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Abstract. In 1952 F. Riesz and Sz.–Nágy published an example of a monoto-

nic continuous function whose derivative is zero almost everywhere, that is to
say, a singular function. Besides, the function was strictly increasing. Their
example was built as the limit of a sequence of deformations of the identity
function. As an easy consequence of the definition, the derivative, when it
existed and was finite, was found to be zero. In this paper we revisit the
Riesz-Nágy family of functions and we relate it to a system for real number
representation which we call (τ, τ −1)–expansions. With the help of these real
number expansions we generalize the family. The singularity of the functions
is proved through some metrical properties of the expansions used in their
definition which also allows us to give a more precise way of determining when
the derivative is 0 or infinity.

1. Introduction

At the beginning of the XX-th century singular functions were considered quite
pathological and remained so for a long time. In those times, besides the usual
Cantor-Lebesgue’s type of functions—constant on the complement of a perfect set
of measure zero—, examples of a different sort of a singular function were not easy
to provide. To think of a strictly increasing function that were at the same time
singular, was simply difficult to accept. One of the simplest cases of a strictly
increasing continuous singular function was Minkowski’s “fragefunktion”, ?(x). Its
purpose however was a completely arithmetical one: to obtain an enumeration of
the irrational quadratics [11]. Its construction was rather simple as it was essentially
geometrical in nature. It was much later that its singularity was proved. This was
done by Denjoy in 1932 [4] and [5], though the classical reference is Salem with
his paper [17]. Minkowski’s function has been extensively studied and generalized
(Denjoy [6], [10], Tichy [20], Ramharter [13], Girgensohn [7]). In [21] and [12] the
authors contributed to the subject proving that ?′(x), when it existed and was
finite, had to be zero and obtained conditions that allowed to separate null from
infinite derivatives.

Another family of strictly increasing singular functions was popularized by Riesz
and Sz.–Nágy who published them in 1952 [16, p. 48–49]. Their example was built
as the limit of a sequence of deformations of the identity function. It depended on
a parameter 0 < t < 1. As an easy consequence of the definition, the derivative,
when it existed, was found to be a Riesz–product:

∏

k (1 + εkt) , (ε = ±1) which
can only be 0, infinity or indeterminate.

In fact, Riesz-Nágy functions had already been considered before. Hellinger
mentions them in his doctoral thesis in 1907 [8] and other authors work with the
family: Billingsley [1, pp. 35–37] and [2, pp. 407–409], de Rahm [3], Reese [14]; or
have even generalized it: Salem [17], Hewitt and Stromberg [9, p. 278–282].
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In 1978 Lajos Takács published a short note in the Monthly [19] providing a
closed form definition of a family of increasing continuous singular functions. The
main merit of Takács’ paper is the realization that his family of functions is precisely
the Riesz-Nágy family.

In this paper we revisit the Riesz-Nágy family of functions and we show how
Takács closed form relates to a new system for real number representation which
we call (τ, τ − 1)–expansions. In section 2, we present these expansions in some
detail as their metrical properties will be essential for our purposes. Specifically,
in section 3 we prove the singularity of the family using some of these metrical
properties. Besides, we obtain metrical conditions that allow us to separate the
null from the infinite derivative. In section 4 with the help of (τ, τ − 1)–expansions
we generalize the family and obtain similar conditions for the null and infinite
derivatives.

2. On (τ, τ − 1)–expansions

Given τ ∈ R, τ > 1, let us consider the unit interval [0, 1) and its partition into
two parts by 1/τ :

[0, 1) =

[

0,
1

τ

)

⋃

[

1

τ
, 1

)

.

Any real number x ∈ [0, 1) has the following expression:

x =











1

τ
· x1 if x <

1

τ
,

1

τ
+

τ − 1

τ
· x1 if x ≥ 1

τ
,

where, in both cases, x1 ∈ [0, 1).
Iteration of the previous process, leads us to an expansion for x in powers of the

numbers
1

τ
and

τ − 1

τ
:

(2.1) x =

∞
∑

i=1

εi
1

τ i
(τ − 1)

Pi−1

j=1
εj , εi ∈ {0, 1}.

