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Summary.  We consider two fundamental properties in the analysis of two-way tables of 

positive data: the principle of distributional equivalence, one of the cornerstones of 

correspondence analysis of contingency tables, and the principle of subcompositional 

coherence, which forms the basis of compositional data analysis.   For an analysis to be 

subcompositionally coherent, it suffices to analyse the ratios of the data values.  A 

common approach to dimension reduction in compositional data analysis is to perform 

principal component analysis on the logarithms of ratios, but this method does not obey 

the principle of distributional equivalence.   We show that by introducing weights for the 

rows and columns, the method achieves this desirable property and can be applied to a 

wider class of methods.  This weighted log-ratio analysis is theoretically equivalent to 

“spectral mapping”, a multivariate method developed almost 30 years ago for displaying 

ratio-scale data from biological activity spectra.  The close relationship between spectral 

mapping and correspondence analysis is also explained, as well as their connection with 

association modelling.  The weighted log-ratio methodology is used here to visualize 

frequency data in linguistics and chemical compositional data in archaeology. 
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1.     Introduction 

There are a number of techniques available for the multidimensional analysis of tables of  

nonnegative data, for example, principal component analysis, correspondence analysis and, in 

the special case of compositional data, various methods based on analysing ratios between 

components.   Our objective in this paper is to examine the foundational principles on which 

such methods are constructed and to show how the methods are related, both from a theoretical 

and practical point of view.  In the course of our description we shall focus on a method based 

on a weighted form of log-ratio analysis, also called the “spectral map”, which has all the 

favourable properties one might wish for when analysing positive ratio-scale data, its main 

inconvenience being the difficulty in handling data zeros. 

Correspondence analysis (Benzécri, 1973; Greenacre, 1984, 2007; Lebart, Morineau and 

Warwick, 1984) is one of a family of methods based on the singular value decomposition, and 

has become a standard method for graphically displaying tables of nonnegative data.  The 

method is particularly popular in the social and environmental sciences for analyzing frequency 

data (see, for example, Greenacre and Blasius (1994) and ter Braak (1985) respectively).  As 

emphasised by Benzécri, who originally developed correspondence analysis (CA) as a method 

for exploring large tables of counts in linguistics, a fundamental property of CA is the so-called 

principle of distributional equivalence: “Our first principle is that of distributional equivalence” 

(Benzécri, 1973: vol. I, p. 23).  This principle can be stated in a simplified form as follows: if 

two columns (resp., two rows) have the same relative values, then merging them does not affect 

the distances between rows (resp., columns).   

For example, consider the data in Table 1, the counts of the 26 letters of the alphabet in 12 

different English texts, pairs of which are written by the same author (these data are from dataset 

‘author’ provided originally in S-PLUS (2005) and included in the correspondence analysis ca 

package by Nenadić and Greenacre (2007) for R (R Development Core Team, 2007).   As we 

shall show later, although there are very small differences in relative frequencies of letters 

between texts, it is nevertheless possible to discriminate between the six authors, mainly due to 

differences in the use of consonants.  Since the vowels have distributions across the texts which 

are almost identical, it is possible to merge their counts into one category called “vowels”.  The 

principle of distributional equivalence ensures that the distances between texts (chi-square 

distances in CA) are hardly changed by merging these almost “distributionally equivalent” 

categories, and in the limit when the distributions are identical, these distances would remain 

unaffected.  For more details about distributional equivalence and a proof in the context of CA 

and related methods that follow this principle, see Benzécri (1973), Escofier (1978), Greenacre 

(1984: Section 4.1.17), Bavaud (2002) and Greenacre (2007: pp.37–38). 
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Compositional data analysis (Aitchison, 1986) is concerned with data vectors of (strictly) 

positive values summing to one, that is with the unit-sum constraint, or closure.  This 

methodology has become popular in the physical sciences, especially geology and chemistry.  

For example, chemical samples are typically analyzed into constituent components by weight or 

by volume, expressed as proportions of the total sample.  One of the founding principles of 

compositional data analysis is that of subcompositional coherence.  For example, suppose that a 

chemical sample has inorganic and organic components, and that scientist A is investigating all 

of these components, whereas scientist B is investigating just the organic components of the 

same samples.  B’s data constitute a subcomposition where proportions have been calculated 

relative to total organic material; that is, the values in the subcomposition have been “re-closed” 

to add up to 1.  Subcompositional coherence means that any relationships found by scientist B 

concerning the relationships between components of the subcomposition should be the same as 

scientist A’s, unaffected by the fact that B is looking at a reduced data set.   In our geometric 

framework we shall make this concept more precise by saying that measures of association or 

measures of dissimilarity between components, for example correlations or distances, are 

unaffected by considering subcompositions.   One way to guarantee subcompositional coherence 

is to analyse ratios of components, which are unaffected by forming subcompositions. 

For example, consider the data in Table 2 from Baxter, Cool and Heyworth (1990) on the 

percentages by weight of 11 elements in a sample of Roman glass cups found in archeological 

sites in Colchester.   The dominating element is Silicon (Si) and one might choose to make an 

analysis of the other 10 elements by themselves, re-closing their weights as percentages of the 

non-Silicon part in each sample.  Clearly, a measurement of relationship, for example a 

correlation, between two elements such as phosphorus (P) and potassium (K) should be invariant 

to whether we analyse the 10 elements alone or the full composition including Silicon. But the 

usual linear correlation coefficient would change in the subcomposition, hence the need for an 

alternative approach.  Now the ratio P/K of phosphorus to potassium remains unchanged 

whether it is part of the full composition or the subcomposition, so any measure of difference or 

association between P and K that depends only on these ratios across the samples will be 

invariant: for example, var[log(P/K)] = var[log(P)–log(K)], the variance of the differences in 

their logarithms, would be the same in the full composition and a subcomposition. 

