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Abstract

Several studies have reported high performance of simgisida heuristics in multi-attribute
decision making. In this paper, we focus on situations whdréutes are binary and analyze
the performance of Deterministic-Elimination-By-Aspe@EBA) and similar decision heuris-
tics. We consider non-increasing weights and two prolsthilmodels for the attribute values:
one where attribute values are independent Bernoulli nendwoiables; the other one where they
are binary random variables with inter-attribute positieerelations. Using these models, we
show that good performance of DEBA is explained by the presefcumulative as opposed to
simple dominance. We therefore introduce the conceptsmiutative dominance compliance
and fully cumulative dominance compliance and show that BE&isfies those properties. We
derive a lower bound with which cumulative dominance coatlheuristics will choose a best
alternative and show that, even with many attributes, gisi small. We also derive an upper
bound for the expected loss of fully cumulative complianeeristics and show that this is mod-
erate even when the number of attributes is large. Both mareindependent of the values of

the weights.
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1 Introduction

We consider a standard multi-attribute choice problem rwavii alternativesi, 1 < ¢ < m,
each characterized by attributesz; ., 1 < r < k. The utility of theith alternative,z; =

(i1, xi2, ..., xik), Is defined as
Ui = wi1z;1 +wax;2 + ... + WpTik , 1)

where thew, are positive weighting parameters subject to the constrain-ws+...+wg = 1. The
problem is to identify which of then alternatives is best, i.e., has the largest valu&,;ofThis is a
classical decision problem (cf. Keeney and Raiffa 1993).nveke the assumption that the decision
maker can order the weights by size such that, without logeérality,w; > we > ... > wi > 0
but that the exact values of the weights are unknown. Thignagston is realistic in many scenarios.
Consider, for instance, a situation in which a committeebaboose one of several candidates to fill
a job opening. Typically, members of the committee will ago@ which attributes of the candidates
are relevant and may easily agree to take the decision uslimgax utility function where each
attribute is given a positive weight. Moreover, whereas mittee members might disagree as to

what values should be given to the weights, they can agreleeanrelative importance.

Since the exact values of the weights unknown, a reasonaple@ach is to use a heuristic.
In this paper, we will obtain results regarding the perfanoeof a class of heuristics to solve this
decision problem. We will make the assumption that e are, non-necessarily independent,
random variables with suppoft, 1]. While some of our results are general and do not require
additional assumptions ar; ., most assume that the , are binary random variables taking only
the value®) and1. That more particular setting has interest on its own. Fangle, it is common
to have alternative features that are either present onafeseg., the candidate has good knowledge
or not of a given foreign language), or that take two valueg. (¢he candidate is male or female).
Even if the attribute is multi-valued, the decision-makexyrbe able to distinguish between zero and
non-zero values, but be insensitive to the actual magnibfidee attribute (Hsee and Rottenstreich
2004). Also, in order to simplify the decision, the decisimaker may use a cut-off to partition the
range between high and low regions. Here, several choieeavailable depending on the cutoff
values chosen to separate between high & 1) and low ¢; , = 0) values. One could use a low
cutoff representing a minimum acceptable level. Alten@yi one could assign a valdeonly to
those attribute values with the best level on that attribliteose two choices yield, respectively, the

LEX and theEBAheuristics discussed by Payne et al. (1993).



A possible decision rule we will consider would make use @f #dlttribute ordering in a lex-
icographic fashion. Specifically, at the first stage, alimes with non greatest value in the first
attribute would be eliminated (unless all alternatives tiedsame value for the first attribute). If a
single alternative remains, it would be chosen. Otherviteeyvalues of the second attribute would
be examined and alternatives with non greatest value insétind attribute would be eliminated.
This procedure would continue until only one alternativeaes or all attributes have been exam-
ined. If only one alternative remains, that alternative lddae chosen. If several alternatives remain
after all attributes have been examined, then the choicedaset them would be made at random.
This model is a deterministic variant of tlBA (Elimination-By-Aspects) heuristic proposed by
Tversky (1972). We therefore callREBA (Deterministic-Elimination-By-Aspects). It differs fno
EBAIn that the attributes (aspects) used to eliminate alteewmtt each stage of the process are
selected by a deterministic as opposed to a probabilisticgalure. As a procedurBEBAgeneral-
izes —to more than two alternatives— the lexicographic fyirtdnoice model Take-The-BesITB)
proposed by Gigerenzer and Goldstein (1996). There is d diffalence, however: if TB, the at-
tributes are ordered by their validities, which are comgutsing a database of previous instances of

alternatives, while iDEBAthe ordering of the attributes by decreasing weights israsgiknown.

