/2 ∞X
j=0

ψ4j,s−1

1/2 + 3σ4 ∞X
j=0

ψ2j,r−1
∞X
j=0

ψ2j,s−1. (31)

Following Odaki (1993, p. 707) it is easy to show that
P∞
j=0 ψ

4
j,t = O

¡
t−3
¢
for d > −0.75.

Taking this result into account and the orders of magnitude in (25) , it follows that

T−1
T−iX
r=1

T−iX
s≥r

E
¡
ηrηr+iηsηs+i

¢ ≤ T−1

µ4 T−iX
r=1

 ∞X
j=0

ψ4j,r−1

1/2 T−iX
s=1

 ∞X
j=0

ψ4j,s−1

1/2

+3σ4
T−iX
r=1

 ∞X
j=0

ψ2j,r−1

 T−iX
s=1

 ∞X
j=0

ψ2j,s−1


→ 0.

for ϕ0 > −0.75. Since the i-th element of
√
TΥT tends to zero for all i = 1, ..., k, then√

TΥT
p→ 0, implying the desired result.

The case where µ0 is unknown can be proved similarly using standard arguments since

∆m0y is a consistent estimator of µ0 (see Robinson, 1994b).¥

In order to prove the consistency of the estimator stated in Theorem 2, we consider

separately the cases where the inferior limit of the parameter space of d, ∇1, is such that
∇1 ≤ d0 − 1/2 from those where ∇1 > d0 − 1/2, where d0 is the true integration order of
the process to be estimated, yt. The reason for making this distinction is the non-uniform

behavior of FI (δ) processes which determines the properties of the criterion function. More

specifically, whenever δ is ≥ 1/2, correlations are not well-defined since the process is not
stationary. To define the residuals, et (d), the process yt is filtered by ∆d, so that et (d) is

a FI (d0 − d) process. If ∇1 > d0 − 1/2, then d0 − d < 1/2 for all d ∈ [∇1,∇2], and the
autocorrelations of the process et (d) are well-defined. But if ∇1 ≤ d0 − 1/2, the difference
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(d0 − d) could be bigger or smaller than 1/2 so that et (d) could be or not be (asymptotically)
stationary, depending on the value of d. A similar problem appeared in Robinson (1995)

and Velasco and Robinson (2000). To overcome it, they proposed a two-step proof that

will be also followed in this article. The proof is based on dividing the whole parametric

space into two subsets: the first containing only the values of the parameters for which the

filtered process is stationary and the second, the remaining ones. The first step of the proof

shows that the estimator computed only considering a subset where the correlations are

well-defined is consistent, while the second proves that values in the remaining set cannot

be (asymptotically) optimal, which implies that optimal values are always in the first subset

and, consequently, that the estimator computed in the whole parametric space is consistent.

Before stating the proof, we need the following definition.

Definition 1 Denote λ(1) = d and Λ1 = {d : ∇1 ≤ d ≤ ∇2} × Λ(−1), if ∇1 > d0 − 1/2 or
otherwise Λ1 = {d : d0−1/2+η ≤ d ≤ ∇2}×Λ(−1) for some η ∈ (0, 1/2) , if ∇1 ≤ d0−1/2,
where Λ(−1) is the parameter space of the remaining ARMA parameters.

The following auxiliary result is needed.

Lemma 1 Let Vke (λ) be the criterion function in (13) , where et (λ) is defined as in (5)

or (7) , according to the case where the DGP has a known or unknown mean respectively.

Let λ̃ ∈ Λ1 and define Vkε
³
λ̃
´
=
Pk
i=1

³
ρε(λ̃) (i)

´2
, where ρε(λ̃) (.) are the (population)

autocorrelations associated to the non truncated residuals ε
³
λ̃
´
=
P∞
j=0 αj

³
λ̃
´
x (m)t−j ,

and k is a fixed number. Then:

1. Vke (λ) is continuous in λ, Vke
³
λ̃
´
converges in probability to Vkε

³
λ̃
´
and the con-

vergence is uniform.

2. Vkε
³
λ̃
´
is a continuous function and has a unique minimum at λ0, such that Vkε (λ0) =

0.

Proof of Lemma 1.

