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Summary. We consider two fundamental properties in the analysis of two-way tables of
positive data: the principle of distributional equivalence, one of the cornerstones of
correspondence analysis of contingency tables, and the principle of subcompositional
coherence, which forms the basis of compositional data analysis. For an analysis to be
subcompositionally coherent, it suffices to analyse the ratios of the data values. A
common approach to dimension reduction in compositional data analysis is to perform
principal component analysis on the logarithms of ratios, but this method does not obey
the principle of distributional equivalence. We show that by introducing weights for the
rows and columns, the method achieves this desirable property and can be applied to a
wider class of methods. This weighted log-ratio analysis is theoretically equivalent to
“spectral mapping”, a multivariate method developed almost 30 years ago for displaying
ratio-scale data from biological activity spectra. The close relationship between spectral
mapping and correspondence analysis is also explained, as well as their connection with
association modelling. The weighted log-ratio methodology is used here to visualize
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1. Introduction

There are a number of techniques available for niutidimensional analysis of tables of
nonnegative data, for example, principal comporaralysis, correspondence analysis and, in
the special case of compositional data, varioushaust based on analysing ratios between
components.  Our objective in this paper is tongra the foundational principles on which
such methods are constructed and to show how thigodeeare related, both from a theoretical
and practical point of view. In the course of description we shall focus on a method based
on a weighted form of log-ratio analysis, also edlithe “spectral map”, which has all the
favourable properties one might wish for when asialy positive ratio-scale data, its main

inconvenience being the difficulty in handling dataos.

Correspondence analysis (Benzécri, 1973; Greendd84, 2007; Lebart, Morineau and
Warwick, 1984) is one of a family of methods basedthe singular value decomposition, and
has become a standard method for graphically disgatables of nonnegative data. The
method is particularly popular in the social angiemmental sciences for analyzing frequency
data (see, for example, Greenacre and Blasius J1®8%d ter Braak (1985) respectively). As
emphasised by Benzécri, who originally developedespondence analysis (CA) as a method
for exploring large tables of counts in linguistiesfundamental property of CA is the so-called
principle of distributional equivalencéOur first principle is that of distributional etyalence”
(Benzécri, 1973: vol. |, p. 23). This principlenche stated in a simplified form as follows: if
two columns (resp., two rows) have the same r@atalues, then merging them does not affect

the distances between rows (resp., columns).

For example, consider the data in Table 1, the tsoafithe 26 letters of the alphabet in 12
different English texts, pairs of which are writteynthe same author (these data are from dataset
‘author’ provided originally in S-PLUS (2005) anadcluded in the correspondence analysis
package by Nenagliand Greenacre (2007) for R (R Development CorenT&®07). As we
shall show later, although there are very smalfediihces in relative frequencies of letters
between texts, it is nevertheless possible to idiscate between the six authors, mainly due to
differences in the use of consonants. Since teelgohave distributions across the texts which
are almost identical, it is possible to merge tleewnts into one category called “vowels”. The
principle of distributional equivalence ensurestttize distances between texts (chi-square
distances in CA) are hardly changed by mergingehasiost “distributionally equivalent”
categories, and in the limit when the distributiame identical, these distances would remain
unaffected. For more details about distributiomgliivalence and a proof in the context of CA
and related methods that follow this principle, Bemzécri (1973), Escofier (1978), Greenacre
(1984: Section 4.1.17), Bavaud (2002) and Green@6@7: pp.37-38).



Compositional data analysis (Aitchison, 1986) isxamned with data vectors of (strictly)
positive values summing to one, that is with that-sam constraint, orclosure This
methodology has become popular in the physicahseig especially geology and chemistry.
For example, chemical samples are typically analym&® constituent components by weight or
by volume, expressed as proportions of the totalpga One of the founding principles of
compositional data analysis is thatsobbcompositional coherencé-or example, suppose that a
chemical sample has inorganic and organic compenant that scientist A is investigating all
of these components, whereas scientist B is imyaitig just the organic components of the
same samples. B’s data constitute a subcompositi@are proportions have been calculated
relative to total organic material; that is, théues in the subcomposition have been “re-closed”
to add up to 1. Subcompositional coherence mdwisany relationships found by scientist B
concerning the relationships between componentseobubcomposition should be the same as
scientist A’s, unaffected by the fact that B iskimy at a reduced data set. In our geometric
framework we shall make this concept more precissdying that measures of association or
measures of dissimilarity between components, fanmgple correlations or distances, are
unaffected by considering subcompositions. Ong twa@uarantee subcompositional coherence

is to analyse ratios of components, which are ectdtl by forming subcompositions.

For example, consider the data in Table 2 from &ax€ool and Heyworth (1990) on the
percentages by weight of 11 elements in a sampkoafian glass cups found in archeological
sites in Colchester. The dominating element lie®i (Si) and one might choose to make an
analysis of the other 10 elements by themselveslosing their weights as percentages of the
non-Silicon part in each sample. Clearly, a measent of relationship, for example a
correlation, between two elements such as phospl{Bjuand potassium (K) should be invariant
to whether we analyse the 10 elements alone ofutheomposition including Silicon. But the
usual linear correlation coefficient would changethie subcomposition, hence the need for an
alternative approach. Now the ratio P/K of phospbkoto potassium remains unchanged
whether it is part of the full composition or theébsomposition, so any measure of difference or
association between P and K that depends only esethatios across the samples will be
invariant; for example, var[log(P/K)] = var[log(Rdg(K)], the variance of the differences in

their logarithms, would be the same in the full pasition and a subcomposition.