Aitchison (1980, 1983) defined a variant of principal component analysis for compositional data, 

based on logarithmically transforming component ratios, called log-ratios.  Kazmierczak (1988) 

demonstrated several graphical properties of this method, which he called “logarithmic 

analysis”.  The biplot version of this display has several interesting properties, summarized by 

Aitchison and Greenacre (2002): for example, it is equivalent to analyze all the log-ratios for 
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pairs of components within samples or to analyse the logarithms of the components relative to 

their geometric mean for the sample.  However, although this “log-ratio biplot” has 

subcompositional coherence, it does not obey the principle of distributional equivalence.  This is 

unfortunate for compositional data analysis, because if two components were always occurring 

in the same proportion in every sample, then the analysis should be unaffected by considering 

these two components amalgamated into one.  In other words, in our glass cups example above, 

if the ratio P/K were constant across the samples, then we should be able to amalgamate their 

values into one value without changing the measure of distance between the glass cups.  

Distributional equivalence also means that any part of the composition can be broken down into 

subparts, all in proportion to the original part, without affecting the distances between cups.    

In this paper we will show that by introducing weights into Aitchison’s log-ratio analysis (LRA), 

in the same spirit that CA weights the rows and columns of a data table, the method does indeed 

achieve distributional equivalence.  In the particular case when the weights are proportional to 

the margins of the table, this method of data visualization turns out to be equivalent to spectral 

mapping, developed by Lewi (1976, 1980), in the specific context of the analysis of biological 

activity spectra.  In fact, the same issue of analyzing relative values rather than their original 

absolute values is present in this biomedical context as well as several other areas of research, 

outside the realm of compositional data.  For example, in the analysis of contingency tables 

vectors of relative frequencies, or profiles, are visualized in CA, while odds and odds ratios are 

analyzed in association modelling.  In the analysis of biometric measurements, for example 

measurements on animal skulls for purposes of classification, we are not interested so much in 

the overall level of the measurements, or “size”, but rather in their relative values, or “shape”.  In 

this latter case, the principle of distributional equivalence is again of importance: if one 

measurement is the sum total of smaller component measurements and if the component 

measurements are always in the same proportion across the individuals, then we should be able 

to retain just the sum, omitting its components (or retain the components, omitting the sum), 

without affecting our measure of distance between individuals.   

In the course of our explanation we will use the two data matrices given in Tables 1 and 2 to 

show how the weighted LRA functions, how its results are interpreted and how it compares to 

CA, in the context of frequency and compositional data.   
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2.     Weighted log-ratio analysis 

We consider a general matrix N (I  × J ) of positive values nij > 0, with row totals, column totals 

and grand total denoted by ni+, n+j and n respectively.  Denote by L the matrix of natural 

logarithms of the frequencies, l ij = log(nij).  In the case of compositional data, where ni+=1 for all 

i, Aitchison's “relative variation diagram” (Aitchison, 1980) consists of double-centring the 

matrix L with respect to averages of the rows and columns, followed by a singular value 

decomposition (SVD) to obtain least-squares matrix approximations and maps depicting rows 

and columns in a low-dimensional subspace. The same result can be achieved by row-centring L 

and then applying a regular principal component analysis (PCA) with column-centring but no 

column-normalization.   Aitchison and Greenacre (2002) describe the properties of the biplots 

that are obtained from the above SVD, specifically the form biplot that favours the display of 

distances between samples (rows), and the covariance biplot that favours the display of the 

components (columns), explained in more detail below.  

Applying this unweighted form of LRA to Baxter's cup data in Table 2, we obtain the form 

biplot in Figure 1.  This map shows three diagonal bands of points which are due to the element 

manganese (Mn), which takes on only three different values in the data set, all very small: 0.01 

(35 cups), 0.02 (10 cups) and 0.03 (2 cups).  These values, reported to two decimal places on a 

percentage scale, engender large differences on the logarithmic scale and in all log-ratios; for 

example, amongst themselves there are differences as high as threefold.  Hence manganese turns 

out to have the highest variance than any other component in the data set, while having the 

lowest percentage by weight.  As a consequence, this rare component dominates the solution, as 

can be seen in Figure 1: the cups with percentage values 0.01, 0.02 and 0.03 (samples 3 and 25 

have the highest values, 0.03%) project onto three separate locations on the Mn biplot axis 

(remember that the scale is logarithmic).  The three resulting bands are lining up with the other 

high variance component antimony (Sb) – see the first column of Table 3, described more fully 

later. 

One possible course of action is to omit an over-influential component such as manganese and 

analyse the remaining components as a subcomposition.  Another option, which we present here 

and which we believe to be more appropriate because it retains all the data, is to down-weight its 

influence in the graphical display by introducing weights in the analysis.  In CA the inherent 

weights are row and column sums relative to the grand total: r i = ni+/n and cj = n+j /n, which are 

called masses.  For a table of frequencies, the masses would be the row and column proportions, 

while if we applied CA to a matrix of compositional data, the row masses would be equal to a 

constant 1/I and the column masses would be the average proportions of the components across 

the samples.  Using these weights in the glass cups application would mean attributing 
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importance to the components proportional to their average weights, effectively down-weighting 

the influence of the manganese component.   Notice that using the margins of the table to define 

weights implicity assumes that all data are on the same scale. 

The argument we present below is valid for any chosen set of row or column weights; for 

example, in the case of compositional data one might have information about the precision of 

measurement, which could be used to define weights for the columns, and different row weights 

could be defined to correct for disproportionate sampling. When we consider amalgamating rows 

or columns, however, we assume that the weights are additive, that is the weight of two columns, 

for example, that are merged into one by summation, is the sum of the two weights.  

Let r be the vector of row weights, c the vector of column weights and Dr and Dc the 

corresponding diagonal matrices.  The only condition on the weights is that they be positive and 

– purely for notational convenience – be closed to sum to 1.   We shall discuss later the special 

case when we choose weights proportional to the table margins, as is the practice in CA.  