1. The continuity of Vke (λ) is trivial, since it is a continuous composition of continuous

functions. The asymptotic negligibility of the truncation can be proved along the lines

of Theorem 1. Since the sample correlations associated to stationary processes are

consistent (Hosking, 1996), it follows that Vke
³
λ̃
´

p→ Vkε

³
λ̃
´
for any λ̃ ∈ Λ1. The
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uniform convergence follows from the pointwise convergence and an equicontinuity

argument using the compactness of Λ1 and the differentiability of ρ (.) with respect

to λ (cf. Davidson, (1994), p. 340, and Velasco and Robinson, 2000).

2. It is straightforward to check that Vkε
³
λ̃
´
has a unique minimum at λ0, since εt (λ)|λ=λ0 =

εt, which is an i.i.d. process and therefore all its correlations are zero, (which implies

that Vkε (λ0) = 0), but presents non-null autocorrelations for any other value of λ̃ 6= λ0

(and therefore Vε
³
λ̃
´
> 0). The continuity of Vkε

³
λ̃
´
follows from the assumptions

above (see Amemiya, 1985, Theorem 4.1.1)¥

Proof of Theorem 2

We proceed with the two-step proof of consistency proposed in Robinson (1995) and

Velasco and Robinson (2000).

First step. Define λ̂1 = argminλ∈Λ1 Vke (λ) . It follows from standard results that if we can

write Vke (λ)− Vke (λ0) = S (λ)− U (λ) , where S (λ) is nonstochastic, constant over t and
for all ² > 0 there exists δ > 0 such that infkλ−λ0k≥² S (λ) ≥ δ, and supλ∈Λ1 |U (λ)|

p→ 0,

then λ̂1
p→ λ0. Hence, let us denote S (λ) = Vkε (λ) and, since Vkε (λ) is continuous and

has a unique minimum at λ = λ0, the conditions on S (λ) hold; U (λ) is given in turn by

U (λ) = Vkε (λ)− Vke (λ) + Vke (λ0) . Notice that:

sup
λ∈Λ1

|U (λ)| ≤ sup
λ∈Λ1

|Vke (λ)− Vkε (λ)|+ |Vke (λ0)| , (32)

and both terms in the right hand side of (32) tend to zero, the first due to uniform conver-

gence and the second due to pointwise convergence (Lemma 1).

Second step. Recall that Λ1 = {d : ∇ ≤ d ≤ ∇2}×Λ(−1), where ∇ = ∇1, if d0 < ∇1+1/2
and d0 − 1/2 < ∇ < d0 otherwise. If d0 < ∇1 + 1/2, then Λ1 = Λ and the theorem
is proved. When d0 > ∇1 + 1/2, define Λ2 = {d : ∇1 ≤ d < d0 − 1/2 + η} × Λ(−1)
and let λ̂k = argminλ∈Λ Vke (λ) be the estimator computed in the whole parametric space,

Λ = Λ1 ∪ Λ2. We want to show that λ̂k − λ̂1
p→ 0 or, equivalently, that for any δ > 0,

P
³°°°λ̂k − λ̂1

°°° ≥ δ
´
→ 0. Notice that,

P
³°°°λ̂k − λ̂1

°°° ≥ δ
´
≤ P

µ
inf
λ∈Λ2

Vke (λ) ≤ min
λ∈Λ1

Vke (λ)

¶
= P

µµ
inf
λ∈Λ2

Vke (λ) ≤ Vke
³
λ̂1
´¶
∩ inf

λ∈Λ2
Vke (λ) ≤ 0

¶
(33)
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+P

µµ
inf
λ∈Λ2

Vke (λ) ≤ Vke
³
λ̂1

´¶
∩ inf

λ∈Λ2
Vke (λ) > 0

¶
≤ P

µ
inf
λ∈Λ2

Vke (λ) ≤ 0
¶
+ P

³
Vke

³
λ̂1

´
> 0

´
. (34)

Since λ̂1 is consistent (step 1) and uniform convergence of Vke holds, the second probability

in (34) tends to zero. To check that the first one also tends to zero, recall that the function

Vke (λ), λ ∈ Λ̄2, where Λ̄2 is the closure of Λ2, contains the squared sample correlations
of a FI

