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Abstract

Several studies have reported high performance of simple decision heuristics in multi-attribute

decision making. In this paper, we focus on situations whereattributes are binary and analyze

the performance of Deterministic-Elimination-By-Aspects (DEBA) and similar decision heuris-

tics. We consider non-increasing weights and two probabilistic models for the attribute values:

one where attribute values are independent Bernoulli random variables; the other one where they

are binary random variables with inter-attribute positivecorrelations. Using these models, we

show that good performance of DEBA is explained by the presence of cumulative as opposed to

simple dominance. We therefore introduce the concepts of cumulative dominance compliance

and fully cumulative dominance compliance and show that DEBA satisfies those properties. We

derive a lower bound with which cumulative dominance compliant heuristics will choose a best

alternative and show that, even with many attributes, this is not small. We also derive an upper

bound for the expected loss of fully cumulative compliance heuristics and show that this is mod-

erate even when the number of attributes is large. Both bounds are independent of the values of

the weights.
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1 Introduction

We consider a standard multi-attribute choice problem having m alternativesi, 1 ≤ i ≤ m,

each characterized byk attributesxi,r, 1 ≤ r ≤ k. The utility of the ith alternative,xi =

(xi,1, xi,2, ..., xi,k), is defined as

Ui = w1xi,1 + w2xi,2 + ... + wkxi,k , (1)

where thewr are positive weighting parameters subject to the constraint w1+w2+ ...+wk = 1. The

problem is to identify which of them alternatives is best, i.e., has the largest value ofUi. This is a

classical decision problem (cf. Keeney and Raiffa 1993). Wemake the assumption that the decision

maker can order the weights by size such that, without loss ofgenerality,w1 ≥ w2 ≥ ... ≥ wk ≥ 0

but that the exact values of the weights are unknown. This assumption is realistic in many scenarios.

Consider, for instance, a situation in which a committee hasto choose one of several candidates to fill

a job opening. Typically, members of the committee will agree on which attributes of the candidates

are relevant and may easily agree to take the decision using alinear utility function where each

attribute is given a positive weight. Moreover, whereas committee members might disagree as to

what values should be given to the weights, they can agree on their relative importance.

Since the exact values of the weights unknown, a reasonable approach is to use a heuristic.

In this paper, we will obtain results regarding the performance of a class of heuristics to solve this

decision problem. We will make the assumption that thexi,r are, non-necessarily independent,

random variables with support[0, 1]. While some of our results are general and do not require

additional assumptions onxi,r, most assume that thexi,r are binary random variables taking only

the values0 and1. That more particular setting has interest on its own. For example, it is common

to have alternative features that are either present or absent (e.g., the candidate has good knowledge

or not of a given foreign language), or that take two values (e.g., the candidate is male or female).

Even if the attribute is multi-valued, the decision-maker may be able to distinguish between zero and

non-zero values, but be insensitive to the actual magnitudeof the attribute (Hsee and Rottenstreich

2004). Also, in order to simplify the decision, the decision-maker may use a cut-off to partition the

range between high and low regions. Here, several choices are available depending on the cutoff

values chosen to separate between high (xi,r = 1) and low (xi,r = 0) values. One could use a low

cutoff representing a minimum acceptable level. Alternatively, one could assign a value1 only to

those attribute values with the best level on that attribute. Those two choices yield, respectively, the

LEX and theEBAheuristics discussed by Payne et al. (1993).
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A possible decision rule we will consider would make use of the attribute ordering in a lex-

icographic fashion. Specifically, at the first stage, alternatives with non greatest value in the first

attribute would be eliminated (unless all alternatives hadthe same value for the first attribute). If a

single alternative remains, it would be chosen. Otherwise,the values of the second attribute would

be examined and alternatives with non greatest value in thatsecond attribute would be eliminated.

This procedure would continue until only one alternative remains or all attributes have been exam-

ined. If only one alternative remains, that alternative would be chosen. If several alternatives remain

after all attributes have been examined, then the choice between them would be made at random.

This model is a deterministic variant of theEBA (Elimination-By-Aspects) heuristic proposed by

Tversky (1972). We therefore call itDEBA(Deterministic-Elimination-By-Aspects). It differs from

EBA in that the attributes (aspects) used to eliminate alternatives at each stage of the process are

selected by a deterministic as opposed to a probabilistic procedure. As a procedure,DEBAgeneral-

izes —to more than two alternatives— the lexicographic binary-choice model Take-The-Best (TTB)

proposed by Gigerenzer and Goldstein (1996). There is a small difference, however: inTTB, the at-

tributes are ordered by their validities, which are computed using a database of previous instances of

alternatives, while inDEBAthe ordering of the attributes by decreasing weights is assumed known.

TheDEBAheuristic is easy to use. In many situations, for example, there is no need to look

beyond the first one or first two attributes to make a decision.Several studies have shownDEBA

to be effective in relation to alternative simple decision heuristics (Gigerenzer and Goldstein 1996;

Czerlinski et al. 1999; Martignon and Hoffrage 1999, 2002) as well as having desirable properties

for both binary and multivariate choice (Hogarth and Karelaia 2003; Katsikopoulos and Martignon

2003; Katsikopoulos and Fasolo, in press). Even when attributes are continuous variables, the model

can be quite effective under some circumstances (Gigerenzer, Todd et al. 1999; Hogarth and Karelaia

2005a). Most of these studies are restricted to the case of two or three alternatives. Finally, there

is empirical evidence that people do sometimes useDEBA-like strategies in decision making (see,

e.g., Bröder 2000; Newell and Shanks 2003; Newell et al. 2003).

Our goal is to understand the observed good performance ofDEBAand other related heuristics.

The effectiveness of the decision heuristic can be measuredusing two metrics: 1) the probability

that the heuristic will select a best alternative and, 2) theexpected loss of the heuristic, i.e. the

expected difference between the utility of a best alternative and the utility of the alternative chosen

by the heuristic. The exact values of those metrics depend, of course, on the exact values of the

weightswr, 1 ≤ r ≤ k, and on the probabilistic model underlying the values of theattributesxi,r,

1 ≤ i ≤ m, 1 ≤ r ≤ k. We will explain the good performance of DEBA and other related heuristics
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by deriving a lower bound for the probability that the heuristic will choose a best alternative and

an upper bound for the expected lossindependent of the weights. Moreover, we show that, even

with many attributes, the former is large and the latter small. This will be done for two probabilistic

models for the attributes: one in which the attribute valuesxi,r are assumed to be binary independent

Bernoulli random variables with a common parameterp and one in which the attributesxi,r are

assumed to be binary random variables with positive inter-attribute correlation, i.e. in which the

values of the attributes of a given alternative are positively correlated.

The use of the simple dominance concept is a first, trivial trial. An alternativei simply dom-

inates alternativej if each attribute value ofi is non-smaller than each attribute value ofj. It is

clear that, irrespective of the values of the weights and, therefore, not depending on the values of

the weights being non-increasing, whenever an alternativesimply dominates all other alternatives

both that alternative will have the largest utility andDEBAwill choose that alternative. Then, the

probability that an alternative simply dominates all otheralternatives provides a lower bound on the

probability thatDEBAwill choose a best alternative. However, as we shall show, that probability

can be very small when the number of attributes is large. Thus, simple dominance does not explain

the observed good performance ofDEBA.

The approach we will follow to justify theoretically the effectiveness ofDEBA and other re-

lated heuristics is the use of the use of the concept ofcumulative dominance(Kirkwood and Sarin

1985). An alternativei is said to cumulative dominate alternativej if the accumulated values of

the attributes ofi are non-smaller than the accumulated values of the attributes ofj. To illustrate,

consider alternativesx1 = (1, 0, 1) andx2 = (0, 1, 1). Then, alternativex1 cumulative dominates

alternativex2 becausex1,1 ≥ x2,1, x1,1+x1,2 ≥ x2,1+x2,2, andx1,1+x1,2+x1,3 ≥ x2,1+x2,2+x2,3.

As we will show, since the weights are non-increasing, an alternative which cumulative dominates

another alternative alternative necessarily has a non-smaller utility than the cumulative dominated

alternative. We observe next thatDEBAcomplies with cumulative dominance, i.e. in the event that

some alternative cumulative dominates all other alternatives,DEBA is guaranteed to choose one of

those alternatives. Then, the probability that some alternative cumulative dominates all other al-

ternatives is a lower bound to the probability with whichDEBA will choose a “best” alternative.