Aitchison (1980, 1983) defined a variant of priradipomponent analysis for compositional data,
based on logarithmically transforming componenibratcalledog-ratios Kazmierczak (1988)
demonstrated several graphical properties of thethod, which he called “logarithmic
analysis”. The biplot version of this display reeeral interesting properties, summarized by

Aitchison and Greenacre (2002): for example, iegsivalent to analyze all the log-ratios for



pairs of components within samples or to analyseldlgarithms of the components relative to
their geometric mean for the sample. However, oalgin this “log-ratio biplot” has
subcompositional coherence, it does not obey timeipte of distributional equivalence. This is
unfortunate for compositional data analysis, begatisvo components were always occurring
in the same proportion in every sample, then thadyais should be unaffected by considering
these two components amalgamated into one. Ir otbedls, in our glass cups example above,
if the ratio P/K were constant across the samphes) we should be able to amalgamate their
values into one value without changing the measifralistance between the glass cups.
Distributional equivalence also means that any pfthe composition can be broken down into

subparts, all in proportion to the original paritheut affecting the distances between cups.

In this paper we will show that by introducing wielig/into Aitchison’s log-ratio analysis (LRA),

in the same spirit that CA weights the rows andicwis of a data table, the method does indeed
achieve distributional equivalence. In the patticicase when the weights are proportional to
the margins of the table, this method of data Vizaton turns out to be equivalent $pectral
mapping developed by Lewi (1976, 1980), in the specifintext of the analysis of biological
activity spectra. In fact, the same issue of azaty relative values rather than their original
absolute values is present in this biomedical cards well as several other areas of research,
outside the realm of compositional data. For eXxemip the analysis of contingency tables
vectors of relative frequencies, or profiles, aiuglized in CA, while odds and odds ratios are
analyzed in association modelling. In the analydidiometric measurements, for example
measurements on animal skulls for purposes of ifitzeggon, we are not interested so much in
the overall level of the measurements, or “sizet,dather in their relative values, or “shape”. In
this latter case, the principle of distributionajuevalence is again of importance: if one
measurement is the sum total of smaller componesdisarements and if the component
measurements are always in the same proportiosathne individuals, then we should be able
to retain just the sum, omitting its components r@ain the components, omitting the sum),

without affecting our measure of distance betweelividuals.

In the course of our explanation we will use the wata matrices given in Tables 1 and 2 to
show how the weighted LRA functions, how its resute interpreted and how it compares to

CA, in the context of frequency and compositioretid



2. Weighted log-ratio analysis

We consider a general matiik (I xJ) of positive valuesy; > 0, with row totals, column totals
and grand total denoted by, n,; andn respectively. Denote bl the matrix of natural
logarithms of the frequencielg,= log(;). In the case of compositional data, wherel for all

i, Aitchison's “relative variation diagram” (Aitclue, 1980) consists of double-centring the
matrix L with respect to averages of the rows and colunfoifgwed by a singular value
decomposition (SVD) to obtain least-squares matpgproximations and maps depicting rows
and columns in a low-dimensional subspace. The sasudt can be achieved by row-centring
and then applying a regular principal componentysiga (PCA) with column-centring but no
column-normalization.  Aitchison and GreenacreO@0describe the properties of the biplots
that are obtained from the above SVD, specificdilyform biplot that favours the display of
distances between samples (rows), andcibvariance biplotthat favours the display of the

components (columns), explained in more detailwelo

Applying this unweighted form of LRA to Baxter'sulata in Table 2, we obtain the form
biplot in Figure 1. This map shows three diagdraids of points which are due to the element
manganese (Mn), which takes on only three diffevahtes in the data set, all very small: 0.01
(35 cups), 0.02 (10 cups) and 0.03 (2 cups). Thahkees, reported to two decimal places on a
percentage scale, engender large differences ologheithmic scale and in all log-ratios; for
example, amongst themselves there are differerschigh as threefold. Hence manganese turns
out to have the highest variance than any otherpooent in the data set, while having the
lowest percentage by weight. As a consequencerdhe component dominates the solution, as
can be seen in Figure 1: the cups with percentafjees 0.01, 0.02 and 0.03 (samples 3 and 25
have the highest values, 0.03%) project onto tlseggarate locations on the Mn biplot axis
(remember that the scale is logarithmic). Thedhesulting bands are lining up with the other
high variance component antimony (Sh) — see tisé émlumn of Table 3, described more fully
later.

One possible course of action is to omit an ovBuémtial component such as manganese and
analyse the remaining components as a subcompuosifiaother option, which we present here
and which we believe to be more appropriate beciustins all the data, is to down-weight its
influence in the graphical display by introducingights in the analysis. In CA the inherent
weights are row and column sums relative to thedtatal:r; = n../n andc; = n,; /n, which are
calledmasses For a table of frequencies, the masses woultideow and column proportions,
while if we applied CA to a matrix of compositionddita, the row masses would be equal to a
constant 1/and the column masses would be the average piomof the components across

the samples. Using these weights in the glass apgmication would mean attributing



importance to the components proportional to taearage weights, effectively down-weighting
the influence of the manganese component. Ndt@eusing the margins of the table to define

weights implicity assumes that all data are orstmae scale.

The argument we present below is valid for any ehoset of row or column weights; for
example, in the case of compositional data one infiglre information about the precision of
measurement, which could be used to define weightthe columns, and different row weights
could be defined to correct for disproportionategkng. When we consider amalgamating rows
or columns, however, we assume that the weightaddiive, that is the weight of two columns,

for example, that are merged into one by summaisoiine sum of the two weights.