³
d0 − λ(1)

´
process, where λ(1) ∈ [∇1, d0 − 1/2 + η], therefore it is always a non-

negative quantity. Whenever λ(1) ∈ (d0 − 1/2, d0 − 1/2 + η], then 1/2 − η < d0 − λ(1) <

1/2, and the corresponding filtered process is long-memory stationary. Thus, the squared

sample autocorrelations converge to the squared population autocorrelations which, clearly,

are bounded away from zero. If λ(1) ∈ [∇1, d0 − 1/2], then d0 − λ(1) ≥ 1/2, so that

Vke (λ) contains the sample autocorrelations of a non-stationary process. Since Vke (λ)

should contain, at least, the first autocorrelation, it is clear that Vke (λ) =
Pk
i=1 ρ̂

2
e(λ) (i) ≥

ρ̂2e(λ) (1)
p→ 1 (see Sowell, (1990), Theorem 3). The continuity of Vke (λ) implies that the

infimum is contained in Λ̄2. Therefore it holds that P (infλ∈Λ2 Vke (λ) ≤ 0)→ 0.¥
In order to derive the asymptotic distribution of λ̂k, the following auxiliary result will be

useful.

Lemma 2 Let Ĵk (λ) = ∂ρ̂
ke(λ)

/∂λ0 be the Jacobian matrix of ρ̂
ke(λ)

, that is, the k×(p+q+
1) matrix of partial derivatives of ρ̂

ke(λ) with respect to λ. Under the hypotheses of Sections

2 and 3, it holds that,

1. For each finite k,

Ĵk (λ0)
p→ Jk (λ0) ,

where,

Jk (λ0) =


−1 1 0 ... 1 ... 0

−1/2 ω1 1 ... ψ1 ... 0

... ... ... ... ... ... ...

−1/k ωk−1 ωk−2 ... ψk−1 ... ψk−q

 . (35)

and the coefficients ωi and ψi are defined by the equations
P

ωiL
i = 1

Φ(L) andP
ψiL

i = 1
Θ(L) .
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2. The first derivative of Ĵk (λ) exists and is bounded in probability in an open convex

set containing λ0.

Proof of Lemma 2

1. This result can be found in Theorem 2 in Li and McLeod (1986).

2. Let Λ̃ ⊂ Λ1 be an open convex set containing λ0. Notice that Ĵk (λ) is differentiable in
this set since it is a function of the derivatives of the residuals et (λ) which are C(∞) with
respect to λ in the relevant set. The first derivative of Ĵk (λ) is the k(p+ q+1)× (p+ q+1)
matrix defined as,

∂vec(∂ρ̂
ke(λ)/∂λ

0)/∂λ0.

Consider the (1, 1) element of this matrix, given by ∂2ρ̂e(λ) (1) /∂d
2. To simplify the

notation, we use the symbols 0 and 00 to denote first and second derivative, respectively,

with respect to d. It follows that,

ρ̂00e(λ) (1) =
σ2e(λ)P
e2t (λ) /T

(
ρ̃00e(λ) (1)− ρ̃0e(λ) (1)

4
P
ete

0
t (λ)P

e2t (λ)
(36)

−ρ̃e(λ) (1)
2

³P
ete

00
t (λ) +

P
(e0t (λ))

2
´

P
e2t (λ)

−
8
³P

ete
0
t (λ)

´
¡P

e2t (λ)
¢2

 , (37)

where ρ̃e(λ) (1) = σ−2
PT−i
t=1 et (λ) et+1 (λ) /T , σ

2
e(λ) = limT→∞ T

−1P e2t (λ),

ρ̃0e(λ) (1) =
P
e0t (λ) et+1 (λ) +

P
et (λ) e

0
t+1 (λ)

T
,

and

ρ̃00e(λ) (1) =
P
e00t+1 (λ) et (λ) +

P
e00t (λ) et+1 (λ) + 2

P
e0t (λ) e0t+1 (λ)

T
. (38)

Noticing that et = (1− L)dΘ−1Φ (L) yt1(t>0), it follows that ∂et/∂d = log(1− L)et, and
∂2et/∂d

2 = log2(1−L)et.Taking into account the expansions log (1− L) = −
³
L+ L2

2 +
L3

3 + ...
´

and log2 (1− L) = ¡
κ2L2 + κ3L3 + ...