Otherwise, we follow very closely the CA approach: the row and column weights are introduced 

first into the double-centring stage, so that centring is with respect to weighted averages, and 

then – more importantly – into the matrix approximation stage, so that fitting is by weighted 

least squares.  As a direct result of the weighting, if we agglomerate  distributionally equivalent 

columns, and similarly agglomerate their weights, then the principle of distributional 

equivalence is satisfied (this result is proved in Section 3). 

We now summarize the four-step algorithm for performing a weighted LRA, including the 

definitions of the various maps of the rows and columns.  This methodology applies to any 

matrix of positive data, transformed to logarithms in the I × J matrix L, and using any sets of 

row and column weights, r and c, which are positive values summing to 1.  Since our main 

interest will be in the weights defined by the relative marginal totals as in CA, we use the term 

“mass” throughout for the weights.   

 
Step 1.  Double-centre the matrix L with respect to its weighted row and column averages, the 

order of centring being invariant.  That is, calculate the weighted averages of the rows of L, 

using the column masses to weight each column element:  l i·= Σj cj lij (i=1,···,I ) and then subtract 

these averages from all the elements in the corresponding row, l ij – li· (this is “weighted row-

centring”). Then perform “weighted column-centring” by calculating weighted averages of the 

columns, using the row masses to weight each element: Σi r i (l ij – l i·) (j=1,···,J ), and then subtract 

these averages from all the elements in the corresponding columns.  The result of this operation 

is a double-centred matrix with elements aij = l ij – l i· – l·j + l··, where the dot subscript indicates 
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weighted averaging over the corresponding subscript.  In matrix notation, this double-centring 

can be written as (where I is the identity matrix and 1 the vector of ones of appropriate order): 

   A = (I – 1rT)L(I – c1T)T            (1) 

. 

Step 2. To prepare the matrix for a weighted SVD, multiply aij by (r i cj)
1/2, that is multiply the 

rows and columns by the square roots of their respective masses:  

S = Dr
½ A Dc

½  

 

Step 3. Perform the SVD of this transformed matrix: 

S = U ΓΓΓΓ VT      where UTU = VTV = I 

where the singular values down the diagonal of ΓΓΓΓ are in descending order: γ1 ≥ γ2 ≥ ··· >0. 

 

Step 4. Calculate the standard coordinates (Greenacre, 1984) by dividing the rows of the matrix 

of left singular vectors by r i
½, and the rows of the matrix of right singular vectors by cj

½ : 

            (row standard)  X = Dr
–½ U                (column standard)  Y = Dc

–½ V 

The principal coordinates for the rows and columns are the standard coordinates scaled by the 

singular values: 

(row principal)  F = XΓΓΓΓ = Dr
–½ UΓΓΓΓ            (column principal)  G = YΓΓΓΓ = Dc

–½ VΓΓΓΓ 

In general, the coordinates can be written Dr
–½UΓΓΓΓα (for the rows) and Dc

–½VΓΓΓΓβ (for the columns), 

the above options being α and β equal to 1 or 0 for principal and standard coordinates 

respectively.  Notice how the masses are used to pre-transform the matrix in step 2 and post-

transform the resultant singular vectors in step 4, which engenders a weighted (or generalized) 

SVD on the centred matrix A (for a description of the generalized SVD see Greenacre, 1984: 

Appendix 1).    

As in all methods of this type, we can choose to represent either of two so-called asymmetric 

maps: 

(i) Use F and Y to represent the rows and columns respectively – this map is also called 

“row-principal” or “row-metric-preserving (RMP)” (Gabriel, 1971), with α = 1, β = 0. 

(ii)  Use X and G to represent the rows and columns respectively – this asymmetric map is 

called “column-principal”, or “column-metric-preserving (CMP)”, with α = 0, β = 1.   

For representing the points in a two-dimensional map, for example, use the first two columns of 

the respective coordinate matrices defined above. 
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Both asymmetric maps are biplots in the true sense of the term (Gabriel, 1971), characterized by 

the condition α + β = 1, where row–column scalar products approximate the elements of the 

double-centred matrix A.  When the data are in the usual cases-by-variables format, Aitchison 

and Greenacre (2002) call the RMP biplot a form biplot and the CMP biplot a covariance biplot.  

A popular alternative map, especially in CA, is the symmetric map where both rows and columns 

are represented in principal coordinates F and G respectively (α = 1, β = 1).  The symmetric map 

is, strictly speaking, not a biplot (see, for example, Greenacre, 1993), but Gabriel (2002) shows 

that the scalar-product approximations are not substantially degraded in most cases.   

The description of the weighted LRA method so far allows for any weighting system on the rows 

and the columns.  In many situations, in the absence of additional information, the row and 

column margins of the original data table provide an excellent default weighting system, which 

is the one we shall use here in our applications.  Thus, in the analysis of Table 2, the element 

manganese will be considerably down-weighted in the least-squares fitting of the plane of our 

biplot solution.   Figure 2 shows the corresponding form biplot for Table 2, verifying that the 

role played by manganese has diminished dramatically.  Although the element antimony (Sb) 

appears to be an outlier, its role is also not so strong owing to its low mass in the analysis.  The 

outlying positions of points with low masses is a phenomenon that occurs in CA as well, and is 

partly due to the scaling of the asymmetric map.  Greenacre (2007: Chapter 13) proposes an 

alternative biplot, called the “standard biplot”, where the points in standard coordinates (the 

components in this case) are multiplied by the square roots of their masses, in which case the 

lengths of the vectors are directly related to their contributions to the solution.  In any case, to 

understand numerically the true role of each component in the solution, the contributions of each 

component can be calculated, as is done regularly in CA (see, for example, Greenacre, 2007: 

chapter 11).  Table 3 shows the percentage contributions of the 11 elements to the two-

dimensional maps of Figures 1 and 2.  In the unweighted analysis the contribution by manganese 

(Mn) to the variance of the two-dimensional map is the highest (39.48%), while it drops to one 

of the lowest in the weighted analysis (0.37%).  On the other hand, the most common element 

silicon (Si) contributes 7.11% to the unweighted map, and when its very high weight is 

incorporated in the analysis its contribution rises to 21.05%.  Notice that the very large weight 

given to silicon, which is on average 72.31% by weight of the glass cups, does not increase its 

contribution exorbitantly, because the point Si is now much closer to the centroid (weighted 

average), and a point’s contribution is equal to its mass times squared distance to the centroid.  