The DEBAheuristic is easy to use. In many situations, for exampleetiis no need to look
beyond the first one or first two attributes to make a decis®averal studies have sholdEBA
to be effective in relation to alternative simple decisi@utistics (Gigerenzer and Goldstein 1996;
Czerlinski et al. 1999; Martignon and Hoffrage 1999, 2002\ell as having desirable properties
for both binary and multivariate choice (Hogarth and Kaee2003; Katsikopoulos and Martignon
2003; Katsikopoulos and Fasolo, in press). Even when até&gbare continuous variables, the model
can be quite effective under some circumstances (Gigereragd et al. 1999; Hogarth and Karelaia
2005a). Most of these studies are restricted to the casembivhree alternatives. Finally, there
is empirical evidence that people do sometimesDEBA like strategies in decision making (see,

e.g., Broder 2000; Newell and Shanks 2003; Newell et al3200

Our goal is to understand the observed good performanb&BfAand other related heuristics.
The effectiveness of the decision heuristic can be measisied) two metrics: 1) the probability
that the heuristic will select a best alternative and, 2)dkeected loss of the heuristic, i.e. the
expected difference between the utility of a best alteveadind the utility of the alternative chosen
by the heuristic. The exact values of those metrics depehdowse, on the exact values of the
weightsw,, 1 < r < k, and on the probabilistic model underlying the values ofétigbutesz; .,

1 <i<m,1<r <k Wewill explain the good performance of DEBA and other miblheuristics



by deriving a lower bound for the probability that the heticisvill choose a best alternative and
an upper bound for the expected lasdependent of the weightdMoreover, we show that, even
with many attributes, the former is large and the latter nifdlis will be done for two probabilistic
models for the attributes: one in which the attribute valtigsare assumed to be binary independent
Bernoulli random variables with a common parameteand one in which the attributes; , are
assumed to be binary random variables with positive inteibate correlation, i.e. in which the

values of the attributes of a given alternative are poditicerrelated.

The use of the simple dominance concept is a first, trivial.tfhn alternative; simply dom-
inates alternative if each attribute value of is non-smaller than each attribute valuejoflt is
clear that, irrespective of the values of the weights aneketiore, not depending on the values of
the weights being non-increasing, whenever an alternatimply dominates all other alternatives
both that alternative will have the largest utility abdEBAwill choose that alternative. Then, the
probability that an alternative simply dominates all othkernatives provides a lower bound on the
probability thatDEBAwill choose a best alternative. However, as we shall shost, glhobability
can be very small when the number of attributes is large. ,T$iogple dominance does not explain

the observed good performanceREBA

The approach we will follow to justify theoretically the efitiveness o0DEBA and other re-
lated heuristics is the use of the use of the concepuafulative dominancéirkwood and Sarin
1985). An alternative is said to cumulative dominate alternatiyaf the accumulated values of
the attributes of are non-smaller than the accumulated values of the atsboftj. To illustrate,
consider alternatives; = (1,0,1) andze = (0,1,1). Then, alternativer; cumulative dominates
alternativex, becauser; 1 > xa 1, 1,1 +21,2 > T21+22, aNdx1 1+21 2+T1,3 > T2 1+T22+T2 3.
As we will show, since the weights are non-increasing, agraditive which cumulative dominates
another alternative alternative necessarily has a nofleamuaility than the cumulative dominated
alternative. We observe next tHaEBA complies with cumulative dominance, i.e. in the event that
some alternative cumulative dominates all other alteraatDEBAIis guaranteed to choose one of
those alternatives. Then, the probability that some atare cumulative dominates all other al-
ternatives is a lower bound to the probability with whibiiEBA will choose a “best” alternative.
Contrary to simple dominance, the probability that someraditive exhibits cumulative dominance
over all other alternatives is not small even when the nunobeattributes is large. This provides
a first justification of the observed good performanc®&BA The approach we take to provide
an upper bound for the expected losDiEBAIs to compute an upper bound for the losDiEBA

conditioned on the maximum attribute index for which sonterahtive cumulative dominates all



others. That upper bound is computed using the factDEBAwill necessarily choose one of the
alternatives in the set of alternatives that cumulative idabe all other alternatives up to the highest
possible attribute index, a property which is calfetly cumulative dominance compliancé&hat
upper bound does not depend on the attributes being birtasplyi depends on the attribute values
having suppor{0, 1]. Those upper bounds, combined with the computation of thiegility distri-
bution of the maximum attribute index for which some altéieacumulative dominates all others,
allows the computation of an upper bound for the expectesidbBEBA As the computation of the
lower bound for the probability thdDEBAwill choose a best alternative, our computation of that
probability distribution is particular for the assumed fpabilistic models underlying the attribute
values. We show that the upper bound for the expected losaimemeasonable even when the
number of attributes is large, providing a second justificafor the observed good performance of