¢
with κiLi = 2

i

³Pi−1
j=1 j

−1
´
Li for i = 0, 1, ... and

that et = 0 for all t < 0, it follows that,

e0t (λ) =
t−1X
h=1

et−h
h

and e00t (λ) =
t−1X
h=2

κhet−h.

Each of the terms in the RHS of (36) and (37) are Op (1) . Consider for instance ρ̃00e(λ) (1) .

The first term in (38) can be rewritten as,P¡
log2 (1− L) et+1 (d)

¢
et (d)

T
=

P
[κ2et−1 (d) + κ3et−2 (d) + κ4et−3 (d) + ...+ e1 (d)] et (d)

T
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= κ2γ̂e (1) + κ3γ̂e (2) + κ4γ̂e (3) + ...+ κT−1γ̂e (T − 2)

where γ̂e (.) is the sample covariance function of the process et (d) . We now check that this

sum is finite when T tends to∞. Since d ∈ Λ1, the autocovariance function of et (d) , γe (.) ,
decays at a rate j2(d0−d)−1 for large j (see Baillie, 1996). Then,

κj+1γ (j) ≈ C 2

j + 1

Ã
jX
i=1

i−1
!
(j2(d0−d)−1) ≈ C 0j2(d0−d)−2 log j

for large j,where C andC 0 are some constants. Since (d0 − d) < 0.5, then
P∞
j=1 j

2(d0−d)−2 log j <

∞. This implies that limT→∞
PT−2
j=1 κj+1γ (j) is bounded. On the other hand, since γ̂ (j)

is a consistent estimator of the covariance function, then

lim
T→∞

T−2X
j=1

κj+1γ̂ (j) = Op (1) .

The proof for the remaining components in (36) and (37) is analogous and therefore is

omitted. Similarly, proofs for the remaining elements of the matrix ∂vec(∂ρ̂
ke(λ)

/∂λ0)/∂λ0

can be constructed along the same lines and for the sake of brevity, are also omitted.¥

Proof of Theorem 3

The mean value theorem applied to the first-order condition gives,

0 =
∂Vke (λ0)

∂λ
+

∂2Vke
¡
λ̄
¢

∂λ∂λ0
³
λ̂k − λ0

´
,

where λ̄ belongs to the line joining λ̂k and λ0. Multiplying through by
√
T and solving for√

T
³
λ̂k − λ0

´
yields

√
T
³
λ̂k − λ0

´
= −

∂ρ̂0
ke(λ̄)

∂λ

∂ρ̂
ke(λ̄)

∂λ0

−1 ∂ρ̂0ke(λ0)
∂λ

√
T ρ̂

ke(λ0)
. (39)

= −
³
Ĵ 0k
¡
λ̄
¢
Ĵk
¡
λ̄
¢´−1

Ĵk (λ0)
√
T ρ̂

ke(λ0). (40)

Notice that λ̄ can be replaced in (40) by λ0, since λ̄
p→ λ0 (due to the consistency of λ̂k)

and the first derivative of Ĵk (λ) exists and is bounded in probability in an open convex set

containing λ0 (Lemma 2), see Amemiya (1985), Theorem 4.1.4.
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Also, since
√
T ρ̂

ke(λ0) =
√
T ρ̂

kε+op (1)
w→ N (0, Ik) for fixed k (Theorem 1), it is straight-

forward to check that
√
T
³
λ̂k − λ0

´
is also asymptotically normally distributed with mean

equal to zero and variance-covariance matrix given by Ξ−1k = (J 0k (λ0)Jk (λ0))
−1.¥

Proof of Theorem 4

Let ρ̂
ke(λ̂) be the vector defined in (22). A first-order Taylor’s series expansion of ρ̂ke(λ̂)

around λ0 yields,

ρ̂
ke(λ̂) = ρ̂

ke(λ0)
+

∂ρ̂
ke(λ

∗)

∂λ0
³
λ̂− λ0

´
. (41)