Hence, the weighting is important in centring the data as well. 

Points that are displayed in principal coordinates are approximating distances between the rows 

or columns of the original data matrix.   For example, in Figure 2 where the rows are represented 

in principal coordinates, the true underlying (squared) distance function between rows i and i' is: 
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where the (j,j') -th term is weighted by the product cjcj' of the weights.   

With a slight re-arrangement within the parenthesis, this squared distance (3) is identical again 
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showing that log-ratios can be considered between pairs of values in the same column rather 

than across columns.   Another alternative form of the weighted LRA distance function in (3) or 

(4) is in terms of the logarithms of odds-ratios for the four cells defined by row indices i,i'  and 

column indices j,j' : 
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Zero distance between a pair of rows means that all ratios are equal, that is the rows have the 

same relative values, or profile: nij/ni+= ni'j /ni'+ .  Thus, if the distance between rows i and i' is 

short in the display, and assuming that the display is an accurate representation of the data, this 

indicates that the rows are approximately proportional to one another, just as in CA.  If the data 

are compositional with the unit-sum constraint, this would imply approximate equality in their 

compositions.  Similarly, if two column points j and j' displayed in principal coordinates are 

close together, this would indicate similar column profiles. For compositional data similar 

column profiles would mean that – although the overall levels of two components are different – 

they have similar “peaks” and “troughs” across the samples (for example, component j occurs 

approximately twice as much as component j' in all samples). 

Any of the equivalent forms (2) – (5) of the squared distance between rows applies similarly to 

distances between columns; for example, formula (5) can be rewritten for columns as: 
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This form shows that the values in parentheses would be unaffected by defining 

subcompositions of the columns, followed by rowwise closure, since the ratios nij/nij'  for 

subcomponents j and j' in each row would remain the same as their values in the full 

composition.   The weights r i would be equal to 1/I in both composition and subcomposition, so 

this illustrates the subcompositional coherence property mentioned earlier in terms of invariance 

of the distance.   In the more general case of a contingency table, however, the margins of a 

subset of rows would differ from those of the complete table and induce changes in the masses 

r i , which would affect the distance function.  In this case a version of weighted LRA could be 

used which maintains the original masses of the table in all analyses of subtables, as Greenacre 

and Pardo (2006) have proposed in the case of CA. 

To express the total variance in the table, we can calculate the weighted sum of squared 

distances of the rows (or columns) to their centroid.  In LRA, however, the centroid is of no 

practical interest – it is rather the row-to-row and column-to-column distances and directions that 

are interpreted, since these approximate the log-ratios.  The measure of total variance can thus be 

equivalently expressed in a more relevant form as ∑∑ ′< ′′ii iiii drr 2 or ∑∑ ′< ′′jj jjjj dcc 2 , called 

the “geometric variability” by Cuadras and Fortiana (1998).  Bavaud (2002) calls the ability to 

express the total variance in this equivalent way, summing over all pairs of squared interpoint 

distances,  as “Huygens weak principle”. 

All the properties of the unweighted LRA described by Aitchison and Greenacre (2002) carry 

over to the weighted version described here, the only difference being in the centring of the 

matrix and the weighted approximation, giving more or less weight to the elements of the 

double-centred matrix according to the row and column margins.    

 

3.     Principle of distributional equivalence 

We now prove that the weighted LRA map obeys the principle of distributional equivalence.  

Suppose that two columns j and j'  have the same profile, that is the ratios nij/nij'   are identical for 

all rows i.  Without loss of generality we can assume that these are the first two columns, j = 1 

and j' = 2, and that these ratios are equal to a constant K, so that ni1 = K ni2 .  Let us now 

amalgamate these two columns into one column with values equal to ni1 + ni2 = (K+1) ni2 (i  = 1,…, 

I), and column mass c1 + c2.  The distances between columns are unaffected by this merger, since 

we have just replaced two column points at the same position by one with mass equal to the sum 
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of the previous two masses.  The more challenging property to prove is that the distances 

between rows are unaffected.  In the distance formula (3) for weighted LRA all terms with log-

ratios not involving columns 1 and 2 are unaffected by the merger, so we just need to consider 

terms involving columns 1 and 2 before and after they are combined.  Before the merger, the 

first term of (3), for (j, j'  ) = (1, 2), is equal to 0 since the ratios are equal and have zero 

difference.  The other terms involving log-ratios with columns 1 and 2 can be written as: 
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because the factor K disappears in the subtraction of the log-ratios.   After the merger, columns 1 

and 2 are eliminated and a new column is formed by adding the previous columns 1 and 2.  The 

terms in the distance function corresponding to log-ratios with respect to this new column are: 
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where again the factor (1+K) cancels out from the log-ratio differences.  Since (6) and (7) are 

identical, the distances between the rows are shown to be unaffected by the merging of these 

columns, so the principle of distributional equivalence is satisfied. 

 

4.     Application to non-compositional data: spectral mapping 

The methodology described in Section 2 applies just as well to positive data that are not 

necessarily compositional, for example contingency tables or any data measured on a ratio scale.  