DEBA

The performance justifications just exposed are not réstrito theDEBAheuristic. It applies
as well to any heuristic that complies/fully complies witlntulative dominance. For instance, it
applies (partially) to th&aWn/DEBA heuristic, which is cumulative dominance compliant but not
fully cumulative dominance compliant. T&AM»/DEBAheuristic first chooses the alternatives with
the highest total sum of attributes up to attributeand then breaks ties usii@EBA The results
given in the paper regarding the performancd&BA and any other cumulative/fully cumulative
dominance compliant heuristics are, however, restricteétié assumed probabilistic models under-
lying the attribute values. It is an open problem to justifg good performance @EBAand other
cumulative/fully cumulative dominance compliant heucstunder other probabilistic models, in

particular when the attributes are continuous random bkasa

The rest of the paper is organized as follows. In Section 2 gfené the two probabilistic
models underlying the attribute values which will be useddighout the paper. In Section 3, we
obtain, for the two probabilistic models under considergtithe probability of simple dominance
and show that the presence of that kind of dominance doeastdyjthe observed good performance
of DEBA In Section 4, we introduce the concepts of cumulative damie compliance and fully
cumulative dominance, show thaEBA satisfies both properties, give examples of other heusistic
satisfying those properties, derive a lower bound for tlubability that any cumulative dominance
compliant heuristic will choose a best alternative, deameipper bound for the expected loss in any
fully cumulative dominance compliant heuristic, and usiihgse metrics justify the observed good
performance oDEBA and other related heuristics. Section 5 concludes the mapkihighlights

directions for future work.



2 Probabilistic Models

Two probabilistic models for the values of the attributgs, 1 < ¢ < m, 1 < r < k will be

considered:

ZIAC (Zero Inter-Attribute Correlation) model:  Thex; , are independent Bernoulli random vari-

ables with parameter, 0 < p < 1.

PIAC (Positive Inter-Attribute Correlation) model: Thex; , are obtained as; , = Ziyffr +(1-
zi)yﬁ,r, where they;, ylhr andyﬁm are independent Bernoulli random variables with pararaeter

p, v = p+ /p(1 —p), andp; = p — /pp, respectively, for somé < p < 1 and some
0<p<l.

The ZIAC model is a simple model without need for justificatiowe note that'[z; ;] =
p. Thus, the parameter of the common Bernoulli distributions can be looked at as sugag
the average quality of the attributes: higher valuep afodel attributes of higher average quality.
The PIAC model is intuitively appealing: if there is pos#icorrelation among the attributes of
a given alternative, it is because there is some common culing the average quality of the
attributes of a given alternative. In the PIAC model, thisaptured by the alternatives belonging to
a “good” population (with averaged values for the attributdues equal tg;, = p + \/p(1 — p))
with probability p and to a “bad” population (with averaged values for thelaite values equal to
1 = p—+/p(1 —p)) with probability 1 — p. In the PIAC modelE[z; ;] = p and the attribute values
of any given alternative have positive correlation The ZIAC model can be seen as a particular
case of the PIAC model with = 0. SinceZ’;”:1 w, = 1, in both models the expected value of the

utility of any given alternative is E[U;] = p.

3 Simple Dominance does not justify the good performance dEBA

An alternative; is said to exhibisimple dominancep to attributer over alternativej, denoted by
d,(i,7), ifand only ifz; s > x5, 1 < s < r. An alternative; is said to exhibit simple dominance
over alternativej if and only if d(, 7), i.e. if and only if alternative exhibits simple dominance
up to attributek over alternativej. Forl < r < k, let D,. denote the set of alternatives that exhibit

simple dominance over any other alternative up to attributes.

Dy={1<i<m: dp(i,j),1 <j<m} )



Obviously, D1 D Dy D --- D Dy. Also all alternatives in D, have identical attribute profiles
up to attributer, x; 1,;2,...,2;,. Since the weights are non-negative, any alternatiwich
exhibits simple dominance over another alternajiwveill have largest utilityU; than the utilityU;

of j. Then, itis clear that whe®,, # () the alternatives irDy,, with identical attribute profiles, will
be best. It is also clear that whép, # (), DEBAwill choose an alternative fron,. Then, when
Dy # 0, DEBAwill choose a best alternative and the probabilis];,s = P[Dy, # 0] will be a
lower bound for the probability with whicDEBAwill choose a best alternative. In this section we
will develop efficient computational procedures fétz]y,s for the two probabilistic models under
consideration. Using these computational procedures, Weampute [Py, for a wide range of
model parameters and will discuss the extent to which thegmee of simple dominance is able to

explain the observed good performancd&BA

We will start by deriving an efficient computational scheroe [{Pz]y1,s for the ZIAC model.
Consider the discrete-parameter stochastic processmwithated parametéf = {Y,;0 < r < k}

with state-spac€0,1,...,m} defined byYy, = m andY, = |D,|, 1 < r < k. The following

theorem establishes thitis a homogeneous discrete-parameter Markov chain (witicated pa-
rameter) and gives its one-step transition probabilitiégure 1 gives the state transition diagram of

Y for the casen = 3.

Theorem 1. Y = {Y,;0 < r < k} is a homogeneous discrete-parameter Markov chain (with
truncated parameter) with state spaf@ 1, ..., m}, initial statem, and one-step transition proba-

bilities Q; ; = P[Y,4+1 = j | Y, = i] given by:

Qoo=1,

QOJZO forlgjgm,

Qio=1-p)'1—(1—-p)™ " for1<i<m,

Qi,j:<z.>pj(l—p)i_j for1 <i<m,1<j<i,
J

Qii=p +(1—p™ for1<i<m,

Qij=0 forl<i<m,i<j<m.