Contrary to simple dominance, the probability that some alternative exhibits cumulative dominance

over all other alternatives is not small even when the numberof attributes is large. This provides

a first justification of the observed good performance ofDEBA. The approach we take to provide

an upper bound for the expected loss ofDEBA is to compute an upper bound for the loss ofDEBA

conditioned on the maximum attribute index for which some alternative cumulative dominates all
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others. That upper bound is computed using the fact thatDEBAwill necessarily choose one of the

alternatives in the set of alternatives that cumulative dominate all other alternatives up to the highest

possible attribute index, a property which is calledfully cumulative dominance compliance. That

upper bound does not depend on the attributes being binary: it only depends on the attribute values

having support[0, 1]. Those upper bounds, combined with the computation of the probability distri-

bution of the maximum attribute index for which some alternative cumulative dominates all others,

allows the computation of an upper bound for the expected loss ofDEBA. As the computation of the

lower bound for the probability thatDEBAwill choose a best alternative, our computation of that

probability distribution is particular for the assumed probabilistic models underlying the attribute

values. We show that the upper bound for the expected loss remains reasonable even when the

number of attributes is large, providing a second justification for the observed good performance of

DEBA.

The performance justifications just exposed are not restricted to theDEBAheuristic. It applies

as well to any heuristic that complies/fully complies with cumulative dominance. For instance, it

applies (partially) to theEWn/DEBAheuristic, which is cumulative dominance compliant but not

fully cumulative dominance compliant. TheEWn/DEBAheuristic first chooses the alternatives with

the highest total sum of attributes up to attributen, and then breaks ties usingDEBA. The results

given in the paper regarding the performance ofDEBAand any other cumulative/fully cumulative

dominance compliant heuristics are, however, restricted to the assumed probabilistic models under-

lying the attribute values. It is an open problem to justify the good performance ofDEBAand other

cumulative/fully cumulative dominance compliant heuristics under other probabilistic models, in

particular when the attributes are continuous random variables.

The rest of the paper is organized as follows. In Section 2 we define the two probabilistic

models underlying the attribute values which will be used throughout the paper. In Section 3, we

obtain, for the two probabilistic models under consideration, the probability of simple dominance

and show that the presence of that kind of dominance does not justify the observed good performance

of DEBA. In Section 4, we introduce the concepts of cumulative dominance compliance and fully

cumulative dominance, show thatDEBAsatisfies both properties, give examples of other heuristics

satisfying those properties, derive a lower bound for the probability that any cumulative dominance

compliant heuristic will choose a best alternative, derivean upper bound for the expected loss in any

fully cumulative dominance compliant heuristic, and usingthose metrics justify the observed good

performance ofDEBA and other related heuristics. Section 5 concludes the paperand highlights

directions for future work.
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2 Probabilistic Models

Two probabilistic models for the values of the attributesxi,r, 1 ≤ i ≤ m, 1 ≤ r ≤ k will be

considered:

ZIAC (Zero Inter-Attribute Correlation) model: Thexi,r are independent Bernoulli random vari-

ables with parameterp, 0 < p < 1.

PIAC (Positive Inter-Attribute Correlation) model: Thexi,r are obtained asxi,r = ziy
h
i,r +(1−

zi)y
l
i,r, where thezi, yh

i,r, andyl
i,r are independent Bernoulli random variables with parameters

p, ph = p +
√

ρ(1 − p), andpl = p − √
ρp, respectively, for some0 < p < 1 and some

0 ≤ ρ < 1.

The ZIAC model is a simple model without need for justification. We note thatE[xi,j ] =

p. Thus, the parameterp of the common Bernoulli distributions can be looked at as measuring

the average quality of the attributes: higher values ofp model attributes of higher average quality.

The PIAC model is intuitively appealing: if there is positive correlation among the attributes of

a given alternative, it is because there is some common causeshifting the average quality of the

attributes of a given alternative. In the PIAC model, this iscaptured by the alternatives belonging to

a “good” population (with averaged values for the attributevalues equal toph = p +
√

ρ(1 − p))

with probabilityp and to a “bad” population (with averaged values for the attribute values equal to

pl = p−√
ρ(1− p)) with probability1− p. In the PIAC modelE[xi,j ] = p and the attribute values

of any given alternative have positive correlationρ. The ZIAC model can be seen as a particular

case of the PIAC model withρ = 0. Since
∑k

r=1 wr = 1, in both models the expected value of the

utility of any given alternativei is E[Ui] = p.

3 Simple Dominance does not justify the good performance ofDEBA

An alternativei is said to exhibitsimple dominanceup to attributer over alternativej, denoted by

dr(i, j), if and only if xi,s ≥ xj,s, 1 ≤ s ≤ r. An alternativei is said to exhibit simple dominance

over alternativej if and only if dk(i, j), i.e. if and only if alternativei exhibits simple dominance

up to attributek over alternativej. For1 ≤ r ≤ k, let Dr denote the set of alternatives that exhibit

simple dominance over any other alternative up to attributer, i.e.

Dr = {1 ≤ i ≤ m : dr(i, j), 1 ≤ j ≤ m}. (2)
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Obviously,D1 ⊃ D2 ⊃ · · · ⊃ Dk. Also all alternativesi in Dr have identical attribute profiles

up to attributer, xi,1, xi,2, . . . , xi,r. Since the weights are non-negative, any alternativei which

exhibits simple dominance over another alternativej will have largest utilityUi than the utilityUj

of j. Then, it is clear that whenDk 6= ∅ the alternatives inDk, with identical attribute profiles, will

be best. It is also clear that whenDk 6= ∅, DEBAwill choose an alternative fromDk. Then, when

Dk 6= ∅, DEBAwill choose a best alternative and the probability[PB ]lbs = P [Dk 6= ∅] will be a

lower bound for the probability with whichDEBAwill choose a best alternative. In this section we

will develop efficient computational procedures for[PB ]lbs for the two probabilistic models under

consideration. Using these computational procedures, we will compute[PB ]lbs for a wide range of

model parameters and will discuss the extent to which the presence of simple dominance is able to

explain the observed good performance ofDEBA.

We will start by deriving an efficient computational scheme for [PB ]lbs for the ZIAC model.

Consider the discrete-parameter stochastic process with truncated parameterY = {Yr; 0 ≤ r ≤ k}
with state-space{0, 1, . . . ,m} defined byY0 = m andYr = |Dr|, 1 ≤ r ≤ k. The following

theorem establishes thatY is a homogeneous discrete-parameter Markov chain (with truncated pa-

rameter) and gives its one-step transition probabilities.Figure 1 gives the state transition diagram of

Y for the casem = 3.

Theorem 1. Y = {Yr; 0 ≤ r ≤ k} is a homogeneous discrete-parameter Markov chain (with

truncated parameter) with state space{0, 1, . . . ,m}, initial statem, and one-step transition proba-

bilities Qi,j = P [Yr+1 = j | Yr = i] given by:

Q0,0 = 1 ,

Q0,j = 0 for 1 ≤ j ≤ m ,

Qi,0 = (1 − p)i[1 − (1 − p)m−i] for 1 ≤ i < m ,

Qi,j =

(

i

j

)

pj(1 − p)i−j for 1 ≤ i ≤ m, 1 ≤ j < i ,

Qi,i = pi + (1 − p)m for 1 ≤ i ≤ m ,

Qi,j = 0 for 1 ≤ i ≤ m, i < j ≤ m .

Proof. See the Appendix.

Theorem 1 allows the numerical computation for the ZIAC model of [PB ]lbs = P [Dk 6= ∅] =
∑m

i=1 P [Yk = i] using standard discrete-parameter Markov chain analysis techniques. However,
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Figure 1: State transition diagram ofY for the casem = 3.

given the values of the one-step transition probabilities of Y , it is possible to obtain a simple closed-

form expression for[PB ]lbs. We start by deriving a closed-form expression forP [Yr = i], 1 ≤ r ≤
k, 1 ≤ i ≤ m:

Proposition 1. For 1 ≤ r ≤ k and1 ≤ i ≤ m:

P [Yr = i] =

(

m

i

) m
∑

j=i

(

m − i

j − i

)

(−1)j−i[pj + (1 − p)m]r .

Proof. We start by proving that the one-step transition probabilitiesQi,j for 1 ≤ i ≤ m, 1 ≤ j < i

andQi,i, 1 ≤ i ≤ m given by Theorem 1 can be formulated in a more compact way as:

Qi,j =

(

i

j

) i
∑

l=j

(

i − j

l − j

)

(−1)l−j [pl + (1 − p)m] , 1 ≤ i ≤ m, 1 ≤ j ≤ i . (3)

To make the proof, we rewrite the previous expression as:

(

i

j

) i−j
∑

l=0

(

i − j

l

)

(−1)l[pj+l + (1 − p)m]

=

(

i

j

)

pj

i−j
∑

l=0

(

i − j

l

)

(−p)l +

(

i

j

) i−j
∑

l=0

(

i − j

l

)

(−1)l(1 − p)m .