Lewi (1976) independently developed this method, the “spectral mapping” for the analysis and 

visualization of biological activity spectra.  These spectra define an I × J table of biological 

activities of a set of I compounds as observed in a battery of J tests.  Later Lewi (1980) proposed 

weights monotonically related to the table margins, since more importance is given to more 

potent compounds (compounds that are highly active in all or most tests) and to tests that are 

(6) 

(7) 
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more sensitive (tests that produce higher activities from all or most compounds.  In this weighted 

form of spectral mapping, also known as spectral map analysis (SMA), Lewi also found that the 

marginal “masses” of the table constitute good default weights in the analysis of the double-

centred table, where the double-centring removes the component of potency and sensitivity of 

tests. 

Following the work of Lewi (1998), this weighting applies equally well to count data: for 

example, applying these weights to the rows and columns of the letter counts in Table 1, ratios 

would be weighted higher when the overall counts are higher.  As shown in the distance 

formulations (3) and (4), one can think of the log-ratios row-wise or column-wise: either the 

ratios between counts of different letters within the same text are visualized, or the ratios 

between counts for the same letter across the texts.  Figure 3 shows the resulting symmetric 

weighted LRA (or SMA) map where both texts and letters are represented in principal 

coordinates.  The symmetric map has the advantage that the row and column points can be 

plotted on the same scale (compare with Figure 2, where it was necessary to scale up the row 

coordinates to represent the rows on the same scale as the columns), and both configurations 

have a distance interpretation.  The most surprising result of this display is the proximity of the 

pairs of texts by the same author – one might think that letter counts would not discriminate well 

between authors, but this map shows otherwise.  In fact, a permutation test shows that no other 

allocation of the 12 row labels (amongst over 10000 possible allocations) gives a lower sum of 

the six “within-author” distances than the labelling of the configuration in Figure 3 – in this 

sense the authors are discriminated in the map with a P-value less than 0.0001.    

Gabriel (1972) showed how the biplot represents differences between variables as the vectors 

joining them.  These links, i.e. vectors joining pairs of letters in this example, represent 

logarithms of ratios of two letters.  In the case of compositional data, Aitchison and Greenacre 

(2002) showed that points that lie in straight lines are an indication of constant “log-contrasts”.  

This property carries over to the general case of the present example.  For example, in Figure 3 

the letters k, y and x are closely aligned, and Table 4 shows the ratios of k and y with respect to 

x and the corresponding log-ratios.  Figure 4 plots log(y/x) versus log(k/x) and there is a clear 

linear relationship (correlation = 0.93).  The weighted regression equation, using the row (book) 

weights r i,  has a slope of 0.80 and an intercept of 1.34.  This implies the model: 

  log(y/x) = 0.80 log(k/x) + 1.34 

or    log(y) – 0.20 log(x) – 0.80 log(k) =  1.34                (8) 

i.e.                             y = 3.81 x 
0.2

 k 
0.8                         (9) 
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On the left of (8) is a linear combination of logarithms of the three letters, with coefficients 

adding up to 0, hence the term log-contrast.  Their equivalent multiplicative form, exemplified 

by (9) has index powers on both sides of the equation having the same sum (1 in this case).  In 

many applications constant log-contrasts such as (8) have a clear substantive meaning and are 

associated with equilibrium relationships, for example in geology and population genetics 

(Aitchison, 1980).  In the present linguistic context of English texts it is not known if the above 

equilibrium relationship between the letters k, x and y has any particular substantive relevance, 

but the relationship is certainly apparent in this data set. 

 

5.     Relationship to correspondence analysis 

The SVDs on which the weighted LRA (SMA) and CA are based are closely connected.  Let us 

first summarize the matrices being decomposed in each case.  We have already seen that the 

spectral map double-centres the matrix L = log(N), using weights proportional to the table 

margins (CA masses) A = (I – 1rT)L(I – c1T)T (see formula (1)).  Then A is decomposed using a 

weighted SVD.  Since any constant row- or column-effect added to the elements of L will be 

removed by the double-centring, let us define L* as the matrix of logarithms of the so-called 

Pearson contingency ratios, denoted by qij: 

)log()log()log()log(
/

log)log(* nnnn
nnn

n
ql jiij

ji

ij
ijij +−−=














== ++

++

      (10) 

so that A can be written equivalently as: A = (I – 1rT)L* (I – c1T)T. The contingency ratios are 

the observed values divided by the “expected” values, where expected value is defined as that 

obtained if the profiles of the rows (or of the columns) agree perfectly with the average profiles 

defined by the table margins (the terms observed and expected are used in the context of 

contingency tables, where the expected value is under the independence hypothesis, but we 

extend their usage here to all tables of positive numbers).  Lewi (1998) aptly terms the 

contingency ratios as the double-closure of the original table, since the (weighted) row and 

column sums of the matrix Q of contingency ratios are all equal to 1. 

Now CA, which has many equivalent definitions, can be defined as the double-centring with 

respect to weighted averages (using the masses as weights) of the matrix Q, followed by the 

weighted SVD.  We have the following well-known approximation, using a first-order Taylor 

approximation: 

 log(qij) = log(1+ qij – 1) ≈ qij –1 
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when qij –1 is small.  Since double-centring of Q–11T yields the same matrix as double-centring 

of Q, it follows that weighted LRA (SMA) and CA tend to the same solution as  

qij –1 tends to 0, that is as “observed” values tend to “expected” ones.  In practical terms, 

whenever variance (called inertia in CA) in a matrix is low, the two methods will give 

approximately the same results.  In the case of both practical examples considered here, the 

variance is indeed low, especially for the letter counts of Table 1.  Figure 5 shows the CA 

symmetric map of Table 2 and it is indeed quite similar to Figure 3, even the amounts and 

percentages of inertia on each dimension are similar in value.  While CA has several interesting 

graphical properties of its own, such as optimal scaling and maximizing correlation between 

rows and columns (see, for example, Greenacre (2007: chapter 7)), it does not have 

subcompositional coherence, nor does it have the model diagnostic features of the weighted log-

ratio map – for example, the letters k, x and y are no longer lined up in Figure 5.  