Proof. See the Appendix. O

Theorem 1 allows the numerical computation for the ZIAC mawfe[Pg|,s = P[Dx # 0] =

i, PlY), = i] using standard discrete-parameter Markov chain analgstantques. However,



(1—p)P—-(1-p)

Figure 1: State transition diagram Bffor the casen = 3.

given the values of the one-step transition probabilities gt is possible to obtain a simple closed-
form expression fofPg]yps. We start by deriving a closed-form expression R, =i, 1 <r <

k,1<i<m:

Proposition 1. For1 <r < kandl <i < m:

pre=i=(T) S (7w o

—1
J=t J

Proof. We start by proving that the one-step transition probagsii@); ; for 1 <i <m,1 < j <

and@;;, 1 <14 < m given by Theorem 1 can be formulated in a more compact way as:
A .
Qij = <j> >, (l_j)(—l)l_][pl +(1=-p", 1<i<m,1<j5<i. @)
I=j
To make the proof, we rewrite the previous expression as:
i—j

R

=0

- (PR e (E ()

Forl < j < i, the previous expression gives

(;.)p"(l —p) I + <;> 1-1)"71-p"= (;)ﬂ(l -p)',

which is the expression faR; ;, 1 < i < m, 1 < j < ¢ given by Theorem 1. Foj = i, the
expression gives
P (1=p)™,

which is the expression fap; ;, 1 < ¢ < m given by Theorem 1.



Using (3), the proof of the proposition is by induction @nForr = 1, usingYy, = m and (3),

we obtain

P =i == (T) X (1)) 0

=i N
completing the base case. For the induction step, assumeghé holds forr = s > 1 and

let us prove the result for = s + 1. Using Theorem 1, the induction step, (3), and the identity

() () = (D)

3

P[Y;+1:i] = ZP —] Qyz—zp —] sz

j=0
- £ <?>i<?:_z'><—wh-j s
‘<'>/§<i:z> ST ]]

lo=1
_ m\ g~ (m i - m-—] lhi—j 1,11 _\m]s
- <Z>;<]—i> _llz::j<ll—]>( D+ -p) ]}
d J—t _\2—i gl a\m
_g<l2_i>( 15 + (1 - ) ]],
which can be written as
Yop1 =1] = 22011,12 )"+ (1= )" + (1 —p)"] 4
lo=il1=l

with

SR} 1 o o o

Using the identity("'~) (7"=7) (72 = (20 (220 (452):

l1—j/ \la—1 l1—i/ \la—i/ \ j—l2
i D1
1— l2 7 1 — 2 ll ‘7
><11—Z><lz—l> Z<3—12>

Jj=l2

<l1 - Z) <l; _ z> (—1)= ll' ;2 (ll ;l2> (—1)hi—e=i |

1=

Ol ly) = <

-



Then, we have

- ()5
Olh k) = (?) (Z:Z) (Z B z> (—1)2=i(1 — 1)~ — 0.

Plugging those results into (4):

Pl¥err =il = (m> fj (m _ ) (D=7 + (=),

and, forly > Iy,

completing the induction step. O
The closed-form expression faPgz],s for the ZIAC model is given by the following theorem:

Theorem 2. For the ZIAC model,

m

[Pplbs = Y <T> (D) + (1 =)™

i=1

Proof. Using [Pglibs = Y .-, P[Yx = 4] and Proposition 1:

[PBlbs = :1 PlY, =i] = g (T) ZZ (T:Z) (=1 + (1 = p)™]*
- Ej:é () (52 v+ - pm

Pl = g(?)[pu(l—p)m]’f;(Z)(—l)f'-i
- 27:: (") + a = (; (1) v <—1>J>
- 2"::1 () + (= 1 = )
- g@>(—1)f"l[p"+(l—p)m]’“ 0

We will consider next the PIAC model. For that model we havieaean able to derive a closed-

form expression fofPg]i,s and will content ourselves with a recurrent computatiocllesne. Let



G be the subset of good alternatives (those whose attribliies/are independent Bernoulli ran-
dom variables with parametey,). Since each alternative is independently good with patame
the number of good alternative&| has a binomial distribution with parametersandp. Then,
conditioning on|G]|:
m m B
Pl = PDy # 0] = (g)pgu pIP(D, £ 0](C] = g]. 5)
g=0
By symmetry, allP[D;, # 0|G = G'], |G'| = g are equal and, therefor®[D; # 0||G| = g] =
P[Dy # 0|G = G'],

we can formalize the computation 6f D, # |G = G'] in terms of the transient behavior of an