For1 ≤ j < i, the previous expression gives

(

i

j

)

pj(1 − p)i−j +

(

i

j

)

(1 − 1)i−j(1 − p)m =

(

i

j

)

pj(1 − p)i−j ,

which is the expression forQi,j, 1 ≤ i ≤ m, 1 ≤ j < i given by Theorem 1. Forj = i, the

expression gives

pi + (1 − p)m ,

which is the expression forQi,i, 1 ≤ i ≤ m given by Theorem 1.
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Using (3), the proof of the proposition is by induction onr. Forr = 1, usingY0 = m and (3),

we obtain

P [Y1 = i] = Qm,i =

(

m

i

) m
∑

j=i

(

m − i

j − i

)

(−1)j−i[pj + (1 − p)m] ,

completing the base case. For the induction step, assume theresult holds forr = s ≥ 1 and

let us prove the result forr = s + 1. Using Theorem 1, the induction step, (3), and the identity
(

m
k

)(

j
i

)

=
(

m
i

)(

m−i
j−i

)

:

P [Ys+1 = i] =

m
∑

j=0

P [Ys = j] Qj,i =

m
∑

j=i

P [Ys = j] Qj,i

=

m
∑

j=i





(

m

j

) m
∑

l1=j

(

m − j

l1 − j

)

(−1)l1−j [pl1 + (1 − p)m]s









(

j

i

) j
∑

l2=i

(

j − i

l2 − i

)

(−1)l2−i [pl2 + (1 − p)m]





=

m
∑

j=i

(

m

j

)(

j

i

)





m
∑

l1=j

(

m − j

l1 − j

)

(−1)l1−j [pl1 + (1 − p)m]s









j
∑

l2=i

(

j − i

l2 − i

)

(−1)l2−i [pl2 + (1 − p)m]





=

(

m

i

) m
∑

j=i

(

m − i

j − i

)





m
∑

l1=j

(

m − j

l1 − j

)

(−1)l1−j [pl1 + (1 − p)m]s









j
∑

l2=i

(

j − i

l2 − i

)

(−1)l2−i [pl2 + (1 − p)m]



 ,

which can be written as

P [Ys+1 = i] =
m
∑

l2=i

m
∑

l1=l2

C(l1, l2)[p
l1 + (1 − p)m]s[pl2 + (1 − p)m] (4)

with

C(l1, l2) =

(

m

i

) l1
∑

j=l2

(

m − i

j − i

)(

m − j

l1 − j

)(

j − i

l2 − i

)

(−1)l1−j(−1)l2−i .

Using the identity
(

m−i
j−i

)(

m−j
l1−j

)(

j−i
l2−i

)

=
(

m−i
l1−i

)(

l1−i
l2−i

)(

l1−l2
j−l2

)

:

C(l1, l2) =

(

m

i

)(

m − i

l1 − i

)(

l1 − i

l2 − i

)

(−1)l2−i

l1
∑

j=l2

(

l1 − l2
j − l2

)

(−1)l1−j

=

(

m

i

)(

m − i

l1 − i

)(

l1 − i

l2 − i

)

(−1)l2−i

l1−l2
∑

j=0

(

l1 − l2
j

)

(−1)l1−l2−j .
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Then, we have

C(l2, l2) =

(

m

i

)(

m − i

l2 − i

)

(−1)l2−i

and, forl2 > l1,

C(l1, l2) =

(

m

i

)(

m − i

l1 − i

)(

l1 − i

l2 − i

)

(−1)l2−i(1 − 1)l1−l2 = 0 .

Plugging those results into (4):

P [Ys+1 = i] =

(

m

i

) m
∑

l2=i

(

m − i

l2 − i

)

(−1)l2−i[pl2 + (1 − p)m]s+1 ,

completing the induction step.

The closed-form expression for[PB ]lbs for the ZIAC model is given by the following theorem:

Theorem 2. For the ZIAC model,

[PB ]lbs =
m
∑

i=1

(

m

i

)

(−1)i−1[pi + (1 − p)m]k .

Proof. Using [PB ]lbs =
∑m

i=1 P [Yk = i] and Proposition 1:

[PB ]lbs =

m
∑

i=1

P [Yk = i] =

m
∑

i=1

(

m

i

) m
∑

j=i

(

m − i

j − i

)

(−1)j−i[pj + (1 − p)m]k

=

m
∑

j=1

j
∑

i=1

(

m

i

)(

m − i

j − i

)

(−1)j−i[pj + (1 − p)m]k .

Using the identity
(

m
i

)(

m−i
j−i

)

=
(

m
j

)(

j
i

)

:

[PB ]lbs =

m
∑

j=1

(

m

j

)

[pj + (1 − p)m]k
j
∑

i=1

(

j

i

)

(−1)j−i

=

m
∑

j=1

(

m

j

)

[pj + (1 − p)m]k

(

j
∑

i=0

(

j

i

)

(−1)j−i − (−1)j

)

=
m
∑

j=1

(

m

j

)

[pj + (1 − p)m]k((1 − 1)j − (−1)j)

=

m
∑

j=1

(

m

j

)

(−1)j−1[pj + (1 − p)m]k .

We will consider next the PIAC model. For that model we have not been able to derive a closed-

form expression for[PB ]lbs and will content ourselves with a recurrent computational scheme. Let
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G be the subset of good alternatives (those whose attribute values are independent Bernoulli ran-

dom variables with parameterph). Since each alternative is independently good with parameter p,

the number of good alternatives|G| has a binomial distribution with parametersm andp. Then,

conditioning on|G|:

[PB ]lbs = P [Dk 6= ∅] =

m
∑

g=0

(

m

g

)

pg(1 − p)m−gP [Dk 6= ∅||G| = g] . (5)

By symmetry, allP [Dk 6= ∅|G = G′], |G′| = g are equal and, therefore,P [Dk 6= ∅||G| = g] =

P [Dk 6= ∅|G = G′], |G′| = g. Following ideas similar to the ones used for the ZIAC model

we can formalize the computation ofP [Dk 6= ∅|G = G′] in terms of the transient behavior of an

homogeneous discrete-parameter Markov chain (with truncated parameter). Let

Dg
r = {i ∈ G : xi,s ≥ xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r}

and

Db
r = {i ∈ {1, 2, . . . ,m} − G : xi,s ≥ xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r} ,

i.e.,Dg
r collects the good alternatives which exhibit simple dominance over any other alternative up

to attributer andDb
r collects the bad alternatives which exhibit simple dominance over any other

alternative up to attributer. Given a set of good alternativesG, let Y G = {Y G
r ; 0 ≤ r ≤ k} be the

discrete-parameter stochastic process (with truncated parameter) with state space{(i, j), 0 ≤ i ≤
|G|, 0 ≤ j ≤ m − |G|} defined byY G

0 = (|G|,m − |G|) andY G
r = (|Dg

r |, |Db
r|), 1 ≤ r ≤ k. The

following theorem establishes thatY G is a homogeneous discrete-parameter Markov chain (with

truncated parameter) and gives its one-step transition probabilities. The proof of the Theorem is

parallel to the proof of Theorem 1.

Theorem 3. Y G = {Y G
r ; 0 ≤ r ≤ k} is a homogeneous discrete-parameter Markov chain (with

truncated parameter) with state space{(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m − |G|}, initial stateY G
0 =

(|G|,m − |G|), and one-step transition probabilitiesQ(ig ,ib),(jg,jb) = P [Y G
r+1 = (jg, jb) | Y G

r =

(ig, ib)] given by:

Q(0,0),(0,0) = 1 ,

Q(0,0),(jg,jb) = 0 for 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m − |G|, (jg, jb) 6= (0, 0) ,

Q(ig,ib),(0,0) = (1 − ph)i
g

(1 − pl)
ib [1 − (1 − ph)|G|−ig(1 − pl)

m−|G|−ib ]

∗ for (ig, ib) 6= (0, 0), (ig, ib) 6= (|G|,m − |G|) ,

Q(ig,ib),(jg,jb) =

(

ig

jg

)

pjg

h (1 − ph)i
g−jg

(

ib

jb

)

pjb

l (1 − pl)
ib−jb

10



∗ for (ig, ib) 6= (0, 0), 0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib,(jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib) ,

Q(ig,ib),(ig ,ib) = pig

h pib

l + (1 − ph)|G|(1 − pl)
m−|G| for (ig, ib) 6= (0, 0) ,

Q(ig,ib),(jg,jb) = 0 for (ig, ib) 6= (0, 0), ig ≤ jg ≤ |G|, ib ≤ jb ≤ m − |G|, (jg, jb) 6= (ig, ib) .

Proof. See the Appendix.