Let r be the vector of row weightg; the vector of column weights ardd, and D, the
corresponding diagonal matrices. The only condita the weights is that they be positive and
— purely for notational convenience — be closedum to 1. We shall discuss later the special
case when we choose weights proportional to th& tatargins, as is the practice in CA.
Otherwise, we follow very closely the CA approattte row and column weights are introduced
first into the double-centring stage, so that degtis with respect to weighted averages, and
then — more importantly — into the matrix approxima stage, so that fitting is by weighted
least squares. As a direct result of the weighiinge agglomerate distributionally equivalent
columns, and similarly agglomerate their weighteent the principle of distributional

equivalence is satisfied (this result is prove&action 3).

We now summarize the four-step algorithm for periioig a weighted LRA, including the
definitions of the various maps of the rows andunwis. This methodology applies to any
matrix of positive data, transformed to logarithimnghel x J matrix L, and using any sets of
row and column weights, andc, which are positive values summing to 1. Since main
interest will be in the weights defined by the tiela marginal totals as in CA, we use the term

“mass” throughout for the weights.

Step 1. Double-centre the matrix with respect to its weighted row and column avesaghe
order of centring being invariant. That is, caital the weighted averages of the rowd pf
using the column masses to weight each column elfere Z; ¢ I (i=1,---, ) and then subtract
these averages from all the elements in the cavnepg row,l; — |. (this is “weighted row-
centring”). Then perform “weighted column-centrinigy calculating weighted averages of the
columns, using the row masses to weight each ete@en(l; —I;) (=1,---J), and then subtract
these averages from all the elements in the carnelipg columns. The result of this operation

is a double-centred matrix with elemeajs=I; —1;. —1; + |., where the dot subscript indicates



weighted averaging over the corresponding subscHiptmatrix notation, this double-centring

can be written as (whetds the identity matrix and the vector of ones of appropriate order):

A=(-1rNL(1 —c1D)" (1)

)1/2

Step 2. To prepare the matrix for a weighted SVD, multiplyby (i )™, that is multiply the

rows and columns by the square roots of their idBmemasses:

S=D,”A D.*

Step 3. Perform the SVD of this transformed matrix:
S=Urv' wheraU'U=V'V =|

where the singular values down the diagondl afe in descending ordeg:> y,> --- >0.

Step 4. Calculate thestandard coordinatefGreenacre, 1984) by dividing the rows of the matr

of left singular vectors by, and the rows of the matrix of right singular \mstbycj% ;
(row standardX =D, U (column standardj = DV

The principal coordinatedor the rows and columns are the standard coaelinscaled by the

singular values:
(row principal) F =XI =D, Ur (column principal)G = YI =D VI

In general, the coordinates can be wriflerii*'Ur“ (for the rows) and."V/” (for the columns),
the above options being and 8 equal to 1 or O for principal and standard cooridigna
respectively. Notice how the masses are usedddrgnsform the matrix in step 2 and post-
transform the resultant singular vectors in stepldich engenders a weighted (or generalized)
SVD on the centred matri& (for a description of the generalized SVD see Gaees, 1984:
Appendix 1).

As in all methods of this type, we can choose mrasent either of two so-callesymmetric

maps

® UseF andY to represent the rows and columns respectivelyis-rhap is also called
“row-principal” or “row-metric-preserving (RMP)” (&briel, 1971), withw=1, 5= 0.

(i) UseX andG to represent the rows and columns respectivehis-asymmetric map is

called “column-principal”, or “column-metric-presémg (CMP)”, witha= 0, 8= 1.

For representing the points in a two-dimensiongb,nier example, use the first two columns of

the respective coordinate matrices defined above.



Both asymmetric maps are biplots in the true sefsee term (Gabriel, 1971), characterized by
the conditiona + 8 = 1, where row—column scalar products approximbhéediements of the
double-centred matriA. When the data are in the usual cases-by-vagdblenat, Aitchison
and Greenacre (2002) call the RMP bipldbian biplotand the CMP biplot aovariance biplat

A popular alternative map, especially in CA, is sgenmetric mapvhere both rows and columns
are represented in principal coordindtesndG respectively ¢ = 1, = 1). The symmetric map
is, strictly speaking, not a biplot (see, for exéanreenacre, 1993), but Gabriel (2002) shows

that the scalar-product approximations are nottantially degraded in most cases.

The description of the weighted LRA method so floves for any weighting system on the rows
and the columns. In many situations, in the alesecadditional information, the row and
column margins of the original data table provideeacellent default weighting system, which
is the one we shall use here in our applicatiofibus, in the analysis of Table 2, the element
manganese will be considerably down-weighted inlélast-squares fitting of the plane of our
biplot solution. Figure 2 shows the correspondmgn biplot for Table 2, verifying that the
role played by manganese has diminished dramaticallithough the element antimony (Sb)
appears to be an outlier, its role is also nottsIng owing to its low mass in the analysis. The
outlying positions of points with low masses isteepomenon that occurs in CA as well, and is
partly due to the scaling of the asymmetric mapree@acre (2007: Chapter 13) proposes an
alternative biplot, called the “standard biplot”’heve the points in standard coordinates (the
components in this case) are multiplied by the sgjuaots of their masses, in which case the
lengths of the vectors are directly related tortleentributions to the solution. In any case, to
understand numerically the true role of each corapbim the solution, the contributions of each
component can be calculated, as is done regularyA (see, for example, Greenacre, 2007:
chapter 11). Table 3 shows the percentage cotitiisi of the 11 elements to the two-
dimensional maps of Figures 1 and 2. In the uninteijanalysis the contribution by manganese
(Mn) to the variance of the two-dimensional maphis highest (39.48%), while it drops to one
of the lowest in the weighted analysis (0.37%). tBa other hand, the most common element
silicon (Si) contributes 7.11% to the unweightedpmand when its very high weight is
incorporated in the analysis its contribution risg<1.05%. Notice that the very large weight
given to silicon, which is on average 72.31% bygheiof the glass cups, does not increase its
contribution exorbitantly, because the point Sn@v much closer to the centroid (weighted
average), and a point’s contribution is equal soniiass times squared distance to the centroid.