G'| = g. Following ideas similar to the ones used for the ZIAC model

homogeneous discrete-parameter Markov chain (with ttedgaarameter). Let
DI={ieG: 2 s>1j,1<j<m1<s<r}

and

fo:{ie{lﬂ,...,m}—G DT > X, 1 <j<m,1<s <},

i.e., Dj collects the good alternatives which exhibit simple domagover any other alternative up
to attributer and D! collects the bad alternatives which exhibit simple domagaaver any other
alternative up to attribute. Given a set of good alternatives letY¢ = {V,%;0 < r < k} be the
discrete-parameter stochastic process (with truncateshyer) with state spaddi, j),0 < i <

|G|,0 < j < m — |G|} defined byY{ = (|G|,m — |G|) andY, = (|D{|,|D|),1 < r < k. The

following theorem establishes th&t“ is a homogeneous discrete-parameter Markov chain (with
truncated parameter) and gives its one-step transitiohapitities. The proof of the Theorem is

parallel to the proof of Theorem 1.

Theorem 3. Y¢ = {Y,¢;0 < r < k} is a homogeneous discrete-parameter Markov chain (with

truncated parameter) with state spag@, j),0 < i < |G|,0 < j < m — |G|}, initial state Y =

(IG|,m — |G|), and one-step transition probabilitied ;s 4 s j» = P[Y;5; = (j9,5°) | ;¥ =
(49,%)] given by:

Q(0,0),000 =1,
Qo,0),(jo ity =0 for0 <79 <|G|,0<j* <m — G|, (,°) # (0,0),
Qismy.(00) = (1= pn)" (1 — )" [1 = (1 = pp) |G (1 — pyymIe=7

* for (2'972'17) 7é (070)' (igﬂib) 7& (]G],m - ’GD )

79 . g it ib ib_ib
Qis it (jo.3%) = <jg>Pi (1—pp)"~7* <jb>Pf (L—p)" ™’

10



* for (i9,1%) # (0,0),0 < j9 < 9,0 < j° < i®,(j9, %) # (0,0), (j9,4°) # (i9,1°),
Quis ity (iov) = P pi + (1 —pw) (1= p)™ 10 for (i9,4%) # (0,0),

Qis,iv), oty =0 for (i9,i%) # (0,0), 49 < j9 <|G|,i* < j* <m — |G|, (49,5°) # (i%,).

Proof. See the Appendix. O
Clearly,:
P, #0|1Gl=gl= ), PN =(i"),16" =g. (6)
0<i9<|G’|
0<ib<m—|¢|

(19,1%)#(0,0)
Using standard numerical techniques for transient arsabfsiliscrete-parameter Markov chains, we

can obtain recurrent expressions @Y, = (i9,i%)], 1 <r < k, |G| = ¢, 0 < g < m. Those
expressions together with (5) and (6) define a recurrent atatipnal scheme fofPg]y,s for the

PIAC model. The result is:

Theorem 4. For the PIAC model,
m m B
[Polibs = Y <b>pg(1 —p)"TIWy,

where

Wg - E Zg,k,ig,ib

0<if<g
0<i’<m—g
(i9,i%)#(0,0)

and theZ,; o4, 0 < g <m,0<i <g,0<i <m-—g, (#9:7i) # (0,0) can be computed
using, for increasing-, a set of recurrences giving, , s », 0 < g <m,1 <r <k, 0<4 <g,

0 <i® <m—g,(i9,i%) # (0,0). The initial values of the recurrences are:
Zg70797m—g = 17 0 é g S m’

ZQ,O,ig,ib :07 OSQSW,Oﬁzg Sgao Szb Sm_g7(ig7ib) 7é (g7m_g)7(igaib) 7é (070)

The recurrences are;

. .b
39N\ e g_s9 (] b b b
Zgritioid = Z <ig>p2 (L—pn) ™" <ib>p§ (L =p) ™" Zg o v
9<j9<g
it<j<m—g
(79,4°)#(19,i%)
+ ool + (1= pn)o (L= p)™ 9] Zy o v

0<g<m0<r<k0<i!<g0<i®<m—g, (i) #(0,0).

11



Proof. The Z

977.77’

o are PlY,% = (i9,i")], |G| = g. Then, the recurrences fcf, , ;, » and their
initial values follow from Theorem 3 using, .1 050 = > ja b Zg b jb Q(jo v, (i9,i9)- Wo IS
P[Dy, # 0] |G| = g]. Then, the expression fé¥, follows from (6). The expression fdPg]s in