Clearly,:

P [Dk 6= ∅ | |G| = g] =
∑

0≤ig≤|G′|
0≤ib≤m−|G′|
(ig ,ib)6=(0,0)

P [Y G′

k = (ig, ib)] , |G′| = g . (6)

Using standard numerical techniques for transient analysis of discrete-parameter Markov chains, we

can obtain recurrent expressions forP [Y G
r = (ig, ib)], 1 ≤ r ≤ k, |G| = g, 0 ≤ g ≤ m. Those

expressions together with (5) and (6) define a recurrent computational scheme for[PB ]lbs for the

PIAC model. The result is:

Theorem 4. For the PIAC model,

[PB ]lbs =

m
∑

g=0

(

m

b

)

pg(1 − p)m−gWg ,

where

Wg =
∑

0≤ig≤g

0≤ib≤m−g

(ig ,ib)6=(0,0)

Zg,k,ig,ib

and theZg,k,ig,ib , 0 ≤ g ≤ m, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m − g, (ig, ib) 6= (0, 0) can be computed

using, for increasingr, a set of recurrences givingZg,r,ig,ib , 0 ≤ g ≤ m, 1 ≤ r ≤ k, 0 ≤ ig ≤ g,

0 ≤ ib ≤ m − g, (ig, ib) 6= (0, 0). The initial values of the recurrences are:

Zg,0,g,m−g = 1 , 0 ≤ g ≤ m ,

Zg,0,ig,ib = 0 , 0 ≤ g ≤ m, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m − g, (ig , ib) 6= (g,m − g), (ig , ib) 6= (0, 0) .

The recurrences are:

Zg,r+1,ig,ib =
∑

ig≤jg≤g

ib≤jb≤m−g

(jg,jb)6=(ig ,ib)

(

jg

ig

)

pig

h (1 − ph)j
g−ig

(

jb

ib

)

pib

l (1 − pl)
jb−ibZg,r,jg,jb

+ [pig

h pib

l + (1 − ph)g(1 − pl)
m−g] Zg,r,ig,ib ,

0 ≤ g ≤ m, 0 ≤ r < k, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m − g, (ig , ib) 6= (0, 0) .

11



Proof. TheZg,r,ig,ib areP [Y G
r = (ig, ib)], |G| = g. Then, the recurrences forZg,r,ig,ib and their

initial values follow from Theorem 3 usingZg,r+1,ib,ib =
∑

jg,jb Zg,r,jb,jb Q(jg,jb),(ig ,ig). Wg is

P [Dk 6= ∅ | |G| = g]. Then, the expression forWg follows from (6). The expression for[PB ]lbs in

terms ofWg follows from (5).

Theorems 2 and 4 give computationally efficient procedures for [PB ]lbs for, respectively, the

ZIAC and the PIAC models. Using those procedures, we can obtain [PB ]lbs for quite large values

of k andm. Figure 2 plots[PB ]lbs, for values ofk ranging from 2 to 10 and values ofm ranging

from 2 to 10, for the ZIAC model withp = 0.2, 0.5, 0.8 and for the PIAC model withp = 0.5 and

ρ = 0.0, 0.2, 0.5. For a fixed number of alternatives,m, [PB ]lbs decays, in some cases rapidly, as

the number of attributesk increases. For a fixed number of attributes,k, [PB ]lbs first decreases with

the number of alternativesm up to a certain value ofm, m∗, beyond which it increases withm.

The explanation for that behavior is as follows. The addition of one alternative may have several

effects. First, it may happen that the new alternative simply dominates all others, making the new

Dk non-empty irrespectively of whether it was empty or not before. Second, the new alternative may

be simply dominated by some alternative, leavingDk unchanged. Third, it may also happen that the

additional alternative neither simply dominates all others nor is simply dominated by any alternative,

making empty the newDk if it was non-empty before. The first effect would force an increase with

m of [PB ]lbs, while the third effect would force a decrease. Asm increases, the probability that the

new alternative neither simply dominates all others nor is simply dominated by any other alternative

becomes small, and for large enoughm the third effect is negligible and[PB ]lbs increases withm as

a result of the first effect. In fact, asm → ∞, the probability that some alternative will have all its

attributes equal to1 tends to1, ensuring that[PB ]lbs → 1 asm → ∞. Them∗ turning point seems

to increase as the number of attributesk increases and as the quality of the alternatives decreases (p

gets smaller). However, the more importance conclusion is that, except when the average quality of

the alternatives is very good (ZIAC model,p = 0.8) or when the alternatives exhibit a strong positive

inter-attribute correlation (PIAC model,p = 0.5, ρ = 0.5), [PB ]lbs decays fast withk and has small

values for largek. Thus, simple dominance does not explain the observed good performance of

DEBA.
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Figure 2: [PB ]lbs for the ZIAC model (left) for several values ofp and the PIAC model (right) for

p = 0.5 and several values ofρ.

13



4 Cumulative Dominance andDEBA Performance

As shown in the previous section, the presence of simple dominance is not enough to justify the good

observed performance ofDEBA. In this section we will review the concept of cumulative dominance

and use it to explain, for the binary attribute case, the observed good performance ofDEBA. Our

results are however not restricted to theDEBAheuristic. They apply to classes of heuristics which

we will call cumulative dominance compliantheuristics andfully cumulative dominance compliant

heuristics, and examples of other heuristics belonging to those classes different fromDEBAwill be

given.

4.1 Definitions and basic results

The cumulative profile of an alternativei, 1 ≤ i ≤ m, is defined asXi,s =
∑s

t=1 xi,t, 1 ≤ s ≤
k. Cumulative dominance is identical to simple dominance, but applied to the cumulative profile.

Alternativei exhibitscumulative dominanceover alternativej up to attributer, denoted bycr(i, j),

if and only if Xi,s ≥ Xj,s, 1 ≤ s ≤ r. Alternativei exhibits cumulative dominance over alternative

j if and only if ck(i, j), i.e. if alternativei exhibits cumulative dominance over alternativej up to

attributek. Figure 3 illustrates cumulative dominance in the binary attribute case. In the figure,

alternative 2 exhibits cumulative dominance over alternative 3 up to attribute 2 and alternative 1

exhibits cumulative dominance over alternatives 2 and 3. Itis known that cumulative dominance

characterizes optimality for non-increasing weights (Kirkwood and Sarin 1985):

Proposition 2. Ui ≥ Uj for all weightsw1 ≥ w2 ≥ · · · ≥ wk ≥ 0,
∑k

s=1 ws = 1 if and only if

ck(i, j).

Proof. Notice that

Ui =

k
∑

s=1

wsxi,s =

k−1
∑

s=1

(ws − ws+1)Xi,s + wkXi,k

so that

Ui − Uj =
k−1
∑

s=1

(ws − ws+1) (Xi,s − Xj,s) + wk (Xi,k − Xj,k) ,

which is necessarily positive if alternativei cumulative dominates alternativej and weights are non-

increasing. For the converse, that
∑k

s=1 wsxi,s ≥ ∑k
s=1 wsxj,s holds for all weightsw1 ≥ w2 ≥
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Figure 3: Alternative profiles illustrating cumulative dominance in the binary attribute case.

· · · ≥ wk ≥ 0 implies that it holds for the sets of weights

(w1, w2, ..., wk) = (1, 0, 0, · · · , 0) ,

(w1, w2, ..., wk) =

(

1

2
,
1

2
, 0, · · · , 0

)

,

· · ·

(w1, w2, ..., wk) =

(

1

k
,
1

k
,
1

k
, · · · ,

1

k

)

,

yielding cr(i, j), 1 ≤ r ≤ k.

Note that Proposition 2 is not restricted to the binary attribute case.

For1 ≤ r ≤ k, let Cr denote the set of alternatives that exhibit cumulative dominance over any

other alternative up to attributer, i.e.,

Cr = {1 ≤ i ≤ m : cr(i, j), 1 ≤ j ≤ m}. (7)

Obviously,C1 ⊃ C2 ⊃ · · · ⊃ Ck. All alternatives inCr have identical cumulative attribute pro-

files up to attributer and, therefore, they have identical attribute profiles up toattributer. More

importantly, ifCk is non-empty, then Proposition 2 guarantees that the alternatives inCk will have

the largest utility. In the example of Figure 3,C1 = C2 = {1, 2} and C3 = C4 = {1}. C1

will always be non-empty. In the binary attribute case,C2 will be always non-empty also. This

follows by noting thatC2 can only be empty if there exist two alternativesi, j with xi,1 > xj,1

andxi,1 + xi,2 < xj,1 + xj,2, which, beingxi,r andxj,r binary, is impossible. In the non-binary

attribute case, however,C2 may well be empty. Forr ≥ 3, there is no guarantee even in the binary

attribute case thatCr will be non-empty. Consider for instance the case of two alternatives with
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attribute profilesx1,1 = 1, x1,2 = 0, x1,3 = 0 andx2,1 = 0, x2,2 = 1, x2,3 = 1. In that case, we

haveC3 = ∅. We say that a heuristic iscumulative dominance compliantif, wheneverCk 6= ∅, the

heuristic chooses an alternative fromCk. Then, according to Proposition 2 we can state:

Theorem 5. WhenCk is non-empty any cumulative dominance compliant heuristicwill choose a

best alternative.

Theorem 5 is not restricted to the binary attribute case.