Hence, the weighting is important in centring tlaadas well.

Points that are displayed in principal coordinaies approximating distances between the rows
or columns of the original data matrix. For exéanm Figure 2 where the rows are represented

in principal coordinates, the true underlying (sgal distance function between rowendi' is:
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di = G log i -log ki (2)
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where g(n;) =nn%---n% is the (weighted) geometric mean of k& row. In the same way

as was shown by Aitchison and Greenacre (200)aruhweighted case, the distance (2) may

be expressed equivalently in terms of th#{34 1) log-ratios between unique pairs of columns:
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where thej(j')-th term is weighted by the produzgt; of the weights.

With a slight re-arrangement within the parenthetis squared distance (3) is identical again

to:
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showing that log-ratios can be considered betwesrs pf values in the same column rather
than across columns. Another alternative forrthefweighted LRA distance function in (3) or
(4) is in terms of the logarithms of odds-ratios tlee four cells defined by row indicés and

column indiceg,j':

_ M My ’
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My Ny

Zero distance between a pair of rows means thaatdis are equal, that is the rows have the
same relative values, @rofile: nj/ni.= ny/n.. . Thus, if the distance between rowandi' is
short in the display, and assuming that the disfgaan accurate representation of the data, this
indicates that the rows are approximately propodido one another, just as in CA. If the data
are compositional with the unit-sum constraints tiwould imply approximate equality in their
compositions. Similarly, if two column poinfsandj' displayed in principal coordinates are
close together, this would indicate similar columprofiles. For compositional data similar
column profiles would mean that — although the alléevels of two components are different —
they have similar “peaks” and “troughs” across $aenples (for example, compongmccurs

approximately twice as much as comporjeint all samples).

Any of the equivalent forms (2) — (5) of the squhdistance between rows applies similarly to

distances between columns; for example, formulzdh)be rewritten for columns as:
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This form shows that the values in parentheses dvolé unaffected by defining
subcompositions of the columns, followed by rowwidesure, since the ratios;/n; for
subcomponentg and j' in each row would remain the same as their valineshe full
composition. The weights would be equal to Lin both composition and subcomposition, so
this illustrates the subcompositional coherenc@gnty mentioned earlier in terms of invariance
of the distance. In the more general case ofrdirggency table, however, the margins of a
subset of rows would differ from those of the coeteltable and induce changes in the masses
ri, which would affect the distance function. In tbase a version of weighted LRA could be
used which maintains the original masses of thie taball analyses of subtables, as Greenacre
and Pardo (2006) have proposed in the case of CA.

To express the total variance in the table, we calculate the weighted sum of squared
distances of the rows (or columns) to their cedtroln LRA, however, the centroid is of no
practical interest — it is rather the row-to-rondamolumn-to-column distances and directions that

are interpreted, since these approximate the ltigstaThe measure of total variance can thus be

2

equivalently expressed in a more relevant formda” _ rr.dg or 3. c;c;dj , called

the “geometric variability” by Cuadras and Fortigd®98). Bavaud (2002) calls the ability to
express the total variance in this equivalent veaynming over all pairs of squared interpoint

distances, as “Huygens weak principle”.

All the properties of the unweighted LRA descrildgd Aitchison and Greenacre (2002) carry
over to the weighted version described here, tHg difference being in the centring of the
matrix and the weighted approximation, giving mareless weight to the elements of the

double-centred matrix according to the row and wiumargins.

3. Principle of distributional equivalence

We now prove that the weighted LRA map obeys theciple of distributional equivalence.
Suppose that two columpsndj' have the same profile, that is the ratigh;; are identical for
all rowsi. Without loss of generality we can assume thasehare the first two columrjss 1
andj' = 2, and that these ratios are equal to a congtaspb thatn; = Kny,. Let us now
amalgamate these two columns into one column vethes equal toy; +ni, = (K+1)ni, (i=1,...,
), and column mass +c¢,. The distances between columns are unaffectebi®ynerger, since

we have just replaced two column points at the saoséion by one with mass equal to the sum



of the previous two masses. The more challengimgpesty to prove is that the distances
between rows are unaffected. In the distance far{8) for weighted LRA all terms with log-
ratios not involving columns 1 and 2 are unaffedigdhe merger, so we just need to consider
terms involving columns 1 and 2 before and afterythre combined. Before the merger, the
first term of (3), for |, ') = (1, 2), is equal to 0 since the ratios are egua have zero

difference. The other terms involving log-ratioshacolumns 1 and 2 can be written as:

2
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because the factét disappears in the subtraction of the log-ratiddter the merger, columns 1
and 2 are eliminated and a new column is formedduling the previous columns 1 and 2. The

terms in the distance function corresponding terbigs with respect to this new column are:

2
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2
=, (¢, + CZ)C]-,[|OQ% - IOgh] (7)

=3 j: rj:

where again the factor (K} cancels out from the log-ratio differences. ®ii6) and (7) are
identical, the distances between the rows are showse unaffected by the merging of these

columns, so the principle of distributional equesate is satisfied.

4. Application to non-compositional data: spectral mapping

The methodology described in Section 2 applies asstwell to positive data that are not
necessarily compositional, for example contingetatyes or any data measured on a ratio scale.
Lewi (1976) independently developed this method,“tpectral mapping” for the analysis and
visualization of biological activity spectra. Tleespectra define ahx J table of biological
activities of a set of compounds as observed in a battery tfsts. Later Lewi (1980) proposed
weights monotonically related to the table margsiace more importance is given to more

potent compounds (compounds that are highly aatival or most tests) and to tests that are

10



more sensitive (tests that produce higher acts/itiem all or most compounds. In this weighted
form of spectral mapping, also known as spectrgl arzalysis (SMA), Lewi also found that the
marginal “masses” of the table constitute good wefaeights in the analysis of the double-
centred table, where the double-centring removesctimponent of potency and sensitivity of

tests.