terms oflV, follows from (5). O

Theorems 2 and 4 give computationally efficient proceduoesHz|y,s for, respectively, the
ZIAC and the PIAC models. Using those procedures, we carirof®]y,s for quite large values
of kK andm. Figure 2 plotsPg|y,s, for values ofk ranging from 2 to 10 and values of ranging
from 2 to 10, for the ZIAC model witlp = 0.2, 0.5, 0.8 and for the PIAC model with= 0.5 and
p = 0.0, 0.2, 0.5. For a fixed number of alternatives, [Pg])1s decays, in some cases rapidly, as
the number of attributek increases. For a fixed number of attributes, Pz, first decreases with
the number of alternatives: up to a certain value af,, m*, beyond which it increases wittn.
The explanation for that behavior is as follows. The additid one alternative may have several
effects. First, it may happen that the new alternative sindl@iminates all others, making the new
D, non-empty irrespectively of whether it was empty or not bef&Gecond, the new alternative may
be simply dominated by some alternative, leavingunchanged. Third, it may also happen that the
additional alternative neither simply dominates all oghraor is simply dominated by any alternative,
making empty the newDy, if it was non-empty before. The first effect would force anrease with
m of [Pg]ibs, While the third effect would force a decrease. /Asncreases, the probability that the
new alternative neither simply dominates all others noinigps/ dominated by any other alternative
becomes small, and for large enougtthe third effect is negligible and’z]y,s increases withn as
a result of the first effect. In fact, a8 — oo, the probability that some alternative will have all its
attributes equal ta tends tol, ensuring thatPg|,s — 1 asm — oo. Them™ turning point seems
to increase as the number of attributeimcreases and as the quality of the alternatives decreases (
gets smaller). However, the more importance conclusiohat except when the average quality of
the alternatives is very good (ZIAC modgl= 0.8) or when the alternatives exhibit a strong positive
inter-attribute correlation (PIAC model,= 0.5, p = 0.5), [Pg],s decays fast withk and has small
values for largek. Thus, simple dominance does not explain the observed geddrmance of

DEBA

12



ZIAC model

p=02
1 . .
k=2 —-—
k=3 ——
k=4 -=—
k=5 ——
k=6 —=—
k=7 —~—
k=8 o
k=9 -+
k=10 -=-
m
PIAC model
p=05 p=05p=0.2

Figure 2: [Pg]n,s for the ZIAC model (left) for several values pfand the PIAC model (right) for

p = 0.5 and several values @f
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4 Cumulative Dominance andDEBA Performance

As shown in the previous section, the presence of simplemmee is not enough to justify the good
observed performance BEEBA In this section we will review the concept of cumulative doamce
and use it to explain, for the binary attribute case, the mleskegood performance @EBA Our
results are however not restricted to DEBAeuristic. They apply to classes of heuristics which
we will call cumulative dominance compliaheuristics andully cumulative dominance compliant
heuristics, and examples of other heuristics belongingded classes different frodEBAwill be

given.

4.1 Definitions and basic results

The cumulative profile of an alternativel < i < m, is defined asX; , = Zf:ﬂzyt- 1<s<

k. Cumulative dominance is identical to simple dominancé,amplied to the cumulative profile.
Alternative: exhibitscumulative dominancever alternativej up to attributer, denoted by:,. (i, j),
ifand only if X; s > X, ,, 1 < s < r. Alternative: exhibits cumulative dominance over alternative
j if and only if ¢x (7, j), i.e. if alternativei exhibits cumulative dominance over alternatjvap to
attribute k. Figure 3 illustrates cumulative dominance in the binatyitatte case. In the figure,
alternative 2 exhibits cumulative dominance over altevea® up to attribute 2 and alternative 1
exhibits cumulative dominance over alternatives 2 and 3s known that cumulative dominance

characterizes optimality for non-increasing weights kitiood and Sarin 1985):
Proposition 2. U; > Uj for all weightsw; > wg > --- > wy, > 0, Z'jzl ws = 1 if and only if
Ck(z7])

Proof. Notice that i
-1

k
Ui = Z WsTi,s = Z(ws - ws-i—l)Xi,s + kai,k
s=1

s=1

so that

k-1
U —U;= Z(ws —wst1) (Xiys — Xjis) +wp (Xig — Xjik)
s=1

which is necessarily positive if alternativeumulative dominates alternatiyeand weights are non-

increasing. For the converse, t@fgzl WeTi s > Z’;zl wsx;, holds for all weightsw; > wy >

14



Xi,

Figure 3: Alternative profiles illustrating cumulative dorance in the binary attribute case.

- > wy > 0 implies that it holds for the sets of weights

('wl,'lUQ, 7wk) = (170707 o 70)7

11
('lUl,'lUQ,...,wk) = <§7§707”' 7O> )

111 1
k’k’k’ 7k )

yielding ¢, (i,7), 1 <r < k. O

(wl,wg, ...,wk) = <

Note that Proposition 2 is not restricted to the binary laite case.