The highest attribute index for which some alternative exhibits cumulative dominance over all

other alternatives deserves careful attention. We will denote that index byr∗. Formally,

r∗ = max
1≤r≤k

{1 ≤ r ≤ n : Cr 6= ∅}. (8)

By definition, Cr = ∅, r∗ < r ≤ k. Of course,Ck is non-empty if and only ifr∗ = k. In the

binary attribute case,r∗ ≥ 2. For non-binary attributes,r∗ could be equal to 1. A heuristic is said

to be fully cumulative dominance compliantif it always chooses an alternative fromCr∗ . Fully

cumulative dominance compliance implies cumulative dominance compliance. The motivation by

introducing the notion of fully cumulative dominance compliance is that results regarding the loss

of those heuristics independent of the weights will be obtained for heuristics satisfying this property.

Consider theDEBA heuristic. LetAr, 1 ≤ r ≤ k be the set of alternatives selected by the

heuristic at itsrth step. Remember thatA1 includes the alternativesi with largestxi,1: the ones with

xi,1 = 1 if some alternative has attribute 1 value 1 and all ifxi,1 = 0, 1 ≤ i ≤ m. A2 includes

the alternativesi in A1 with largestxi,2, and so on. ObviouslyA1 ⊃ A2 ⊃ · · · ⊃ Ak. TheDEBA

heuristic selects at random any alternative inAk 6= ∅. Informally speaking, an alternative exhibits

cumulative dominance over another when it has superior values in more important attributes, possi-

bly followed by inferior values in less important attributes. ButDEBAeliminates those alternatives

that have inferior values in the most important attributes,and hence it will never choose a cumulative

dominated alternative. More formally, thatDEBA is fully cumulative dominance compliant can be

easy seen by noting the following important relation between the subsetsAr andCr, 1 ≤ r ≤ r∗:

Proposition 3. Ar = Cr, 1 ≤ r ≤ r∗.

Proof. ThatCr ⊂ Ar, 1 ≤ r ≤ k, can be seen by induction onr. Obviously,C1 = A1. Assume the

result holds forr = s and consider the caser = s + 1. Let i ∈ Cs+1. We haveXi,s+1 ≥ Xj,s+1,

1 ≤ j ≤ m, j 6= i. SinceCs+1 ⊂ Cs, by the induction hypothesisi ∈ As. Assumei 6∈ As+1.
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Then, there exists an alternativel ∈ As+1, l 6= i, with xl,s+1 > xi,s+1 andxl,u = xi,u, 1 ≤ u ≤ s.

But this impliesXi,s+1 < Xl,s+1 and, therefore,i 6∈ Cs+1, a contradiction. ThatAr ⊂ Cr for all

r, 1 ≤ r ≤ r∗ can be seen by contradiction. Take somer, 1 ≤ r ≤ r∗, and an alternativei such

that i ∈ Ar andi 6∈ Cr. Since all alternatives inAr are identical up to attributer, this would imply

Ar ∩ Cr = ∅, which byCr ⊂ Ar, implies Cr = ∅, a contradiction. Thus,Ar = Cr for all r,

1 ≤ r ≤ r∗.

SinceDEBAchooses and alternative fromAk andAk ⊂ Ar∗ = Cr∗ we have:

Theorem 6. DEBA fully complies with cumulative dominance.

DEBA is not alone in the classes of cumulative dominance compliant heuristics and fully cu-

mulative dominance compliant heuristics. An example of a heuristic different fromDEBAwhich is

cumulative dominance compliant is theEWn/DEBA (Equal-Weightsn2 ≤ n ≤ k. That heuristic

first selects the alternativesi with largestXi,n and from them selects an alternative usingDEBA.

TheEWn/DEBAheuristic has as special case (n = k) theEW/DEBA(Equal-Weights/Deterministic-

Elimination-By-Aspects) heuristic and withn = 2 reduces toDEBA for the binary attribute case.

Since no alternativei can cumulatively dominate all others if it does not have largestXi,n, the first

phase ofEWn/DEBAwill select a superset,A, of Ck. AssumeCk 6= ∅. Then,Ck will cumulative

dominate all alternatives inA and, beingDEBA cumulative dominance compliant, in the second

phase,EWn/DEBA will choose an alternative fromCk, implying thatEWn/DEBA is cumulative

dominance compliant. However,EWn/DEBA is not fully cumulative dominance compliant. Con-

sider, for instance, the case with three attributes and two alternatives with profilesx1 = (1, 0, 0) and

x2 = (0, 1, 1). In that case,r∗ = 2, andCr∗ contains only alternative 1, butEW3/DEBA(EW/DEBA)

will choose alternative 2.

A heuristic different fromDEBA which is fully cumulative dominance compliant would be

the heuristic which first selects the alternatives inCr∗ and, then, selects among those alternatives

one with largestXi,k. We call that heuristicCDS/EW(Cumulative-Dominance-Selection/Equal-

Weights). While more expensive to apply thanDEBA, CDS/EWis intuitively appealing, since it first

maximizes with certainty the part of the utility corresponding to attributes1, 2 . . . , r∗, and, then,

takes a more global view thanDEBA to try to maximize the part of the utility corresponding to the

attributesr∗ + 1, . . . , k, which might be advantageous ifr∗ is not close tok.
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4.2 A lower bound for the probability of choosing a best alternative for cumulative

dominance compliant heuristics

Consider any cumulative dominance compliant heuristic. Since alternatives inCk have the largest

utility and, by definition, whenCk 6= ∅, the heuristic will choose an alternative fromCk. Hence,

[PB ]lbc = P [Ck 6= ∅] is a lower bound for the probability with which the heuristicwill choose

a best alternative. Since simple dominance implies cumulative dominance,Ck ⊃ Dk, P [Ck 6=
∅] ≥ P [Dk 6= ∅], and [PB ]lbc might be significantly better (tighter) than[PB ]lbs. [PB ]lbc is a

lower bound on the probabilityPB that a cumulative dominance compliant heuristic will choose a

best alternative which only depends on the weights being non-increasing. For a particular set of

weights, that lower bound might not be tight. In fact, if the weights are non-compensatory (wr ≥
∑k

s=r+1 ws, 1 ≤ r ≤ k − 2), then it can be shown thatDEBA(Katsikopoulos and Fasolo (in press),

Martignon and Hoffrage, 1999, 2002) andEW/DEBA(Hogarth and Karelaia (in press)) choose the

best alternative with probability one, whereas, as we will see,[PB ]lbc can be far from 1. However,

we will show (for the two probabilistic models considered inthe paper) that the lower bound for

PB does not decrease fast withm andk, implying thatPB will not decrease fast withm andk

for any cumulative dominance compliant heuristic and providing a first explanation of the observed

good performance ofDEBA. On the other hand,PB may decrease fast with bothm andk for non

cumulative dominance compliant heuristics. For instance,such behavior has been observed (Hogarth

and Karelaia, 2003) for theEW/RAN(Equal-Weights/Random) heuristic, which chooses at random

among the alternativesi with largestXi,k.

In this section, we will compute[PB ]lbc for the two probabilistic models considered in the

paper. Since, as noted, for the binary attribute case,C2 6= ∅, for k = 2, [PB ]lbc = 1. We will

therefore assumek ≥ 3. Computation of[PB ]lbc seems to be significantly harder than computation

of [PB ]lbs. Essentially, this is because, in the casexi,r+1 = 0, i ∈ Cr, whetherCr+1 is empty or

not not only depends onxi,r+1, i ∈ {1, 2, . . . ,m}−Cr. This prevents the use of discrete-parameter

Markov chain approaches similar to the ones used in Section 3to compute[PB ]lbs for the two prob-

abilistic models considered in the paper. We have taken another approach, which profits from our

binary set-up and uses ROBDDs (Reduced Ordered Binary Decision Diagrams). A ROBDD (see

Bryant 1986) is a directed acyclic graph having a single rootnote and two terminal nodes (leaves),

one labeled 0 and another labeled 1, which represents an arbitrary given Boolean function of a

given set of binary variables. ROBDDs are called reduced because each node represents a different

Boolean function (the root node represents the given Boolean function). They are called ordered
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because they depend on the ordering of the binary variables.ROBDDs are canonical (unique) rep-

resentations of Boolean functions which only depend on the ordering of the binary variables. That

property has given to ROBDDs many applications, e.g., formal verification of digital circuits. Given

a Boolean functionF (x1, x2, . . . , xn) of n independent Bernoulli random variables, we can com-

puteP [F (x1, x2, . . . , xn) = 1] by building the ROBDD ofF () as a function ofx1, x2, . . . , xn and,

then, traversing bottom-up the ROBDD. At each step, we obtain the probability that the Boolean

function represented by a node is equal to 1 by multiplying the corresponding probability of the

0-edge node by the probability that the binary variable associated with the processed node has value

0, multiplying the corresponding probability of the 1-edgenode by the probability that the binary

variable has value 1, and adding up those partial results. Tobuild the ROBDD, a Boolean expression

for F () as a function ofx1, x2, . . . , xn involving basic Boolean functions like NOT, AND, OR is

required.