Following the work of Lewi (1998), this weightingoplies equally well to count data: for
example, applying these weights to the rows andnans of the letter counts in Table 1, ratios
would be weighted higher when the overall counts kigher. As shown in the distance
formulations (3) and (4), one can think of the tatjos row-wise or column-wise: either the
ratios between counts of different letters withive tsame text are visualized, or the ratios
between counts for the same letter across the. teflkigure 3 shows the resulting symmetric
weighted LRA (or SMA) map where both texts and Isttare represented in principal
coordinates. The symmetric map has the advantafetiie row and column points can be
plotted on the same scale (compare with Figuretaravit was necessary to scale up the row
coordinates to represent the rows on the same asatke columns), and both configurations
have a distance interpretation. The most surgrisasult of this display is the proximity of the
pairs of texts by the same author — one might thiak letter counts would not discriminate well
between authors, but this map shows otherwisdadt a permutation test shows that no other
allocation of the 12 row labels (amongst over 10p686sible allocations) gives a lower sum of
the six “within-author” distances than the labajlinf the configuration in Figure 3 — in this

sense the authors are discriminated in the mapaftiralue less than 0.0001.

Gabriel (1972) showed how the biplot representtedihces between variables as the vectors
joining them. Thesdinks, i.e. vectors joining pairs of letters in this exde, represent
logarithms of ratios of two letters. In the casecompositional data, Aitchison and Greenacre
(2002) showed that points that lie in straight $irrge an indication of constant “log-contrasts”.
This property carries over to the general casdefpresent example. For example, in Figure 3
the letterk, y andx are closely aligned, and Table 4 shows the ratidsandy with respect to

x and the corresponding log-ratios. Figure 4 plotgy/X) versus log/x) and there is a clear
linear relationship (correlation = 0.93). The wegd regression equation, using the row (book)
weightsr;, has a slope of 0.80 and an intercept of 1.34s implies the model:

log(y/¥) = 0.80 logk/x) + 1.34
or logfy) — 0.20 logk) — 0.80 logk) = 1.34 (8)

i.e. y = 3.81x*?k°® (9)

11



On the left of (8) is a linear combination of logfams of the three letters, with coefficients
adding up to 0, hence the tetag-contrast Their equivalent multiplicative form, exemplifie

by (9) has index powers on both sides of the eqndtaving the same sum (1 in this case). In
many applications constant log-contrasts such ptid8e a clear substantive meaning and are
associated with equilibrium relationships, for exdenin geology and population genetics
(Aitchison, 1980). In the present linguistic coditef English texts it is not known if the above
equilibrium relationship between the lettdgsx andy has any particular substantive relevance,

but the relationship is certainly apparent in tasa set.

5. Relationship to correspondence analysis

The SVDs on which the weighted LRA (SMA) and CA hesed are closely connected. Let us
first summarize the matrices being decomposed @ ease. We have already seen that the
spectral map double-centres the mattix= log(N), using weights proportional to the table
margins (CA masse#) = (| —1r")L (I —c1")" (see formula (1)). TheA is decomposed using a
weighted SVD. Since any constant row- or colunfeafadded to the elements lofwill be
removed by the double-centring, let us defineas the matrix of logarithms of the so-called

Pearson contingency ratios, denotedjpy

l; =log(g;) = |09[LJ =log(n;) —log(n;,) —log(n, ) +log(n) (10)
M,
so thatA can be written equivalently a&: = (I — 1r")L" (I —c1)". The contingency ratios are
the observed values divided by the “expected” \@aluehere expected value is defined as that
obtained if the profiles of the rows (or of thewois) agree perfectly with the average profiles
defined by the table margins (the terms observedl epected are used in the context of
contingency tables, where the expected value igtite independence hypothesis, but we
extend their usage here to all tables of positivenlmers). Lewi (1998) aptly terms the
contingency ratios as th#ouble-closureof the original table, since the (weighted) rowdan

column sums of the matri® of contingency ratios are all equal to 1.

Now CA, which has many equivalent definitions, da defined as the double-centring with
respect to weighted averages (using the masse®ights) of the matribxQ, followed by the
weighted SVD. We have the following well-known amximation, using a first-order Taylor

approximation:

log(g;) = log(1+q; —1)=q; -1
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wheng; —1 is small. Since double-centring@%11" yields the same matrix as double-centring
of Q, it follows that weighted LRA (SMA) and CA tend tthe same solution as
g; —1 tends to O, that is as “observed” values tendekpected” ones. In practical terms,
whenever variance (callethertia in CA) in a matrix is low, the two methods will vgi
approximately the same results. In the case df poactical examples considered here, the
variance is indeed low, especially for the letteurts of Table 1. Figure 5 shows the CA
symmetric map of Table 2 and it is indeed quiteilsinto Figure 3, even the amounts and
percentages of inertia on each dimension are gimilgalue. While CA has several interesting
graphical properties of its own, such as optimallisg and maximizing correlation between
rows and columns (see, for example, Greenacre (2@0@apter 7)), it does not have
subcompositional coherence, nor does it have thdehdiagnostic features of the weighted log-

ratio map — for example, the lettdesx andy are no longer lined up in Figure 5.