If x0 := x, the algorithm, for n ≥ 1 is the following:

(2.2) xn :=











τxn−1 if xn−1 <
1

τ
τxn−1 − 1

τ − 1
if xn−1 ≥ 1

τ

→ εn =











0 if xn <
1

τ

1 if xn ≥ 1

τ
.

This expansion is a particular case of an f -expansion as defined by Rényi [15] or

a β̄-expansion with β̄ = (τ,
τ

τ − 1
) of Shiokawa [18].

Now, every x ∈ [0, 1) can be represented through its ‘digits’, 〈εi〉i∈Z+ . It is
readily seen that, in case x has a finite expansion as a consequence of xn+1 = 0,
x = {ε1, · · · , εn}, where εn = 1, then x has also a non terminating equivalent
expansion simply by changing the digit εn to 0 and making εn+k = 1, k = 1, 2, . . ..
This is a direct consequence of

1 =

∞
∑

i=1

(τ − 1)i−1

τ i
.

The right-shift, T , induced by algorithm 2.2 on [0, 1) has the graph that Figure 1
shows.

Definition 1. We will say that x is normal to base (τ, τ − 1) if the sequence 〈xn〉
is uniformly distributed in [0, 1).
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1/τ0

1

1

Figure 1. (τ, τ − 1)-right-shift

The right shift, Txn = xn+1, attached to our algorithm, trivially preserves
Lebesgue’s measure in [0, 1) and is ergodic. This last fact was proved by Rényi
in [15] for a wide class of f -expansions with ‘independent digits’ (meaning that any
sequence of digits 〈εi〉 is admissible, that is to say, it corresponds to the f -expansion
of a real number). As a result, the orbit, 〈T nx〉 of almost all x ∈ [0, 1) is uniformly
distributed, or, what amounts to the same according to Definition 1, almost all
numbers in [0, 1) are normal to base (τ, τ − 1).

For these normal numbers, we have, on the one hand

(2.3) lim
n→∞

♯{εi(x) = 1, i = 1, . . . , n}
n

=
τ − 1

τ
,

and on the other hand, the frequency of any given finite sequence ε1, . . . , εk is
(

τ − 1

τ

)r (

1

τ

)k−r

,

where r is the number of 1’s in the given sequence,

r =

k
∑

i=1

εi.

2.1. Making blocks. We can reach the same results of the previous section in a
more compact form using as a partition of [0, 1) the one whose division points are
the different powers of 1/τ :

(0, 1) =

∞
⋃

i=1

[

1

τ i
,

1

τ i−1

)

.

Any x ∈ [0, 1) will belong to one of the above intervals, [τ−a1 , τ−(a1−1)) and we will
be able to write

x := x1 =
1

τa1
+

(

1

τa1−1
− 1

τa1

)

· x2, x2 ∈ [0, 1),

which is the same as

x := x1 =
1

τa1
+

τ − 1

τa1
x2.

Iterating the procedure, we obtain the expansion,

(2.4) x =
1

τa1
+

τ − 1

τa1
· 1

τa2
+ · · · + (τ − 1)n−1

τa1+···+an
+ · · · , ai ∈ Z

+.
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As before, to any finite expansion, there corresponds a non terminating expansion
owing to the identity

1

τk
=

∞
∑

i=1

(τ − 1)i−1

τk+i
.

The algorithm that leads to (2.4) is the following:

(2.5)































x1 := x;

an :=

[

logτ

(

1

xn

)]

+ 1, n = 1, 2, . . . ;

xn :=
xn−1τ

an−1 − 1

τ − 1
n = 2, 3, . . . ;

Here [z] denotes the usual integer part of z.
If sn = a1 + · · · + an, then expansion (2.4) can be written

(2.6) x =

∞
∑

i=1

(τ − 1)i−1

τsi
, 1 ≤ s1 < s2 < · · · < sn < · · · .