The Boolean function we have to consider to compute[PB ]lbc is the indicator function of the

event{Ck 6= ∅}. For the ZIAC model, the Bernoulli random variables to be considered arexi,s,

1 ≤ i ≤ m, 1 ≤ s ≤ k and an expression forFm,k(x1,1, , x1,k, . . . , xm,1, . . . , xm,l) = 1Ck 6=∅ is:

Fm,k(x1,1, . . . , x1,r, . . . , xm,1, . . . , xm,r) =

m
∨

i=1

m
∧

j=1
j 6=i

k
∧

s=1

1Xi,s≥Xj,s
,

where the indicator functions1Xi,s≥Xj,s
can be expressed in terms of the Bernoulli random variables

xi,t, 1 ≤ i ≤ m, 1 ≤ t ≤ s using standard implementations of binary adders and binarycompara-

tors. For the PIAC model, the Bernoulli random variables to be considered arezi, 1 ≤ i ≤ m, and

y0
i,s, y

1
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ k and an expression forFm,k(z1, . . . , zm, y0

1,1, . . . , y
0
m,r, y

1
1,1, . . . , y

1
m,r) =

1Ck 6=∅ is:

Fm,r(z1, . . . , zm, y0
1,1, . . . , y

0
m,r, y

1
1,1, . . . , y

1
m,r) =

m
∨

i=1

m
∧

j=1
j 6=i

k
∧

s=1

1Xi,s≥Xj,s
,

xi,s = (1 − zi) ∧ y0
i,s ∨ zi ∧ y1

i,s ,

where the indicator functions1Xi,s≥Xj,s
can be expressed in terms of the Boolean functionsxi,t,

1 ≤ i ≤ m, 1 ≤ t ≤ s using standard implementations of binary adders and binarycomparators.

The computational cost of the ROBDD based method is mainly determined by the size (number

of nodes) of the resulting ROBDD. It is also affected by the peak number of reserved nodes. The

ROBDD of the function is built (Bryant 1986) by traversing the description of the Boolean function
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in terms of basic Boolean functions such as NOT, AND and OR functions and combining the ROB-

DDs of the nodes of that description. Then, the peak number ofreserved nodes is the maximum sum

of the nodes in the ROBDDs which have to be held during the process. The size of the ROBDD

depends on the ordering chosen for the variables on which thefunction depends and can be reduced

by using ROBDDs with complement edges (Brace et al. 1990). The variable ordering is typically

chosen using heuristics based on the Boolean description ofthe function . We have used the topol-

ogy heuristic (Nikolskaia et al. 1998) with good results. Using that heuristic and ROBDDs with

complement 0-edges, we have been able to compute the probabilities PC(r) for values ofm andk

as large as10. As expected, the size of the ROBDDs increased with bothm andr. Form = 10 and

k = 10, the ROBDD for the ZIAC model had 320,558 nodes and its construction resulted in a peak

number of reserved nodes of 5,182,179. For the PIAC model, the corresponding ROBDDs were a

bit larger. Form = 10 andk = 10, the ROBDD had 681,216 nodes and its construction resulted in

a peak number of reserved nodes of 11,639,367. To build the ROBDDs we used the CU Decision

Diagram Package (CU 2005).

Figure 4 plots[PB ]lbc, for values ofk ranging from 3 to 10 and values ofm ranging from

2 to 10, for the ZIAC model forp = 0.2, 0.5, 0.8 and for the PIAC model forp = 0.5 andρ =

0.0, 0.2, 0.5. We can note that in all cases[PB ]lbc is significantly larger than[PB ]lbs (Figure 2).

As [PB ]lbs, for a fixed number of alternativesm, [PB ]lbc decreases withk but, contrary to[PB ]lbs,

[PB ]lbc never decreases fast withk. As for [PB ]lbs, for fixedk, there exists a turning point,m∗, for m

before which[PB ]lbc decays withm and beyond which[PB ]lbc increases withm. The explanation of

the existence of those turning points is similar to the explanation of the corresponding turning points

for [PB ]lbs but in terms of cumulative dominance instead of in terms of simple dominance. For

fixed k andm, the values of[PB ]lbc improve (increase) with the average quality of the alternatives

(higher p) and with a positive inter-attribute correlation (higherρ). It is noteworthy that[PB ]lbc

is very close to 1 when either the alternatives have good average quality (ZIAC model,p = 0.8)

or there exists strong positive correlation among the attribute values of a given alternative (PIAC

model,p = 0.5, ρ = 0.5). In those cases, the presence of cumulative dominance is enough to

explain a very good performance of any cumulative dominancecompliant heuristic, including, of

course,DEBA. It is also noteworthy that, contrary to[PB ]lbs and contrary to intuition,[PB ]lbc has a

significant value even when the alternatives have a poor quality and there does not exist any positive

correlation among the values of the attributes of a given alternative (ZIAC model,p = 0.2).
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Figure 4: [PB ]lbc for the ZIAC model (left) for several values ofp and the PIAC model (right) for

p = 0.5 and several values ofρ.
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4.3 An upper bound for the expected loss of fully cumulative dominance compliant

heuristics

The probability that a heuristic chooses a best alternativeis an important metric of the performance

of the heuristic. Guaranteeing that probability will be close to 1 certainly shows that the heuristic is a

good heuristic. The expected loss of the heuristic, i.e. theexpected difference between the utility of

a best alternative and the utility of the alternative chosenby the heuristic is another relevant metric,

which is specially useful when the probability of chosen a best alternative is not close to 1. The

reason is simple: in many cases, we would be content with a non-best alternative as far as its utility

is reasonably close to the utility of a best alternative. With that motivation, in this section, we will

derive, for the two probabilistic models under consideration, an upper bound for the expected loss

of any fully cumulative compliant heuristic, including, ofcourse,DEBA. Since fork = 2 any fully

cumulative dominance compliant heuristic will choose a best alternative with probability 1, and,

therefore, the expected loss will be 0, we will assumek ≥ 3.

Let b the alternative chosen by the heuristic. Then, the loss of the heuristic is

L = max
1≤i≤m

Ui − Ub . (9)

We will derive an upper bound forL as a function ofr∗. Note thatL is a random variable. The

upper bound for the expected loss will follow by conditioning onr∗ and taking expectations.

Since the heuristic is fully cumulative dominance compliant, we know thatb ∈ Cr∗ . Let i be

any other alternative. Compared tob, how much better canj be? To answer that question, it is useful

to consider the following formulation for the utility of an alternativeUi =
∑k

s=1 wsxi,s in terms of

its cumulative profile.

Ui =

k−1
∑

s=1

(ws − ws+1)Xi,s + wkXi,k .

According to this formulation, given a set of weights, the highest loss occurs when the cumulative

profile of i meets the following two conditions: 1)Xi,s = Xb,s, 1 ≤ s ≤ r∗ (sinceb ∈ Cr∗ ,

Xi,s ≤ Xb,s, 1 ≤ s ≤ r∗), 2) Xi,s = Xb,s + (s − r∗), r∗ + 1 ≤ s ≤ k (which is possible, since all

xi,s, r∗ + 1 ≤ s ≤ k could be 1 and allxb,s, r∗ + 1 ≤ s ≤ k could be 0). Thus, for a given set of

weights,

L ≤
k−1
∑

s=r∗+1

(ws − ws+1)(s − r∗) + wk(k − r∗) =

k
∑

s=r∗+1

ws .

To find an upper bound forL independent of the weights, it remains to maximize
∑k

s=r∗+1 ws

subject to the restrictions which thews, r∗ + 1 ≤ s ≤ k have to satisfy. The restrictions are (the last
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one comes fromw1 ≥ w2 ≥ · · · ≥ wr∗+1 and
∑k

s=1 ws = 1):

wk ≥ 0 ,

ws−1 ≥ ws , r∗ + 2 ≤ s ≤ k ,

(r∗ + 1)wr∗+1 +
k
∑

s=r∗+2

ws ≤ 1 .

This is a linear programming problem with bounded domain and, as it is well known, the maximum

occurs at some vertex of the polyhedron defined by the restrictions. The vertices of the polyhedron

are

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) = (0, 0, 0, . . . , 0) ,

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =

(

1

r∗ + 1
, 0, 0, . . . , 0

)

,

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =

(

1

r∗ + 2
,

1

r∗ + 2
, 0, . . . , 0

)

,

· · ·

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =

(

1

k
,
1

k
,
1

k
, · · · ,

1

k

)

,

and, therefore, the maximum is

max
r∗+1≤s≤k

s − r∗

s
=

k − r∗

k
.

Then, we can state the following result:

Theorem 7. Any heuristic that fully complies with cumulative dominance will have a loss with

respect to a best alternative upper bounded by(k − r∗)/k.

Note that the upper bound for the loss given by Theorem 7 is notrestricted to the binary attribute

case.