5. Relationship to association modelling

Association modelling (Goodman 1968, 1983) for suygncy tables is concerned with models
for the probability7g that a case falls into thejf-th cell of the table. Specifically, the so-cdlle
RC(M) association model, where R stands for “ro@for “column” and “M” for the number of

bilinear terms in the model, can be written as:
— AHiVjr ..+ O Him V
77i-j _alﬂ]e Vi1 MY im (11)

wherea;, 5 ,¢h ,lim ,Vim are parameters of the modety,...|; j=1,... J; m=1,... M) with various

identification constraints. In logarithmic formighs:

l0g(r) = log(@) +10g(8) + > Aottt (12)

If M = min{l-1,J-1} the model is called “saturated”, since it Witlthe data perfectly. Usually
valuesM =1 or 2 are used, the model is fitted by maximunelifood to the data, and then
hypothesis testing allows decisions to be made tatmu many terms are needed to fit the data,
or whether some parameters are equal. Such testsabd for contingency tables established
from a random sample ofindividuals on whom two categorical variables abbserved. Notice
that the RC(M) model estimates the cell probabsiti , which are strictly positive, but the data

can have zero values.

The parametric model (12) has a form very simitathte data decomposition in the weighted
LRA (SMA) and the CA described previously, which daa written respectively as follows,

wherep; =n;/n:
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M
Weighted LRA:log(p;) = > ¢;log(p;) + >, 109(P;) + D Gl (13)
(SMA) =

CA: log(p,) = log(p.) +log(p.,) +10g0+ Y Gfhut ) (14)

m=1
M R —
= Iog(pi+) + Iog(p+j) + z ¢m/’limvjm
m=1

where the approximation for CA holds if the summatin (14) is small, i.e., when the data is
close to independence (low inertia). The essediffdérence between these three methods is
thus the way the row and column “main effects” dimderaction terms” are estimated. In
weighted LRA the weighted row and column averagesth® logarithms of observed
probabilities estimate the main effects and theratdtion terms are obtained by a weighted SVD
of the residuals. In CA the row and column sunisrege the (multiplicative) main effects and
the interaction terms are obtained by a weighte® $Vthe residuals. In association modelling,
main effects and interaction terms are estimatedisaneously, for a given “dimensionalitivl,

by maximum likelihood. The similarity between (12npd (13) suggest that association
modelling, using the marginal proportions as wesghand weighted LRA will give
approximately the same answers, which is indeeccéise. We fitted the RC(2) model to the
author data using the LEM program (Vermunt, 19971 #re results differ only very slightly

from those reported in Figure 5.

6. Discussion

In this article we have shown how the introductamow and column weights improves both
the theoretical properties and practical applicatd log-ratio analysis. With the convention
that weights be added if rows or columns are mergeighted LRA maps, alias spectral map
analysis, obey the principle of distributional aguénce. The chi-square distance in CA and the
weighted log-ratio distance are not the only disésnthat obey this principle. Escofier (1978)
shows that the Hellinger distance also has thipenty: using previous notation, the Hellinger

distance (squared) between ravesndi' is:

(see also Cuadras, Cuadras and Greenacre (200680 also be shown, in a similar way as in
Section 3, that a weighted form of normalized PGAalso distributionally equivalent. For
example, for a tabldN of non-negative data, normalize the coluningy dividing by any
appropriate scale-dependent quangjtyuch as the standard-deviation, sum, maximumrayera
Then, again using column weights applicable to the problem, define the squaredads

between rows as:

14



2
N L
=3[ -
| i

Notice here that the data elements can be consideamsformed by a single scale value
\/CT-/SJ- , but the two parts of this quotient play differeales in the analysis: thg normalize

the columns to make the columns comparable (thenuaod could be ratio-scale variables or
components in compositional data), while thare used in the centring and weight least-squares
fitting of the normalized data. This weighted, matized PCA has distributional equivalence

but not subcompositional coherence.

Bavaud (2002, 2004) defines a broad class of disgbased on the contingency ratios (which
he aptly calls “independence quotients”), wheradatances in this class obey the distributional
equivalence principle (Bavaud calls these distarfeggregation invariant”). However, this

class does not include the weighted LRA distancé@)an alternative where the denominators
in (2) are the row means rather than their weiglgeaimetric means; in other words, Bavaud's

log-transformed data are centred by the log ofiean rather than the mean of the logs.

SMA was developed originally by Lewi (1976) for thmalysis of biological activity spectra in
the context of drug development. This method hasnbused extensively in biomedical
research, for example Woutegs al. (2003) apply it to gene expression data from naimays
and compare it with principal component analysisl @A. In this application context the
rationale for the weighting of the rows and colurohghe log-transformed data has been to take
into account the higher importance of potent commgisuand sensitive tests, as explained in
Section 4, but the weighting makes sense in thiysisaf contingency tables and compositional
data as well. As in the case of Table 1, we ofted that there is larger relative error in data of
lower value, so that weighting the log-ratios taktes precision of measurement into account in
this particular way. In the CA of a contingertaple, the rationale is similar, since under the
assumption of independence, the variability of dwatingency ratio for thei,)-th cell is
approximately 14(c), which justifies the weighting in the least-scegrformulation byric;,

approximately normalizing of the contribution otthaow-column term.