Forl < r < k, letC,. denote the set of alternatives that exhibit cumulative damie over any

other alternative up to attribute i.e.,
CTZ{ISZS’I’)’L Cr(27])>1§]§m} (7)

Obviously,C; D Cy D --- D (. All alternatives inC,. have identical cumulative attribute pro-
files up to attributer and, therefore, they have identical attribute profiles upttobuter. More
importantly, if Cj, is hon-empty, then Proposition 2 guarantees that the aliees inC). will have
the largest utility. In the example of Figure 8; = Cy = {1,2} andC5 = Cy = {1}. C}
will always be non-empty. In the binary attribute caég, will be always non-empty also. This
follows by noting thatC’, can only be empty if there exist two alternativeg with z; 1 > x;
andz; 1 + x;2 < w1 + xj2, Which, beingz; . andz;, binary, is impossible. In the non-binary
attribute case, howevet;; may well be empty. For > 3, there is no guarantee even in the binary

attribute case that’,. will be non-empty. Consider for instance the case of tworadtives with
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attribute profilesz1; =1, 212 =0, z13 = 0 andzy; = 0, 222 = 1, 223 = 1. In that case, we
haveCs; = (). We say that a heuristic mumulative dominance compliaifif wheneverC), # (, the

heuristic chooses an alternative fra@rfp. Then, according to Proposition 2 we can state:

Theorem 5. WhenC}, is non-empty any cumulative dominance compliant heungilicchoose a

best alternative.

Theorem 5 is not restricted to the binary attribute case.

The highest attribute index for which some alternative keithicumulative dominance over all
other alternatives deserves careful attention. We wilbtkethat index by-*. Formally,

= 11;13;{}{3{1 <r<n:C,#0}. (8)

By definition, C,, = 0, r* < r < k. Of course,C}, is non-empty if and only if* = k. In the
binary attribute case;* > 2. For non-binary attributes;* could be equal to 1. A heuristic is said
to befully cumulative dominance compliaiftit always chooses an alternative fro@j.-. Fully
cumulative dominance compliance implies cumulative damae compliance. The motivation by
introducing the notion of fully cumulative dominance compke is that results regarding the loss

of those heuristics independent of the weights will be aitadifor heuristics satisfying this property.

Consider theDEBA heuristic. LetA,, 1 < r < k be the set of alternatives selected by the
heuristic at its'th step. Remember thalt; includes the alternativaswith largestz; ;: the ones with
xz;1 = 1 if some alternative has attribute 1 value 1 and alt;if = 0, 1 < i < m. A; includes
the alternatives in A, with largestz; o, and so on. Obviouslyl; > Ay D --- D Aj. TheDEBA
heuristic selects at random any alternativedip # (). Informally speaking, an alternative exhibits
cumulative dominance over another when it has superioegadlumore important attributes, possi-
bly followed by inferior values in less important attribateButDEBA eliminates those alternatives
that have inferior values in the most important attribuées] hence it will never choose a cumulative
dominated alternative. More formally, thBEBA s fully cumulative dominance compliant can be

easy seen by noting the following important relation betwtxe subsetgl, andC,, 1 < r < r*:

Proposition 3. A, = C,,1 < r < r*,

Proof. ThatC, C A,,1 <r <k, can be seen by induction enObviously,C; = A;. Assume the
result holds forr = s and consider the case= s + 1. Leti € C,41. We haveX, ;1 > X o411,

1 <j<m,j#1i SinceCs11 C Cs, by the induction hypothesis€ A,. Assumei & Agq.
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Then, there exists an alternative Ay 1,1 # i, With z; 11 > ;41 anday,, = 54,1 < u < s.
But this impliesX; .41 < X; 41 and, therefore; ¢ C,11, a contradiction. Thatl, c C, for all
r, 1 < r < r* can be seen by contradiction. Take somé < r < r*, and an alternative such
that: € A, andi ¢ C,.. Since all alternatives irl, are identical up to attribute, this would imply
A, NC, = 0, which byC, c A,, impliesC, = 0, a contradiction. Thus4, = C, for all r,

1<r<r* O
SinceDEBAchooses and alternative fror), and A, ¢ A, = C,~ we have:

Theorem 6. DEBA fully complies with cumulative dominance.

DEBAIis not alone in the classes of cumulative dominance contghiaaristics and fully cu-
mulative dominance compliant heuristics. An example of ariséc different fromDEBAwhich is
cumulative dominance compliant is tE&\n/DEBA (Equal-Weightsn2 < n < k. That heuristic
first selects the alternativeswith largestX; , and from them selects an alternative usiDgBA
TheEWn/DEBAheuristic has as special case=£ k) the EW/DEBA(Equal-Weights/Deterministic-
Elimination-By-Aspects) heuristic and witlhh = 2 reduces tdEBAfor the binary attribute case.
Since no alternativé can cumulatively dominate all others if it does not havedatd; ,,, the first
phase oEWn/DEBAwill select a supersetd, of C. AssumeC), # (). Then,C) will cumulative
dominate all alternatives il and, beingDEBA cumulative dominance compliant, in the second
phase,EWn/DEBA will choose an alternative frond, implying that EWh/DEBA is cumulative
dominance compliant. HoweveEMWn/DEBAIs not fully cumulative dominance compliant. Con-
sider, for instance, the case with three attributes and bieonatives with profiles;; = (1,0,0) and
x2 = (0,1,1). Inthat casey* = 2, andC,~ contains only alternative 1, b&W3/DEBAEW/DEBA

will choose alternative 2.