 

5.     Relationship to association modelling 

Association modelling (Goodman 1968, 1983) for contingency tables is concerned with models 

for the probability πij that a case falls into the (i,j)-th cell of the table.  Specifically, the so-called 

RC(M) association model, where R stands for “row”, C for “column” and “M” for the number of 

bilinear terms in the model, can be written as: 

  jMiMMjiejiij
νµφνµφβαπ ++= K111           (11) 

where αi , βj ,φm ,µim ,νjm are parameters of the model (i=1,…,I; j=1,…,J; m=1,…,M) with various 

identification constraints.  In logarithmic form this is: 

∑
=

++=
M

m
jmimmjiij

1

)log()log()log( νµφβαπ         (12) 

If M = min{I–1, J–1} the model is called “saturated”, since it will fit the data perfectly.  Usually 

values M = 1 or 2 are used, the model is fitted by maximum likelihood to the data, and then 

hypothesis testing allows decisions to be made about how many terms are needed to fit the data, 

or whether some parameters are equal.  Such tests are valid for contingency tables established 

from a random sample of n individuals on whom two categorical variables are observed.  Notice 

that the RC(M) model estimates the cell probabilities πij  , which are strictly positive, but the data 

can have zero values.   

The parametric model (12) has a form very similar to the data decomposition in the weighted 

LRA (SMA) and the CA described previously, which can be written respectively as follows,  

where pij = nij /n : 
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where the approximation for CA holds if the summation in (14) is small, i.e., when the data is 

close to independence (low inertia).  The essential difference between these three methods is 

thus the way the row and column “main effects” and “interaction terms” are estimated.  In 

weighted LRA the weighted row and column averages of the logarithms of observed 

probabilities estimate the main effects and the interaction terms are obtained by a weighted SVD 

of the residuals.  In CA the row and column sums estimate the (multiplicative) main effects and 

the interaction terms are obtained by a weighted SVD of the residuals.  In association modelling, 

main effects and interaction terms are estimated simultaneously, for a given “dimensionality” M, 

by maximum likelihood.  The similarity between (12) and (13) suggest that association 

modelling, using the marginal proportions as weights, and weighted LRA will give 

approximately the same answers, which is indeed the case.  We fitted the RC(2) model to the 

author data using the LEM program (Vermunt, 1997) and the results differ only very slightly 

from those reported in Figure 5.  

 

6.     Discussion 

In this article we have shown how the introduction of row and column weights improves both 

the theoretical properties and practical application of log-ratio analysis.  With the convention 

that weights be added if rows or columns are merged, weighted LRA maps, alias spectral map 

analysis, obey the principle of distributional equivalence.  The chi-square distance in CA and the 

weighted log-ratio distance are not the only distances that obey this principle.  Escofier (1978) 

shows that the Hellinger distance also has this property: using previous notation, the Hellinger 

distance (squared) between rows i and i' is: 

2
2 ∑ 
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 (see also Cuadras, Cuadras and Greenacre (2006)).  It can also be shown, in a similar way as in 

Section 3, that a weighted form of normalized PCA is also distributionally equivalent.  For 

example, for a table N of non-negative data, normalize the columns j by dividing by any 

appropriate scale-dependent quantity sj such as the standard-deviation, sum, maximum or range.  

Then, again using column weights cj applicable to the problem, define the squared distance      

between rows as: 

   CA:  (14) 
  (SMA) 
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Notice here that the data elements can be considered transformed by a single scale value 

jj sc / , but the two parts of this quotient play different roles in the analysis: the sj normalize 

the columns to make the columns comparable (the columns could be ratio-scale variables or 

components in compositional data), while the cj are used in the centring and weight least-squares 

fitting of the normalized data.  This weighted, normalized PCA has distributional equivalence 

but not subcompositional coherence.   

Bavaud (2002, 2004) defines a broad class of distances based on the contingency ratios (which 

he aptly calls “independence quotients”), where all distances in this class obey the distributional 

equivalence principle (Bavaud calls these distances “aggregation invariant”).  However, this 

class does not include the weighted LRA distance (2) but an alternative where the denominators 

in (2) are the row means rather than their weighted geometric means; in other words, Bavaud’s 

log-transformed data are centred by the log of the mean rather than the mean of the logs. 

SMA was developed originally by Lewi (1976) for the analysis of biological activity spectra in 

the context of drug development.  This method has been used extensively in biomedical 

research, for example Wouters et al. (2003) apply it to gene expression data from microarrays 

and compare it with principal component analysis and CA.  In this application context the 

rationale for the weighting of the rows and columns of the log-transformed data has been to take 

into account the higher importance of potent compounds and sensitive tests, as explained in 

Section 4, but the weighting makes sense in the analysis of contingency tables and compositional 

data as well.  As in the case of Table 1, we often find that there is larger relative error in data of 

lower value, so that weighting the log-ratios takes the precision of measurement into account in 

this particular way.    In the CA of a contingency table, the rationale is similar, since under the 

assumption of independence, the variability of the contingency ratio for the (i,j)-th cell is 

approximately 1/(r icj), which justifies the weighting in the least-squares formulation by r icj, 

approximately normalizing of the contribution of each row-column term.    