In terms of these sn, the result (2.3) becomes

Theorem 2.1. If x is normal to base (τ, τ − 1), we have

lim
n→∞

sn(x)

n
=

τ

τ − 1
.

There are two values of τ that give rise to interesting expansions. For τ = 2,
we get the familiar dyadic system. For τ = Φ = (1 +

√
5)/2, the golden number

verifying Φ − 1 = 1/Φ, we get the expansion

x =

∞
∑

i=1

1

Φsi

1

Φi−1
=

∞
∑

i=1

1

Φsi+i−1
, 1 ≤ s1 < s2 < · · ·

or, in a more compact form,

x =
∞
∑

i=1

1

Φki
, k1 ≥ 1, ki+1 > ki + 1.

This is an expansion of x as a sum of reciprocal powers of Φ with no two consecutive
powers and coincides exactly with Rényi’s β-expansions for β = Φ [15].

3. Takács’ function and (τ, τ − 1)–expansions

The results of the previous section are closely related to a function exhibited by
Takács, [19]:

F : [0, 1] −→ [0, 1]

with F (0) = 0, F (1) = 1 and if x =
∑

∞

r=1 2−ar , then

F (x) =

∞
∑

r=1

ρr−1

(1 + ρ)ar
,

where ρ is a positive real number. If we take ρ = τ − 1 we immediately see that
the definition of F (x) corresponds to one of our (τ, τ − 1)–expansions:

(3.1) F (x) =
∞
∑

r=1

(τ − 1)r−1

τar
,

τ a given real number, τ > 1.
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Takács’ function, proved to be an increasing continuous singular function, that
is to say, with a vanishing derivative almost everywhere in [0, 1). Takács, in the
mentioned paper, does not explain how he arrived at his function.

As we have already mentioned the real importance of Takács paper is the re-
alization that part of his family of functions, for 0 < ρ < 1, was precisely the
family of singular functions introduced by Riesz and Nágy in [16, p. 48–49]. To be
more precise, the relationship between Ries-Nágy parameter t (0 < t < 1), Takács
ρ (ρ > 0) parameter and our τ (τ > 1) is:

t =
1 − ρ

1 + ρ
=

1 − τ

τ
,

where 0 < ρ < 1 and 1 < τ < 2. Takács (and other authors mentioned above)
proved the singularity of F (x) by proving that, for τ > 1, whenever F ′(x) existed
and was finite it had to be 0. Then, as by Lebesgue’s Theorem any monotone
function has a finite derivative except possibly on a set of measure zero, F ′(x) = 0
almost everywhere on [0, 1).

Thanks to the identification of Takács function with (τ, τ − 1)–expansions, we
are going to carry the study of its singularity a little further. Let us change the
function’s name to Φ2,τ for reasons that will be explained presently.

Theorem 3.1. If x =
∑

∞

j=1 2−aj , 1 ≤ a1 < a2 < · · · , is simply normal to base 2

in the sense of Borel, and Φ′

2,τ (x) exists and is finite then Φ′

2,τ (x) = 0.

Proof. We give a proof of this result which is somewhat different to the one given
by Riesz and Nágy as we will need the procedure used in it later.

Let x =
∑

∞

j=1 2−aj ∈ [0, 1) and let n be such that an+1 > an + 1. Such a value
of n must exist unless x is a finite decimal. A straddling interval for x will be

n
∑

j=1

1

2aj
< x <

n
∑

j=1

1

2aj
+

1

2an+1
.

As Φ2,τ is strictly increasing, the images corresponding to the endpoints will satisfy:
n

∑

j=1

(τ − 1)j−1

τaj
< Φ2,τ (x) <

n
∑

j=1

(τ − 1)j−1

τaj
+

(τ − 1)n

τan+1
.