By Theorem 1,
√
T ρ̂

ke(λ0)
=
√
T ρ̂

kε
+ op (1)

w→ N (0, Ik) for d > −0.75. Since the deriva-
tive of

∂ρ̂
ke(λ

∗)
∂λ0 exists and is bounded in an open convex set containing λ0 and λ∗

p→ λ0, then

it is possible to substitute λ∗ by λ0 in (41) . The joint distribution of
³
Ĵk (λ0)

³
λ̂− λ0

´
, ρ̂

kε

´0
is given by:

√
T

 Ĵk (λ0)
³
λ̂− λ0

´
ρ̂
kε

 =

 −Ĵk (λ0)³Ĵ 0k (λ0) Ĵk (λ0)´−1 Ĵ 0k (λ0)
Ik

√T ρ̂
kε + op (1)

w→ N (0,Υ) ,

where:

Υ =

Ã
−Jk (λ0) (J 0k (λ0)Jk (λ0))−1 J 0λ0k Jk (λ0) (J

0
k (λ0)Jk (λ0))

−1 J 0k (λ0)

Jk (λ0) (J
0
k (λ0)Jk (λ0))

−1 J 0k (λ0) Ik

!
.

Since joint normality holds, any linear combination of
³
Ĵk (λ0)

³
λ̂− λ0

´
, ρ̂

kε

´
will also

be normal. Taking into account expression (41) it follows that:

√
T ρ̂

ke(λ̂)
w→ N

³
0, Ik − Jk (λ0)

¡
J 0k (λ0)Jk (λ0)

¢−1
J 0k (λ0)

´
.¥
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Appendix 2

This appendix reports the results of some Monte-Carlo experiments not included in the

main text. Table 12 presents the mean and standard deviation of correlations at different

lags associated to the (truncated) residual process et (d0) for different values of d0. To

obtain these residuals, the following procedure has been implemented: processes of the form

∆ϕ0yt = εt were generated for a large sample size equal to n+T and then the first n = 1000

observations were rejected. The last T observations were integrated an integer number of

times, m0. Truncated residuals were computed by applying the finite filter
Pt−1
i=0 πiL

i to

the process yt, where the coefficients {πi} come from the expansion in powers of L of the

polynomial (1− L)d0 . Again the results in finite samples confirm the asymptotic results. It
can be seen that for invertible processes (d0 > −1), estimated correlations behave correctly
in the sense that, as expected, zero mean and unit variance is found. Nevertheless, for

non-invertible processes, residuals correlations do not provide consistent estimates of the

innovation correlations.

Table 12. Residual Autocorrelations

d0 -1.2 -1.0 -0.7 0.4 0.8 1.4

T = 100

mean(
√
T ρ̂e (1)) 0.801 -0.136 -0.063 -0.061 -0.128 -0.068

std(
√
T ρ̂e (1)) 1.435 0.993 0.964 0.966 0.955 0.979

mean(
√
T ρ̂e (2)) 0.804 -0.085 -0.022 -0.037 -0.080 -0.027

std(
√
T ρ̂e (2)) 1.386 0.971 0.977 0.979 0.995 0.990

mean(
√
T ρ̂e (5)) 0.793 -0.046 0.009 -0.006 -0.042 -0.002

std(
√
T ρ̂e (5)) 1.361 0.956 0.966 0.964 0.971 0.974

T = 400

mean(
√
T ρ̂e (1) 3.020 -0.006 0.010 0.047 -0.001 0.042

std(
√
T ρ̂e (1) 3.248 0.979 1.001 0.982 0.979 0.983

mean(
√
T ρ̂e (2)) 2.926 -0.045 -0.031 -0.005 -0.039 -0.005

std(
√
T ρ̂e (2)) 3.170 1.013 1.027 1.016 1.013 1.019

mean(
√
T ρ̂e (5)) 2.915 -0.006 0.002 0.026 -0.002 0.029

std(
√
T ρ̂e (5)) 3.149 0.968 1.031 0.958 0.969 0.964
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Tables