In the case of count or abundance data nij, weighted LRA has the disadvantage of being 

applicable to strictly positive data only, which rules it out for many social science applications 

and most ecological applications where data matrices contain many zero frequencies.  At a low-

level occurrence of zero data nij = 0, one can apply the transformation C + nij  for a positive 

constant C that depends on the context.  In the case of the author data, which had only one zero 

count, we simply replaced the zero with the value ½.  In the case of compositional data and other 

measurement data, zero values can be replaced by some fraction of the detection limit followed 
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by an additive or multiplicative adjustment of the remaining values (see Martín-Fernández et al., 

2003, for an investigation of the problem of zero values in this context, as well as Beardah et al., 

2003, for an extensive practical study of zero treatment strategies as well as a comparison of 

several alternatives to LRA in compositional data analysis).  Apart from this drawback, the 

method has very similar properties to CA, with several additional benefits such as 

subcompositional coherence and the model diagnostic properties.   Thus, in the case of strictly 

positive data matrices, weighted LRA alias SMA may be judged superior to CA from a 

theoretical point of view.  In the usual context of CA applications, mostly contingency tables in 

the social sciences, subcompositional coherence can sometimes be relevant, as explained by 

Greenacre and Pardo (2006) who describe how a variant of CA can be used to analyse subtables 

of rows and/or columns of a contingency table.  In this so-called subset CA the masses of the full 

table are maintained and the proportions are not closed in the analysis of the subtable, thus 

giving a “subset coherent” version of CA.  
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Table 1   Letter counts in 12 samples of texts from books by six different authors (R 

Development Core Team, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: TD (Three Daughters), EW (East Wind) – Buck (Pearl S. Buck) 

  Dr (Drifters), As (Asia) – Mich (James Michener) 

  LW (Lost World), PF (Profiles of Future) – Clark (Arthur C. Clarke) 

  FA (Farewell to Arms), Is (Islands) – Hem (Ernest Hemingway) 

  SF7 and SF6 (Sound and Fury, chapters 7 and 6) – Faul (William Faulkner) 

  Pen3 and Pen2 (Bride of Pendorric, chapters 3 and 2) – Holt (Victoria Holt)  

 

 

Abbrev. a b c d e f g h i j k l m
TD-Buck 550 116 147 374 1015 131 131 493 442 2 52 302 159
EW-Buck 557 129 128 343 996 158 129 571 555 4 76 291 247
Dr-Mich 515 109 172 311 827 167 136 376 432 8 61 280 146
As-Mich 554 108 206 243 797 164 100 328 471 4 34 293 149
LW-Clark 590 112 181 265 940 137 119 419 514 6 46 335 176
PF-Clark 592 151 251 238 985 168 152 381 544 7 39 416 236
FA-Hem 589 72 129 339 866 108 159 449 472 7 59 264 158
Is-Hem 576 120 136 404 873 122 156 593 406 3 90 281 142
SF7-Faul 541 109 136 228 763 126 129 401 520 5 72 280 209
SF6-Faul 517 96 127 356 771 115 189 478 558 6 80 322 163
Pen3-Holt 557 97 145 354 909 97 121 479 431 10 94 240 154
Pen2-Holt 541 93 149 390 887 133 154 463 518 4 65 265 194

Abbrev. n o p q r s t u v w x y z
TD-Buck 534 516 115 4 409 467 632 174 66 155 5 150 3
EW-Buck 479 509 92 3 413 533 632 181 68 187 10 184 4
Dr-Mich 470 561 140 4 368 387 632 195 60 156 14 137 5
As-Mich 482 532 145 8 361 402 630 196 66 149 2 80 6
LW-Clark 403 505 147 8 395 464 670 224 113 146 13 162 10
PF-Clark 526 524 107 9 418 508 655 226 89 106 15 142 20
FA-Hem 504 542 95 0 416 314 691 197 64 225 1 155 2
Is-Hem 516 488 91 3 339 349 640 194 40 250 3 104 5
SF7-Faul 471 589 84 2 324 454 672 247 71 160 11 280 1
SF6-Faul 483 617 82 8 294 358 685 225 37 216 12 171 5
Pen3-Holt 417 477 100 3 305 415 597 237 64 194 9 140 4
Pen2-Holt 484 545 70 4 299 423 644 193 66 218 2 127 2



 21 

Table 2   Percentage compositions of 47 Roman glass cups (Baxter et al 1990). 

 Cups Si Al Fe Mg Ca Na K Ti P Mn Sb
1 75.2 1.84 0.26 0.47 5.00 16.3 0.44 0.06 0.04 0.01 0.36
2 72.4 1.80 0.28 0.46 5.89 18.2 0.44 0.06 0.04 0.01 0.33
3 69.9 2.08 0.40 0.57 6.33 19.5 0.54 0.09 0.06 0.03 0.44
4 70.2 2.23 0.41 0.60 6.10 19.5 0.42 0.08 0.05 0.01 0.34
5 73.0 2.16 0.35 0.51 5.66 17.3 0.44 0.07 0.05 0.01 0.37
6 74.2 2.02 0.33 0.51 5.34 16.5 0.52 0.07 0.05 0.01 0.35
7 74.2 1.80 0.25 0.39 5.35 17.1 0.44 0.06 0.04 0.01 0.31
8 74.4 1.74 0.27 0.42 5.41 16.8 0.49 0.06 0.05 0.01 0.31
9 72.8 1.81 0.30 0.66 5.86 17.6 0.40 0.07 0.04 0.01 0.33