In the case of count or abundance dafaweighted LRA has the disadvantage of being
applicable to strictly positive data only, whicHesi it out for many social science applications
and most ecological applications where data matmomtain many zero frequencies. At a low-
level occurrence of zero datg = 0, one can apply the transformatiGn+ n; for a positive
constantC that depends on the context. In the case ofutieoadata, which had only one zero
count, we simply replaced the zero with the valueli#sthe case of compositional data and other

measurement data, zero values can be replacedi®y feaction of the detection limit followed
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by an additive or multiplicative adjustment of tteenaining values (see Martin-Fernandeal,
2003, for an investigation of the problem of zeatues in this context, as well as Bearéalal,
2003, for an extensive practical study of zerotinemt strategies as well as a comparison of
several alternatives to LRA in compositional datalgsis). Apart from this drawback, the
method has very similar properties to CA, with gsalleadditional benefits such as
subcompositional coherence and the model diagnpstigerties. Thus, in the case of strictly
positive data matrices, weighted LRA alias SMA may jodged superior to CA from a
theoretical point of view. In the usual context@A applications, mostly contingency tables in
the social sciences, subcompositional coherencesoaretimes be relevant, as explained by
Greenacre and Pardo (2006) who describe how antariaCA can be used to analyse subtables
of rows and/or columns of a contingency tablethis so-calledubset CAhe masses of the full
table are maintained and the proportions are ruged in the analysis of the subtable, thus

giving a “subset coherent” version of CA.
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Table1 Letter counts in 12 samples of texts from booksik different authors (R

Development Core Team, 2005).

Abbrev. a b C d e f g h i j k I m
TD-Buck 550 116 147 374 1015 131 131 493 442 2 52 302 159
EW-Buck 557 129 128 343 996 158 129 571 555 4 76 291 247
Dr-Mich 515 109 172 311 827 167 136 376 432 8 61 280 146
As-Mich 554 108 206 243 797 164 100 328 471 4 34 293 149
LW-Clark 590 112 181 265 940 137 119 419 514 6 46 335 176
PF-Clark 592 151 251 238 985 168 152 381 544 7 39 416 236
FA-Hem 589 72 129 339 866 108 159 449 472 7 59 264 158
Is-Hem 576 120 136 404 873 122 156 593 406 3 90 281 142
SF7-Faul 541 109 136 228 763 126 129 401 520 5 72 280 209
SF6-Faul 517 96 127 356 771 115 189 478 558 6 80 322 163
Pen3-Holt 557 97 145 354 909 97 121 479 431 10 94 240 154
Pen2-Holt 541 93 149 390 887 133 154 463 518 4 65 265 194
Abbrev. n 0 p q r S t u % w X y z
TD-Buck 534 516 115 4 409 467 632 174 66 155 5 150 3
EW-Buck 479 509 92 3 413 533 632 181 68 187 10 184 4
Dr-Mich 470 561 140 4 368 387 632 195 60 156 14 137 5
As-Mich 482 532 145 8 361 402 630 196 66 149 2 80 6
LW-Clark 403 505 147 8 395 464 670 224 113 146 13 162 10
PF-Clark 526 524 107 9 418 508 655 226 89 106 15 142 20
FA-Hem 504 542 95 0 416 314 691 197 64 225 1 155 2
Is-Hem 516 488 91 3 339 349 640 194 40 250 3 104 5
SF7-Faul 471 589 84 2 324 454 672 247 71 160 11 280 1
SF6-Faul 483 617 82 8 294 358 685 225 37 216 12 171 5
Pen3-Holt 417 477 100 3 305 415 597 237 64 194 9 140 4
Pen2-Holt 484 545 70 4 299 423 644 193 66 218 2 127 2

Abbreviations: TD (Three DaughtersgEW (East Wind) -Buck (Pearl S. Buck)

Dr (Drifters), As (Asia) —Mich (James Michener)

LW (Lost World),PF (Profiles of Future) €lark (Arthur C. Clarke)

FA (Farewell to Arms)ls (Islands) -Hem (Ernest Hemingway)

SF7 andSF6 (Sound and Fury, chapters 7 and ®&adl (William Faulkner)

Pen3 andPen2 (Bride of Pendorric, chapters 3 and Aelt (Victoria Holt)
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Table2 Percentage compositions of 47 Roman glass &ggdr et al 1990).

Cups Si

Al

Fe

Mg

Ca

Na

K

Ti

P

Mn

Sh

75.2
72.4
69.9
70.2
73.0
74.2
74.2
74.4

9 728
10 74.8
11 75.0
12 73.8
13 703
14 727
15 743
16 70.2
17 73.1
18 73.7
19 733
20 71.7
21 73.7
22 731
23 73.0
24 68.8
25 70.2
26 705
27 727
28 731
29 69.3
30 70.2
31 744
32 739
33 72.6
34 69.9
35 69.7
36 723
37 705
38 723
39 722
40 73.8
41 724
42 72.6
43 71.6
44 72.3
45 734
46 T71.7
47 69.3

O~NO O WNPF

1.84
1.80
2.08
2.23
2.16
2.02
1.80
1.74
1.81
1.71
1.74
1.93
1.94
1.74
1.88
2.23
1.90
1.78
1.89
1.75
1.80
1.82
1.90
2.03
211
2.11
1.96
1.78
2.21
2.25
1.94
1.90
1.81
1.87
2.04
2.08
2.00
1.71
2.02
1.88
1.92
2.00
1.90
2.03
1.93
2.02
2.04

0.26
0.28
0.40
0.41
0.35
0.33
0.25
0.27
0.30
0.22
0.22
0.31
0.30
0.25
0.30
0.42
0.29
0.23
0.30
0.27
0.25
0.23
0.27
0.38
0.42
0.39
0.30
0.26
0.45
0.43
0.26
0.26
0.27
0.32
0.36
0.36
0.33
0.21
0.34
0.26
0.29
0.33
0.27
0.30
0.24
0.42
0.40

0.47
0.46
0.57
0.60
0.51
0.51
0.39
0.42
0.66
0.35
0.32
0.42
0.44
0.37
0.40
0.56
0.41
0.32
0.41
0.42
0.36
0.32
0.44
0.51
0.59
0.56
0.50
0.42
0.54
0.54
0.46
0.46
0.41
0.46
0.48
0.53
0.59
0.36
0.51
0.45
0.48
0.46
0.48
0.48
0.37
0.53
0.50