Table 1. Estimation of d for the ARFIMA(0, d, 0) case

µ0 known (µ0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

k = T 1/4 -0.018 -0.032 -0.021 -0.017 -0.031 -0.019 -0.019 -0.026 -0.021

bias d̂ k = T 1/3 -0.020 -0.031 -0.022 -0.029 -0.035 -0.021 -0.21 -0.028 -0.023

k = T 1/2 -0.022 -0.032 -0.024 -0.032 -0.036 -0.023 -0.032 -0.030 -0.025

k = T 1/4 0.101 0.105 0.094 0. 101 0.0970 0.093 0.093 0.104 0.098

SRMSE d̂ k = T 1/3 0.111 0.110 0.111 0.109 0.114 0.103 0.103 0.118 0.102

k = T 1/2 0. 116 0.117 0.114 0.113 0. 122 0.116 0. 118 0.122 0.121

T = 400

k = T 1/4 -0.003 -0.007 -0.008 -0.010 -0.008 0.008 0.005 0.006 0.008

bias d̂ k = T 1/3 -0.003 -0.008 -0.010 -0.012 0.008 0.010 0.006 0.006 0.002

k = T 1/2 -0.003 -0.008 -0.010 -0.013 0.010 0.010 0.007 0.008 0.009

k = T 1/4 0.045 0.042 0.045 0.041 0.042 0.046 0.044 0.044 0.046

SRMSE d̂ k = T 1/3 0.044 0.041 0.043 0.041 0.042 0.046 0.043 0.044 0.044

k = T 1/2 0.047 0.042 0.045 0.042 0.044 0.048 0.044 0.045 0.046
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Table 2. Estimation of d for the ARFIMA(0, d, 0) case

µ0 unknown (µ0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

k = T 1/4 -0.005 -0.030 0.002 -0.003 -0.026 -0.022 -0.024 -0.027 -0.020

bias d̂ k = T 1/3 -0.007 -0.036 -0.002 -0.031 -0.027 -0.025 -0.026 -0.030 -0.022

k = T 1/2 -0.009 -0.034 -0.027 -0.031 -0.030 -0.027 -0.029 -0.029 -0.025

k = T 1/4 0.101 0.107 0.097 0.103 0.104 0.100 0.102 0.104 0.099

SRMSE d̂ k = T 1/3 0.113 0.107 0.106 0.109 0.110 0.114 0.104 0.107 0.105

k = T 1/2 0.117 0.109 0.111 0.112 0.123 0.117 0.117 0.117 0.109

T = 400

k = T 1/4 0.008 -0.007 0.001 -0.05 -0.008 -0.010 -0.004 -0.009 -0.008

bias d̂ k = T 1/3 0.009 -0.009 0.003 -0.007 -0.007 -0.010 -0.009 -0.010 -0.010

k = T 1/2 0.022 -0.009 -0.001 -0.007 -0.008 -0.011 -0.009 -0.012 -0.016

k = T 1/4 0.046 0.042 0.046 0.044 0.044 0.046 0.044 0.042 0.043

SRMSE d̂ k = T 1/3 0.047 0.042 0.049 0.043 0.444 0.049 0.048 0.040 0.043

k = T 1/2 0.052 0.043 0.049 0.044 0.049 0.050 0.049 0.045 0.045
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Table 3. Estimation of λ = (d,φ1)
0 .

DGP: ARFIMA(1, d, 0), φ1 = 0.6, k = T
1/4

µ0 known (µ0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.030 -0.018 -0.044 0.025 -0.046 -0.053 -0.053 -0.034 -0.055

SRMSE d̂ 0 212 0.225 0.240 0.230 0.253 0.234 0.237 0.245 0.255

bias φ̂1 -0.013 -0.023 -0.062 0.000 0.006 0.007 0.011 0.021 0.008

SRMSE φ̂1 0.219 0.249 0.253 0.203 0.203 0.202 0.193 0.215 0.209

T = 400

bias d̂ -0.028 0.028 0.012 0.023 0.024 0.053 0.027 0.022 0.054

SRMSE d̂ 0.150 0.140 0.136 0.158 0.142 0.164 0.150 0.155 0.162

bias φ̂1 0.001 0.002 -0.010 0.000 0.003 0.029 0.010 0.007 0.018

SRMSE φ̂1 0.142 0.135 0.135 0.148 131 03 0.145 0.146 0.141 0.143

µ0 unknown (µ0 = 0).