If Φ′

2,τ (x) exists, it will have to verify

Φ′

2,τ (x) = lim
n→∞

(τ − 1)n/τan+1

1/2an+1
=

= lim
n→∞

(τ − 1)n ·
(

2

τ

)an+1

= lim
n→∞

[

(τ − 1)

(

2

τ

)an/n
]n

.(3.2)

If x is simply normal to base 2 in the sense of Borel, then we will have limn→∞ an/n =
2, and consequently the base of the power between brackets in (3.2) will tend to
4(τ − 1)/τ2, and the limit will be 0 if that base is less than 1. Now,

4(τ − 1)

τ2
< 1 ⇐⇒ 4τ − 4 < τ2 ⇐⇒ (τ − 2)2 > 0.

This last inequality is always verified if τ 6= 2 (which is unavoidable as Φ2,2 =
Id). �

The trick in the proof is to have a base in the power in (3.2) tending to a number
less than one. With this in mind, let us carry Theorem 3.1 a little further:

Theorem 3.2. Let K = K(τ) =
− log(τ − 1)

log(2/τ)
. If the dyadic expansion of x ∈ [0, 1)

is x =
∑

∞

j=1 2−aj , then we have:
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i) Case 1 < τ < 2. If there exists a value k such that

lim sup
n→∞

an

n
≤ k < K

then if Φ′

2,τ (x) exists, it has to be 0.

If

lim inf
n→∞

an

n
≥ k > K

then, if Φ′

2,τ (x) exists in a wide sense, it has to be infinite.

ii) Case τ > 2. If there exists a value k such that

lim inf
n→∞

an

n
≥ k > K

then if Φ′

2,τ (x) exists, it has to be 0.

If

lim sup
n→∞

an

n
≤ k < K

then, if Φ′

2,τ (x) exists in a wide sense, it has to be infinite.

Proof. It is seen at once that, for all τ > 1, K(τ) > 1.
Case 1 < τ < 2. If lim supn→∞

an/n ≤ k < K, there exists a n0 such that for
n > n0 we have an/n ≤ k < K. For such n,

(τ − 1)

(

2

τ

)an/n

≤ (τ − 1)

(

2

τ

)k

< (τ − 1)

(

2

τ

)K

= 1.

Thus the limit in (3.2) is 0. On the other hand, if lim infn→∞ an/n ≥ k > K, there
exists a n0 such that for n > n0 we have an/n ≥ k > K. For such n,

(τ − 1)

(

2

τ

)an/n

≥ (τ − 1)

(

2

τ

)k

> (τ − 1)

(

2

τ

)K

= 1.

Thus the limit in (3.2) is ∞.
A similar reasoning leads to the second part of the theorem involving the case

τ > 2. �

Figure 2 summarizes these results in a graphical way.

4. Generalization of Riesz-Nágy-Takács functions.

The binary system coincides with our (τ, τ − 1)-expansion for τ = 2. In the
definition of Φ2,τ then, nothing can stop us from replacing the binary system used
to expand x for a (α, α−1)-expansion. We obtain the function denoted by Φα,τ (x).

Definition 2. Given α, τ > 1 and x ∈ [0, 1), if

x =

∞
∑

j=1

(α − 1)j−1

αaj
with 1 ≤ a1 < · · · < an < · · · ,

we define

Φα,τ (x) =

∞
∑

j=1

(τ − 1)j−1

τaj
.

Of course, if α = τ , Φτ,τ is just the identity. The interesting case will then be
the case α 6= τ .