5.00
5.89
6.33
6.10
5.66
5.34
5.35
541
5.86
5.48
5.03
4.94
6.31
5.90
4.76
6.65
5.13
4.98
5.37
6.04
5.15
5.13
5.48
7.02
6.53
6.18
5.58
5.48
6.87
6.77
5.07
5.04
5.48
6.34
6.20
5.47
5.83
5.27
5.36
5.12
5.45
541
5.32
541
5.18
5.73
6.85

16.3
18.2
19.5
19.5
17.3
16.5
17.1
16.8
17.6
16.3
16.8
17.6
19.5
17.8
17.3
18.7
18.2
18.1
17.8
19.0
17.9
18.4
17.9
20.0
19.0
19.1
17.9
17.9
194
18.7
17.0
17.6
18.5
19.8
19.8
18.0
19.8
18.8
18.4
17.6
18.4
17.7
19.4
18.6
17.8
18.3
19.5

0.44
0.44
0.54
0.42
0.44
0.52
0.44
0.49
0.40
0.42
0.43
0.43
0.57
0.50
0.41
0.61
0.45
0.45
0.42
0.41
0.45
0.46
0.52
0.59
0.53
0.57
0.52
0.46
0.57
0.54
0.47
0.45
0.37
0.58
0.56
0.58
0.42
0.48
0.54
0.45
0.51
0.75
0.47
0.50
0.55
0.62
0.62

0.06
0.06
0.09
0.08
0.07
0.07
0.06
0.06
0.07
0.06
0.05
0.05
0.07
0.06
0.05
0.09
0.05
0.06
0.07
0.06
0.06
0.06
0.07
0.07
0.08
0.07
0.07
0.06
0.10
0.09
0.07
0.07
0.07
0.07
0.07
0.08
0.09
0.06
0.08
0.07
0.07
0.08
0.06
0.07
0.06
0.10
0.08

0.04
0.04
0.06
0.05
0.05
0.05
0.04
0.05
0.04
0.05
0.05
0.04
0.05
0.05
0.04
0.06
0.04
0.04
0.04
0.05
0.04
0.04
0.05
0.06
0.06
0.05
0.05
0.05
0.06
0.06
0.05
0.04
0.05
0.06
0.06
0.06
0.05
0.07
0.05
0.05
0.05
0.08
0.05
0.05
0.04
0.06
0.06

0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.03
0.02
0.02
0.01
0.02
0.02
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.02
0.02

0.36
0.33
0.44
0.34
0.37
0.35
0.31
0.31
0.33
0.51
0.30
0.38
0.39
0.53
0.48
0.35
0.31
0.27
0.30
0.24
0.18
0.38
0.28
0.40
0.33
0.37
0.28
0.36
0.41
0.31
0.18
0.20
0.31
0.49
0.58
0.49
0.33
0.63
0.46
0.21
0.38
0.54
0.35
0.21
0.30
0.39
0.57

mean 72.31

1.94

0.31

0.46

5.66

18.24

0.50

0.07

0.05

0.01

0.36
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Table3 Percentage contributions by components in urivtedyand weighted log-ratio maps,
where the weights are given by the column meafi&bfe 2. In the unweighted analysis the
rare components Mn and Sb dominate, while in thighted analysis more components

contribute to the solution, including the most freqgt one, Si.

unweighted weighted

Si 7.11 21.05
Al 2.57 2.76
Fe 2.15 4.34
Mg 2.94 3.44
Ca 0.51 25.93
Na 2.89 22.33
K 0.23 2.20
Ti 1.92 0.53
P 0.80 0.37
Mn 39.48 0.37
Sb 39.39 16.68

22



Table4 Ratios and log-ratios between letter countyfeirandx

Book y /X k/x In(y/x) In(k/x)
TD-Buck 30.0 10.4 3.401 2.342
EW-Buck 18.4 7.6 2912 2.028
Dr-Mich 9.8 4.4 2.281 1.472
As-Mich 40.0 17.0 3.689 2.833
LW-Clark 12.5 3.5 2.523 1.264
PF-Clark 9.5 2.6 2.248 0.956
FA-Hem 155.0 59.0 5.043 4.078
Is-Hem 34.7 30.0 3.546 3.401
SF7-Faul 25.5 6.5 3.237 1.879
SF6-Faul 14.3 6.7 2.657 1.897
Pen3-Holt 15.6 10.4 2.744 2.346
Pen2-Holt 63.5 32.5 4.151 3.481
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Figurel Unweighted log-ratio biplot of Baxter data, shoegvrows in principal coordinates and
columns in standard coordinates (form biplot). Rmwerdinate values have been multiplied by
10. The two-dimensional solution explains 70.0%hef total variance.
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Figure 2 Weighted log-ratio biplot of Baxter data, showirows in principal coordinates and
columns in standard coordinates (form biplot). Rmwrdinate values have been multiplied by

50. The two-dimensional solution explains 79.7%hef total variance.
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Figure 3 Weighted log-ratio map of author data, showinthlrows and columns in principal

coordinates (symmetric map). The two-dimensionduteEm explains

59.5% of the total

variance.
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Figure4 Scatterplot of log-ratios in Table 4, showing tekationship diagnosed by the lining
up of lettersk, x andy in the weighted log-ratio map of Figure 3. Thgression line indicated

has slope 0.80 and intercept 1.34.
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Figure 5 CA map of author data, showing both rows andimols in principal coordinates
(symmetric map). The two-dimensional solution ex##0.6% of the total inertia.
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