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.022 -0.021 0.000 -0.011 -0.045 -0.021 -0.032 -0.023 -0.022

SRMSE d̂ 0.219 0.221 0.181 0.219 0.221 0.221 0.210 0.233 0.222

bias φ̂1 -0.024 -0.043 -0.041 -0.025 0.003 0.000 -0.010 0.010 0.006

SRMSE φ̂1 0.211 0.197 0.182 0.182 0.216 0.190 0.210 0.215 0.227

T = 400

bias d̂ -0.004 -0.031 -0.018 -0.024 -0.023 -0.013 -0.015 -0.010 -0.017

SRMSE d̂ 0.146 0.141 0.131 0.143 0.140 0.143 0.143 0.144 0.147

bias φ̂1 0.018 0.004 0.013 0.001 0.003 0.026 0.013 -0.016 0.009

SRMSE φ̂1 0.143 0.136 0.127 0.147 0.132 0.139 0.138 0.140 0.141
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Table 4. Estimation of λ = (d,θ1)
0 .

DGP: ARFIMA(0,d,1), θ1= 0.5. k = T 1/4

µ0 known (µ0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.012 -0.016 -0.010 -0.013 -0.018 -0.012 0.0206 0.004 0.025

SRMSE d̂ 0.148 0.131 0.148 0.147 0.138 0.164 0.244 0.213 0.260

bias θ̂1 -0.000 0.002 -0.003 -0.003 0.008 -0.003 -0.084 -0.146 -0.339

SRMSE θ̂1 0.146 0.127 0.138 0.141 0.131 0.141 0.2158 0.255 0.435

T = 400

bias d̂ -0.000 -0.007 -0.007 -0.005 -0.0082 -0.012 -0.0037 -0.009 -0.012

SRMSE d̂ 0.056 0.058 0.057 0.0574 0.056 0.0552 0.0567 .0591 0.077

bias θ̂1 0.00 0.005 0.0029 -0.003 0.0045 .0036 -0.025 -0.04700 -0.1834

SRMSE θ̂1 0.056 0.0542 0.0590 0.0582 00.0567 0.0541 0.0699 0.0974 0.2453

µ0 unknown (µ0 = 0).

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.019 -0.021 -0.008 -0.016 -0.021 -0.018 -0.023 -0.022 -0.0126

SRMSE d̂ 0.135 0.129 0.147 0.145 0.140 0.148 0.139 0 .146 0.146

bias θ̂1 0.002 0.007 -0.005 -0.000 0.012 0.002 0.008 0.007 -0.006

SRMSE θ̂1 0.129 0.125 0.135 0.136 0.134 0.135 0.122 0.139 0.142

T = 400

bias d̂ -0.004 -0.031 -0.018 -0.024 -0.023 -0.013 -0.015 -0.010 -0.017

SRMSE d̂ 0.146 0.141 0.131 0.143 0.140 0.143 0.143 0.144 0.147

bias θ̂1 0.018 0.004 0.013 0.001 0.003 0.026 0.013 -0.016 0.009

SRMSE θ̂1 0.143 0.136 0.127 0.147 0.132 0.139 0.138 0.140 0.141
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Table 5. Estimation of λ = (d,φ1,φ2)
0 .

DGP: ARFIMA(2,d,0), φ1= 0.6, φ2= −0.65;. k = T 1/4
µ0 known (µ0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.003 -0.031 -0.030 -0.021 -0.022 -0.064 -0.113 -0.168 -0.112