We will prove that this new family consists of functions which are also singular
and that verify a theorem similar to Theorem 3.2.
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1 2

2

1

K(τ)=
− log(τ − 1)

log(2/τ)

τ

Φ
′

2,τ =0 Φ′

2,τ =∞

Φ′

2,τ =∞ Φ
′

2,τ =0

Figure 2. K(τ) and Φ′

2,τ values

As before, it is easily seen that whenever the derivative of Φα,τ (x) exists, it has
to coincide with the limit

Φ′

α,τ (x) = lim
n→∞

(τ − 1)n

τan+1
· αan+1

(α − 1)n
= lim

n→∞

(

τ − 1

α − 1
· α

an
n

τ
an
n

)n

.

This limit will be zero if the upper limit of the base tends to a constant less than
1, that is to say,

(4.1) lim sup
n→∞

τ − 1

α − 1
·
(α

τ

)

an
n ≤ k < 1

Let us now prove the singularity of these functions seeing that for all normal num-
bers to base (α, α − 1) where Φ′

α,τ (x) exists, it has to vanish necessarily.

Theorem 4.1. If x is normal to base (α, α − 1), then it verifies condition (4.1).

Proof

By Theorem (2.1) if x is normal to base (α, α − 1), it verifies:

lim
n→∞

an

n
=

α

α − 1
.

We must now see that for all α, τ > 1, α 6= τ we have the following inequality

H(α, τ) =
τ − 1

α − 1

(α

τ

)
α

α−1

< 1.

This can be done with a little bit of calculus. The singular points of H(α, τ) are
precisely those along the line α = τ . At these points the function is concave,
ensuring that the function attains a local maximum. There are no other singular
points and the values at the frontier of the domain, {(a, 1) : a > 1}∪{(1, t) : t > 1}
tend to 0. Consequently the value H(α, α) = 1 attained at the points of the line
α = τ is a global maximum.
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As we have α 6= τ that means that H(α, τ) < 1 for different bases, and that
ensures the validity of the theorem.

But the same path we followed before can be taken now, and we can prove the
following theorem whose proof we omit as it follows the same ideas than that of
Theorem 3.2:

Theorem 4.2. Let K = K(α, τ) =
log(α−1

τ−1 )

log(α/τ)
. If x ∈ [0, 1) has the (α, α − 1)-

expansion x =
∑

∞

j=1(α − 1)j−1α−aj , then we have:

i) Case 1 < τ < α. If there exists a value k such that

lim sup
n→∞

an

n
≤ k < K

then if Φ′

α,τ (x) exists, it has to be 0. If

lim inf
n→∞

an

n
≥ k > K

then, if Φ′

α,τ (x) exists in a wide sense, it has to be infinite.

ii) Case τ > α > 1. If there exists a value k such that

lim inf
n→∞

an

n
≥ k > K

then if Φ′

α,τ (x) exists, it has to be 0. If lim supn→∞

an

n ≤ k < K then, if

Φ′

α,τ (x) exists in a wide sense, it has to be infinite.

5. Concluding remarks

We have shown how the Riesz-Nágy family of singular functions can be seen as
the ‘confrontation’ of two systems for real number representation:

x =

∞
∑

r=1

2−ar [binary] 7→

Φ2,τ (x) =
∑

∞

r=1

(τ − 1)r

τar
[(τ, τ − 1)-expansion].

That is perfectly in tune with the now familiar expression for Minkowski’s ?(x)
function that ‘confronts’ the continued fraction expansion of a real number with
what can be called the alternated binary system:

x =
1

a1 +
1

a2 + ...

[continued fraction] 7→

?(x) =
1

2a1−1
− 1

2a1+a2−1
+

1

2a1+a2+a3−1
− · · · [alternated binary].

Our generalization, Φα,τ , follows the same pattern:

x =
∞
∑

r=1

(α − 1)r

αar
[(α, α − 1)-expansion] 7→

Φα,τ (x) =
∑

∞

r=1

(τ − 1)r

τar
[(τ, τ − 1)-expansion].

In all the cases, the metrical properties of the real number expansions make the
study of the singularity of the functions much easier and allows us to obtain further
results on the value of the derivative as we have already shown in [21] and [12].
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