Recall that forn > 3, EWn/DEBA is not fully cumulative dominance compliant. Hence, the

upper bound on the expected loss does not apply. Consideringagain the example withk = 3 and

m = 2 given byx1 = (1, 0, 0) andx2 = (0, 1, 1), the maximum loss guaranteed by any heuristics

that fully complies with cumulative dominance is(k − r∗)/k = 1/3. DEBA chooses alternative 1

and, as expected, the maximum loss in the most pessimistic weight scenario (w1 = w2 = w3 = 1/3)

is given byL = U2 − U1 = 1/3. In contrast,EW3/DEBAchooses alternative 2, and for appropriate

weights (w1 = 1 − 2ε, w2 = w3 = ε), this choice may yield a loss ofL = U1 − U2 = 1 − 4ε ≈ 1.
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As noted, in the binary attribute case2 ≤ r∗ ≤ k. Let P (r) = P [r∗ = r], 2 ≤ r ≤ k. Then,

conditioning on the value ofr∗ and taking expectations:

E[L] =

k
∑

r=2

P (r)E[L|r∗ = r]

and using Theorem 7, for any fully cumulative dominance compliant heuristic:

E[L] ≤
k−1
∑

r=2

P (r)
k − r

k
.

This is the sought upper bound for the expected loss. Let us call it [E[L]]ub. It remains to discuss

a procedure for computingP (r), 2 ≤ r ≤ k − 1 for the two considered probabilistic models. Let

Q(r) = P [r∗ ≥ r]. We have

P (r) = Q(r) − Q(r + 1) , 2 ≤ r ≤ k − 1 .

Sincer∗ ≥ 2, Q(2) = 1. TheQ(r), 3 ≤ r ≤ k required to computeP (r), 2 ≤ r ≤ k − 1 can be

obtained, noting thatQ(r) = P [Cr 6= ∅], using the ROBDD approaches described in Section 4.2 for

the computation of[PB ]lbc = Q(k) for the ZIAC and the PIAC probabilistic models with the index

k replaced by the indexr.

Figure 5 plots[E[L]]ub, for values ofk ranging from 3 to 10 and values ofm ranging from

2 to 10, for the ZIAC model forp = 0.2, 0.5, 0.8 and for the PIAC model forp = 0.5 andρ =

0.0, 0.2, 0.5. For fixed number of alternativesm, [E[L]]ub increases withk, but in no case does

so fast. For fixedk , there exist a turning pointm∗ before which[E[L]]ub increases withm and

beyond which[E[L]]ub decreases withm . Not surprisingly, the value of[E[L]]ub is very small

when either the alternatives have good average quality (ZIAC model,p = 0.8) or there exist strong

positive inter-attribute correlation (PIAC model,p = 0.5, ρ = 0.5). The values of[E[L]]ub are

reasonably small in the presence of a moderate positive inter-attribute correlation (PIAC model,

p = 0.5, ρ = 0.2) and are moderate in all cases. Those observations completethe explanation of

the observed good performance ofDEBAand make that good performance extensible to any fully

cumulative dominance compliant heuristic.

5 Final Remarks and Conclusions

Using the cumulative dominance concept we have justified, for the binary attribute case and for two

probabilistic models, the observed good performance of theDEBAheuristic. The results obtained in
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Figure 5:[E[L]]ub for the ZIAC model (left) for several values ofp and the PIAC model (right) for

p = 0.5 and several values ofρ.

25



the paper are applicable to any cumulative dominance compliant heuristic and any fully cumulative

dominance compliant heuristic and examples of heuristics in those classes different fromDEBAhave

been given. Our results can be used to bound the performance of those heuristics independently of

the particular values of the weights, which are unknown. Ourcomputational procedures are feasible

for quite large values ofm andk (we have given results form up to 10 andk up to 10). Previous

studies concerning the performance ofDEBA andEWn/DEBA (Hogarth and Karelaia 2003) used

simpler enumeration approaches and were restricted to the ZIAC model with p = 0.5 and more

modest values ofm andk (m up to 5 andk up to 5).

Our study is one more step in the direction of reducing the descriptive–prescriptive gap in

multi-attribute decision making. We have shown thatDEBAand other related heuristics achieve a

good performance in the binary attribute setting with a moderate number of attributes. This strongly

supports the insight thatthe keymanagerial skill is to identify and rank the most relevant attributes

or factors. Efforts to specify exact values of weights and/or use a informational-intensive decision

procedures may have a minor return and be justified only for a small fraction of decisions (Keeney

2004). Since much may not be lost by the binary encoding of attribute values (Hogarth and Karelaia

2005b), our results can also justify good performance ofDEBA and related heuristics when the

attribute are continuous random variables.

Our analysis can be extended in several directions. First, it would be interesting to analyze the

impact of a negative inter-attribute correlation. However, whereas this can be introduced in several

ways, it is not a simple task. Another, obvious, direction isthe consideration of probabilistic models

in which attributes are continuous random variables, possibly correlated. Another possibility is the

consideration of different scenarios for the available knowledge about the values of the weightswi,

1 ≤ i ≤ k (see Barron 1992). Our analysis has been restricted to the case of non-increasing weights.

A possible extension is to consider the case where the relative ranking of the firstq weights is not

known, i.e.w1, w2, . . . wq ≥ wq+1 ≥ · · · ≥ wk ≥ 0. Picking upq = 1 puts us in the non-increasing

weights scenario assumed in the paper, which is optimally characterized by cumulative dominance.

Picking upq = k puts us in the non-negative weights scenario, which is optimally characterized by

simple dominance. It is easy to check that the more general scenario is optimally characterized by

q-dominance: an alternativei exhibitsq-dominance over another alternativej if and only if dr(i, j)

for all r, 1 ≤ r ≤ q andcr(i, j) for all r, q + 1 ≤ r ≤ k. Using theq-dominance concept we could

derive in a similar way as it has been done in the paper performance measures forq-dominance

compliantheuristics andfully q-dominance compliantheuristics. All those extensions are expected

to be the subject of future work.
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Appendix

Proof of Theorem 1 ThatY G
0 = (|G|,m−|G|) is by definition. We will compute the probabilities

P [Y G
1 = (jg , jb) |Y G

0 = (|G|,m−|G|)], (jg, jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m−|G|} and the

probabilitiesP [Y G
r+1 = (jg, jb)|Y G

r = (ig, ib)∧Y G
r−1 = (igr−1, i

b
r−1)∧ · · · ∧Y G

1 = (ig1, i
b
1)∧Y G

0 =

(|G|,m−|G|)], (ig1, i
b
1), . . . , (i

g
r−1, i

b
r−1), (i

g , ib), (jg , jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m−|G|}.

It will trun out that the former are equal toQ(|G|,m−|G|),(jg,jb) and the latter only depend on(ig, ib)

and (jg, jb) and are equal toQ(ig ,ib),(jg,jb), thus proving thatY G = {Y G
r ; 0 ≤ r ≤ k} is an

homogeneous discrete-parameter Markov chain (with truncated parameter) with one-step transition

probabilitiesQ(ig ,ib),(jg,jb).

SinceY G
0 = (|G|,m − |G|) with probability 1,P [Y G

1 = (jg, jb) | Y G
0 = (|G|,m − |G|)] =

P [Y G
1 = (jg, jb)]. First,Y G

1 = (|G|,m − |G|) if and only if all alternatives have same attribute 1

value. Then,P [Y G
1 = (|G|,m−|G|)|Y G

0 = (|G|,m−|G|)] = p
|G|
h p

m−|G|
l +(1−ph)|G|(1−pl)

m−|G|.

Second,Y G
1 = (jb, jb), 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m−|G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m−|G|)

if and only if jb of the |G| good alternatives have attribute 1 value 1, the remaining|G| − jg good

alternatives have attribute 1 value 0,jb of them − |G| bad alternatives have attribute 1 value 1, and

the remainingm−|G|− jb bad alternatives have attribute 1 value 0. Then,P [Y G
1 = (jg, jb) |Y G

0 =

(|G|,m−|G|)] =
(

|G|
jg

)

pjg

h (1−ph)|G|−jg(m−|G|
jb

)

pjb

l (1−pl)
m−|G|−jb

, 0 ≤ jb ≤ m−|G|, (jg, jb) 6=
(0, 0), (jg , jb) 6= (|G|,m − |G|). Finally, Y G

1 cannot be(0, 0). Then,P [Y G
1 = (0, 0) | Y G

0 =

(|G|,m − |G|)] = 0.

Let 0 < r < k. Assume(ig, ib) = (0, 0). Thus, Dg
r = Db

r = ∅. SinceDg
r+1 ⊂ Dg

r

and Db
r+1 ⊂ Db

r, Dg
r+1 = Db

r+1 = ∅, implying P [Y G
r+1 = (0, 0) | Y G

r = (0, 0) ∧ Y G
r−1 =

(igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 = (ig1, i
b
1) ∧ Y G

0 = (|G|,m − |G|)] = 1 andP [Y G
r+1 = (jg, jb) | Y G

r =

(0, 0) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧ · · · ∧ Y G

1 = (ig1, i
b
1) ∧ Y G

0 = (|G|,m − |G|)] = 0, 0 ≤ jg ≤ |G|,
0 ≤ jb ≤ m − |G|, (jg, jb) 6= (0, 0). Assume(ig, ib) 6= (0, 0). Thus,|Dg

r | = ig and |Db
r| = ib.