10 74.8 1.71 0.22 0.35 5.48 16.3 0.42 0.06 0.05 0.01 0.51
11 75.0 1.74 0.22 0.32 5.03 16.8 0.43 0.05 0.05 0.01 0.30
12 73.8 1.93 0.31 0.42 4.94 17.6 0.43 0.05 0.04 0.01 0.38
13 70.3 1.94 0.30 0.44 6.31 19.5 0.57 0.07 0.05 0.01 0.39
14 72.7 1.74 0.25 0.37 5.90 17.8 0.50 0.06 0.05 0.01 0.53
15 74.3 1.88 0.30 0.40 4.76 17.3 0.41 0.05 0.04 0.01 0.48
16 70.2 2.23 0.42 0.56 6.65 18.7 0.61 0.09 0.06 0.02 0.35
17 73.1 1.90 0.29 0.41 5.13 18.2 0.45 0.05 0.04 0.01 0.31
18 73.7 1.78 0.23 0.32 4.98 18.1 0.45 0.06 0.04 0.01 0.27
19 73.3 1.89 0.30 0.41 5.37 17.8 0.42 0.07 0.04 0.01 0.30
20 71.7 1.75 0.27 0.42 6.04 19.0 0.41 0.06 0.05 0.01 0.24
21 73.7 1.80 0.25 0.36 5.15 17.9 0.45 0.06 0.04 0.01 0.18
22 73.1 1.82 0.23 0.32 5.13 18.4 0.46 0.06 0.04 0.01 0.38
23 73.0 1.90 0.27 0.44 5.48 17.9 0.52 0.07 0.05 0.01 0.28
24 68.8 2.03 0.38 0.51 7.02 20.0 0.59 0.07 0.06 0.02 0.40
25 70.2 2.11 0.42 0.59 6.53 19.0 0.53 0.08 0.06 0.03 0.33
26 70.5 2.11 0.39 0.56 6.18 19.1 0.57 0.07 0.05 0.02 0.37
27 72.7 1.96 0.30 0.50 5.58 17.9 0.52 0.07 0.05 0.02 0.28
28 73.1 1.78 0.26 0.42 5.48 17.9 0.46 0.06 0.05 0.01 0.36
29 69.3 2.21 0.45 0.54 6.87 19.4 0.57 0.10 0.06 0.02 0.41
30 70.2 2.25 0.43 0.54 6.77 18.7 0.54 0.09 0.06 0.02 0.31
31 74.4 1.94 0.26 0.46 5.07 17.0 0.47 0.07 0.05 0.01 0.18
32 73.9 1.90 0.26 0.46 5.04 17.6 0.45 0.07 0.04 0.01 0.20
33 72.6 1.81 0.27 0.41 5.48 18.5 0.37 0.07 0.05 0.01 0.31
34 69.9 1.87 0.32 0.46 6.34 19.8 0.58 0.07 0.06 0.02 0.49
35 69.7 2.04 0.36 0.48 6.20 19.8 0.56 0.07 0.06 0.01 0.58
36 72.3 2.08 0.36 0.53 5.47 18.0 0.58 0.08 0.06 0.01 0.49
37 70.5 2.00 0.33 0.59 5.83 19.8 0.42 0.09 0.05 0.01 0.33
38 72.3 1.71 0.21 0.36 5.27 18.8 0.48 0.06 0.07 0.01 0.63
39 72.2 2.02 0.34 0.51 5.36 18.4 0.54 0.08 0.05 0.01 0.46
40 73.8 1.88 0.26 0.45 5.12 17.6 0.45 0.07 0.05 0.01 0.21
41 72.4 1.92 0.29 0.48 5.45 18.4 0.51 0.07 0.05 0.02 0.38
42 72.6 2.00 0.33 0.46 5.41 17.7 0.75 0.08 0.08 0.01 0.54
43 71.6 1.90 0.27 0.48 5.32 19.4 0.47 0.06 0.05 0.01 0.35
44 72.3 2.03 0.30 0.48 5.41 18.6 0.50 0.07 0.05 0.01 0.21
45 73.4 1.93 0.24 0.37 5.18 17.8 0.55 0.06 0.04 0.01 0.30
46 71.7 2.02 0.42 0.53 5.73 18.3 0.62 0.10 0.06 0.02 0.39
47 69.3 2.04 0.40 0.50 6.85 19.5 0.62 0.08 0.06 0.02 0.57

mean 72.31 1.94 0.31 0.46 5.66 18.24 0.50 0.07 0.05 0.01 0.36
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Table 3   Percentage contributions by components in unweighted and weighted log-ratio maps, 

where the weights are given by the column means of Table 2.  In the unweighted analysis the 

rare components Mn and Sb dominate, while in the weighted analysis more components 

contribute to the solution, including the most frequent one, Si. 

 

 

 

 

 

 

 

 

 

unweighted     weighted
Si 7.11 21.05
Al 2.57 2.76
Fe 2.15 4.34

Mg 2.94 3.44
Ca 0.51 25.93
Na 2.89 22.33

K 0.23 2.20
Ti 1.92 0.53
P 0.80 0.37

Mn 39.48 0.37
Sb 39.39 16.68
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Table 4    Ratios and log-ratios between letter counts for y, k and x  

 

Book y/x k/x ln(y/x) ln(k/x)
TD-Buck 30.0 10.4 3.401 2.342
EW-Buck 18.4 7.6 2.912 2.028
Dr-Mich 9.8 4.4 2.281 1.472
As-Mich 40.0 17.0 3.689 2.833
LW-Clark 12.5 3.5 2.523 1.264
PF-Clark 9.5 2.6 2.248 0.956
FA-Hem 155.0 59.0 5.043 4.078
Is-Hem 34.7 30.0 3.546 3.401
SF7-Faul 25.5 6.5 3.237 1.879
SF6-Faul 14.3 6.7 2.657 1.897
Pen3-Holt 15.6 10.4 2.744 2.346
Pen2-Holt 63.5 32.5 4.151 3.481
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Figure 1   Unweighted log-ratio biplot of Baxter data, showing rows in principal coordinates and 

columns in standard coordinates (form biplot). Row coordinate values have been multiplied by 

10.  The two-dimensional solution explains 70.0% of the total variance. 
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Figure 2   Weighted log-ratio biplot of Baxter data, showing rows in principal coordinates and 

columns in standard coordinates (form biplot).  Row coordinate values have been multiplied by 

50.  The two-dimensional solution explains 79.7% of the total variance. 
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Figure 3   Weighted log-ratio map of author data, showing both rows and columns in principal 

coordinates (symmetric map). The two-dimensional solution explains 59.5% of the total 

variance. 
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Figure 4   Scatterplot of log-ratios in Table 4, showing the relationship diagnosed by the lining 

up of letters k, x and y in the weighted log-ratio map of Figure 3.  The regression line indicated 

has slope 0.80 and intercept 1.34. 
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Figure 5   CA map of author data, showing both rows and columns in principal coordinates 

(symmetric map).  The two-dimensional solution explains 60.6% of the total inertia. 
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