SRMSE d̂ 0.224 0.228 0.230 0.229 0.223 0.225 0.244 0.281 0.282

bias φ̂1 0.027 0.074 0.052 0.031 0.041 0.058 0.043 0.049 0.051

SRMSE φ̂1 0.206 0.219 0.232 0.216 0.226 0.230 0.261 0.302 0.306

bias φ̂2 -0.059 -0.050 -0.083 -0.069 -0.072 -0.067 -0.053 -0.031 -0.038

SRMSE φ̂2 0.150 0.171 0.174 0.159 0.165 0.165 0.202 0.371 0.382

T = 400

bias (d̂) 0.004 -0.011 -0.010 -0.006 -0.012 -0.015 -0.032 -0.051 -0.112

SRMSE d̂ 0.067 0.063 0.061 0.063 0.064 0.064 0.074 0.087 0.149

bias φ̂1 -0.003 0.003 0.001 0.001 0.003 0.002 -0.005 -0.019 -0.063

SRMSE φ̂1 0.054 0.054 0.049 0.051 0.053 0.053 0.059 0.067 0.110

bias φ̂2 0.003 0.003 -0.003 -0.003 -0.003 0.001 0.012 0.024 0.089

SRMSE φ̂2 0.047 0.049 0.048 0.049 0.047 0.048 0.052 0.061 0.126

Table 6. SRMSE for various estimation techniques

T = 100; DGP: ∆d0yt = εt, µ0 known

d0 -0.3 0.2 0.4 0.8 1.0 1.4 1.8

V R 0.211 0.208 0.193 0.172 0.155 0.154 0.160

BER 0.084 0.083 0.089 0.091 0.086 0.092 0.095

TSB 0.189 0.094 0.109 - - - -

GZW 0.082 0.089 0.096 - - - -

SOW 0.089 0.092 0.069 - - - -
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Table 7. Empirical Size of BP and LB. (S.L. : 5%)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

BP 3.5% 3.2% 3.8% 4.0% 3.6% 3.8%

LB 4.5% 4.0% 4.5% 4.1% 4.0% 4.5%

T = 400

BP 6.0% 4.2% 4.8% 4.8% 5.8% 4.5%

LB 6.0% 5.8% 3.5% 5.5% 6.0% 5.0%

T = 500

BP 5.5% 5.0% 5.0% 5.0% 4.5% 4.5%

LB 6.0% 5.0% 5.0% 5.5% 5.0% 4.2%

Table 8. Power of BP and LB. (S.L.: 5%)

DGP: ARFIMA(1, d, 0)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

BP 24.8% 24.2% 24.4% 23.0% 23.8% 21.8%

LB 25.3% 24.4% 27.0% 25.2% 25.4% 21.8%

T = 400

BP 66.6% 68.6% 66.9% 64.4% 68.9% 64.5%

LB 67.3% 69.2% 67.9% 65.6% 70.8% 65.3%

T = 500

BP 81.8% 81.2% 79.8% 82.2% 82.4% 82.8%

LB 81.6% 81.6% 80.0% 83.0% 82.2% 83.4%
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Table 9. Empirical Size of H∗T . (S.L.: 5%)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

k=T1/4 1.2% 1.5% 1.4% 1.1% 1.2% 1.2%

k=T1/3 2.2% 2.2% 2.3% 1.8% 1.6% 1.5%

k=T1/2 2.5% 2.5% 3.4% 2.8% 2.8% 2.6%

T = 400

k=T1/4 1.8% 1.9% 1.5% 2.2% 2.4% 2.1%

k=T1/3 2.9% 3.2% 2.1% 2.6% 2.9% 1.5%

k=T1/2 5.4% 3.9% 3.1% 3.6% 3.9% 3.2%

T = 500

k=T1/4 2.7% 2.1% 2.0% 3.1% 2.9% 2.6%

k=T1/3 2.4% 2.3% 2.6% 2.5% 2.6% 3.2%

k=T1/2 3.9% 4.2% 3.5% 4.0% 4.5% 5.2%

Table 10. Power of H∗T (size corrected).

DGP: ARFIMA(1,d0, 0)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

k=T1/4 22.3% 16.2% 19.8% 21.2% 20.6% 19.3%

k=T1/3 20.7% 14.7% 14.2% 14.2% 16.1% 16.1%

k=T1/2 12.1% 10.4% 9.2% 10.1% 13.8% 13.5%

T = 400

k=T 1/4 54.2% 28.7% 65.4% 54.3% 54.9% 56.5%

k=T 1/3 55.9% 56.4% 65.3% 56.4% 56.5% 59.8%

k=T 1/2 30.4% 32.6% 39.3% 35.0% 35.5% 30.6%

T = 500

k=T1/4 70.9% 82.1% 76.7% 75.0% 74.1% 76.8%

k=T1/3 75.9% 77.7% 68.6% 76.6% 77.1% 69.9%

k=T1/2 45.2% 52.8% 45.8% 46.1% 43.2% 39.7%
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