The values of|Dg
r+1| and|Db

r+1| depend on|Dg
r | = ig and|Db

r| = ib and the values of the attributes

r + 1 of the alternatives as follows. First,Db
r+1 ⊂ Db

r andDg
r+1 ⊂ Db

r imply |Dg
r+1| ≤ |Dg

r | = ig

and|Db
r+1| ≤ |Db

r| = ib and, then,P [Y G
r+1 = (jg, jb) | Y G

r = (ig, ib) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧

· · · ∧ Y G
1 = (ig1, i

b
1) ∧ Y G

0 = (|G|,m − |G|)] = 0, ig ≤ jg ≤ |G|, ib ≤ jb ≤ m − |G|,
(jg, jb) 6= (ig, ib). Second, for(ig, ib) 6= (|G|,m − |G|), |Dg

r+1| = 0 and |Db
r+1| = 0 if and

only if all alternatives inDg
r have attributer + 1 value 0, all alternatives inDb

r have attributer + 1

value 0, and some alternative in{1, 2, . . . ,m} − Dg
r − Db

r has attributer + 1 value 0. Then,
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P [Y G
r+1 = (0, 0)|Y G

r = (ig, ib)∧Y G
r−1 = (igr−1, i

b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 = (|G|,m−|G|)] =

(1−ph)i
g

(1−pl)
ib [1− (1−ph)|G|−ig(1−pl)

m−|G|−ib ]. Third, |Dg
r+1| and|Db

r+1| will have values

jg andjb, respectively,0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib) if and only

if jb alternatives inDg
r have attributer + 1 value 1, the remainingib − jb alternatives inDg

r have

attributer + 1 value 0,jb alternatives inDb
r have attributer + 1 value 1, and the remainingib − jb

alternatives inDb
r have attributer + 1 value 0. Then,P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 =

(igr−1, i
b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 = (|G|,m−|G|)] =
(

ig

jg

)

pjg

h (1−ph)i
g−jg(ib

jb

)

pjb

l (1−pl)
ib−jb

,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib). Finally, |Dg
r+1| will have valueig

and|Db
r+1| will have valueib if and only if either all alternatives inDg

r∪Db
r have attributer+1 value

1 or all alternatives have attributer + 1 value 0. Then,P [Y G
r+1 = (ig, ib) | Y G

r = (ig, ib) ∧ Y G
r−1 =

(igr−1, i
b
r−1)∧ · · · ∧ Y G

1 = (ig1, i
b
1)∧ Y G

0 = (|G|,m−|G|)] = pig

h pib

l +(1−ph)|G|(1−pl)
m−|G|.

Proof of Theorem 3 ThatY G
0 = (|G|,m−|G|) is by definition. We will compute the probabilities

P [Y G
1 = (jg , jb) |Y G

0 = (|G|,m−|G|)], (jg, jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m−|G|} and the

probabilitiesP [Y G
r+1 = (jg, jb)|Y G

r = (ig, ib)∧Y G
r−1 = (igr−1, i

b
r−1)∧ · · · ∧Y G

1 = (ig1, i
b
1)∧Y G

0 =

(|G|,m−|G|)], (ig1, i
b
1), . . . , (i

g
r−1, i

b
r−1), (i

g , ib), (jg , jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m−|G|}.

It will turn out that the former are equal toQ(|G|,m−|G|),(jg,jb) and the latter only depend on(ig, ib)

and (jg, jb) and are equal toQ(ig ,ib),(jg,jb), thus proving thatY G = {Y G
r ; 0 ≤ r ≤ k} is an

homogeneous discrete-parameter Markov chain (with truncated parameter) with one-step transition

probabilitiesQ(ig ,ib),(jg,jb).

SinceY G
0 = (|G|,m − |G|) with probability 1,P [Y G

1 = (jg, jb) | Y G
0 = (|G|,m − |G|)] =

P [Y G
1 = (jg, jb)]. First,Y G

1 = (|G|,m − |G|) if and only if all alternatives have same attribute 1

value. Then,P [Y G
1 = (|G|,m−|G|)|Y G

0 = (|G|,m−|G|)] = p
|G|
h p

m−|G|
l +(1−ph)|G|(1−pl)

m−|G|.

Second,Y G
1 = (jb, jb), 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m−|G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m−|G|)

if and only if jb of the |G| good alternatives have attribute 1 value 1, the remaining|G| − jg good

alternatives have attribute 1 value 0,jb of them − |G| bad alternatives have attribute 1 value 1, and

the remainingm−|G|− jb bad alternatives have attribute 1 value 0. Then,P [Y G
1 = (jg, jb) |Y G

0 =

(|G|,m−|G|)] =
(|G|

jg

)

pjg

h (1−ph)|G|−jg(m−|G|
jb

)

pjb

l (1−pl)
m−|G|−jb

, 0 ≤ jb ≤ m−|G|, (jg, jb) 6=
(0, 0), (jg , jb) 6= (|G|,m − |G|). Finally, Y G

1 cannot be(0, 0). Then,P [Y G
1 = (0, 0) | Y G

0 =

(|G|,m − |G|)] = 0.

Let 0 < r < k. Assume(ig, ib) = (0, 0). Thus, Dg
r = Db

r = ∅. SinceDg
r+1 ⊂ Dg

r

and Db
r+1 ⊂ Db

r, Dg
r+1 = Db

r+1 = ∅, implying P [Y G
r+1 = (0, 0) | Y G

r = (0, 0) ∧ Y G
r−1 =

(igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 = (ig1, i
b
1) ∧ Y G

0 = (|G|,m − |G|)] = 1 andP [Y G
r+1 = (jg, jb) | Y G

r =
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(0, 0) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧ · · · ∧ Y G

1 = (ig1, i
b
1) ∧ Y G

0 = (|G|,m − |G|)] = 0, 0 ≤ jg ≤ |G|,
0 ≤ jb ≤ m − |G|, (jg, jb) 6= (0, 0). Assume(ig, ib) 6= (0, 0). Thus,|Dg

r | = ig and |Db
r| = ib.

The values of|Dg
r+1| and|Db

r+1| depend on|Dg
r | = ig and|Db

r| = ib and the values of the attributes

r + 1 of the alternatives as follows. First,Db
r+1 ⊂ Db

r andDg
r+1 ⊂ Db

r imply |Dg
r+1| ≤ |Dg

r | = ig

and|Db
r+1| ≤ |Db

r| = ib and, then,P [Y G
r+1 = (jg, jb) | Y G

r = (ig, ib) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧

· · · ∧ Y G
1 = (ig1, i

b
1) ∧ Y G

0 = (|G|,m − |G|)] = 0, ig ≤ jg ≤ |G|, ib ≤ jb ≤ m − |G|,
(jg, jb) 6= (ig, ib). Second, for(ig, ib) 6= (|G|,m − |G|), |Dg

r+1| = 0 and |Db
r+1| = 0 if and

only if all alternatives inDg
r have attributer + 1 value 0, all alternatives inDb

r have attributer + 1

value 0, and some alternative in{1, 2, . . . ,m} − Dg
r − Db

r has attributer + 1 value 0. Then,

P [Y G
r+1 = (0, 0)|Y G

r = (ig, ib)∧Y G
r−1 = (igr−1, i

b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 = (|G|,m−|G|)] =

(1−ph)i
g

(1−pl)
ib [1− (1−ph)|G|−ig(1−pl)

m−|G|−ib ]. Third, |Dg
r+1| and|Db

r+1| will have values

jg andjb, respectively,0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib) if and only

if jb alternatives inDg
r have attributer + 1 value 1, the remainingib − jb alternatives inDg

r have

attributer + 1 value 0,jb alternatives inDb
r have attributer + 1 value 1, and the remainingib − jb

alternatives inDb
r have attributer + 1 value 0. Then,P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 =

(igr−1, i
b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 = (|G|,m−|G|)] =
(

ig

jg

)

pjg

h (1−ph)i
g−jg(ib

jb

)

pjb

l (1−pl)
ib−jb

,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib). Finally, |Dg
r+1| will have valueig

and|Db
r+1| will have valueib if and only if either all alternatives inDg

r∪Db
r have attributer+1 value

1 or all alternatives have attributer + 1 value 0. Then,P [Y G
r+1 = (ig, ib) | Y G

r = (ig, ib) ∧ Y G
r−1 =

(igr−1, i
b
r−1)∧ · · · ∧ Y G

1 = (ig1, i
b
1)∧ Y G

0 = (|G|,m−|G|)] = pig

h pib

l +(1−ph)|G|(1−pl)
m−|G|.
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