A heuristic different fromDEBA which is fully cumulative dominance compliant would be
the heuristic which first selects the alternative<in and, then, selects among those alternatives
one with largestX; . We call that heuristiCDS/EW (Cumulative-Dominance-Selection/Equal-
Weights). While more expensive to apply tHaBBA CDS/EWIs intuitively appealing, since it first
maximizes with certainty the part of the utility corresponydto attributesl, 2. .., r*, and, then,
takes a more global view thdDEBAto try to maximize the part of the utility corresponding te th

attributesr* + 1, .. ., k, which might be advantageousrif is not close td.
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4.2 A lower bound for the probability of choosing a best altenative for cumulative

dominance compliant heuristics

Consider any cumulative dominance compliant heuristioc&ialternatives i, have the largest
utility and, by definition, wherC}, # (), the heuristic will choose an alternative fraffy. Hence,
[Pglbe = P[C) # (] is a lower bound for the probability with which the heuristidll choose

a best alternative. Since simple dominance implies cumelaominance(Cy O Dy, P[Cy #

0] > P[Dy # 0], and[Pg]in,. might be significantly better (tighter) thd®z|1hs. [Pslbe IS @
lower bound on the probability’s that a cumulative dominance compliant heuristic will cheas
best alternative which only depends on the weights beingimmeasing. For a particular set of
weights, that lower bound might not be tight. In fact, if theights are non-compensatony, (>
Z’;ZTH ws, 1 <71 < k—2), then it can be shown th8EBA (Katsikopoulos and Fasolo (in press),
Martignon and Hoffrage, 1999, 2002) aBMV/DEBA(Hogarth and Karelaia (in press)) choose the
best alternative with probability one, whereas, as we e#l,&§ 3], can be far from 1. However,
we will show (for the two probabilistic models consideredtle paper) that the lower bound for
Pp does not decrease fast with and &, implying that Pz will not decrease fast withn and k&

for any cumulative dominance compliant heuristic and piimg a first explanation of the observed
good performance dDEBA On the other handPz may decrease fast with both and & for non
cumulative dominance compliant heuristics. For instasaeh behavior has been observed (Hogarth

and Karelaia, 2003) for thEW/RAN(Equal-Weights/Random) heuristic, which chooses at rando

among the alternativeiswith largestX; ;..

In this section, we will computéPg|;,,. for the two probabilistic models considered in the
paper. Since, as noted, for the binary attribute case# 0, for k = 2, [Pl = 1. We will
therefore assume > 3. Computation of Pz|,. Seems to be significantly harder than computation
of [Pg]ms. Essentially, this is because, in the case;1 = 0, ¢ € C,, whetherC,, is empty or
not not only depends an; ;11,7 € {1,2,...,m} — C,. This prevents the use of discrete-parameter
Markov chain approaches similar to the ones used in Sectiort@mpute Py, for the two prob-
abilistic models considered in the paper. We have takerhaneatpproach, which profits from our
binary set-up and uses ROBDDs (Reduced Ordered Binary iDedd@agrams). A ROBDD (see
Bryant 1986) is a directed acyclic graph having a single rmté and two terminal nodes (leaves),
one labeled 0 and another labeled 1, which represents amaaybgiven Boolean function of a
given set of binary variables. ROBDDs are called reducedusz each node represents a different

Boolean function (the root node represents the given Badleaction). They are called ordered
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because they depend on the ordering of the binary variaR@&8DDs are canonical (unique) rep-
resentations of Boolean functions which only depend on tberong of the binary variables. That
property has given to ROBDDs many applications, e.g., foreafication of digital circuits. Given

a Boolean functior¥'(z1, =2, . .., x,) of n independent Bernoulli random variables, we can com-
pute P[F(x1,x2,...,x,) = 1] by building the ROBDD ofF'() as a function ofrq, zo, ..., z, and,
then, traversing bottom-up the ROBDD. At each step, we olitae probability that the Boolean
function represented by a node is equal to 1 by multiplying ¢brresponding probability of the
0-edge node by the probability that the binary variable eiased with the processed node has value
0, multiplying the corresponding probability of the 1-edysde by the probability that the binary
variable has value 1, and adding up those patrtial resultbuild the ROBDD, a Boolean expression
for F() as a function ofry, zo, ..., x, involving basic Boolean functions like NOT, AND, OR is

required.

The Boolean function we have to consider to comgiig],. is the indicator function of the
event{C}, # (}. For the ZIAC model, the Bernoulli random variables to besidered are; ,,

1 <i<m,1<s<kandanexpression fdr, x(v1,1,, T1ks > Tm,15 - -+ Tmyt) = Loy 20 IS

k
/\ X'L,SZXj,s )

Fm,k(xl,la e ,33‘177«,. .. ,:Em71, e 7$m7" ==

||'<3
==

[
S
s)—l

where the indicator functionky; > x; , can be expressed in terms of the Bernoulli random variables
zit, 1 <i <m,1 <t < susing standard implementations of binary adders and bicamypara-

tors. For the PIAC model, the Bernoulli random variablesd¢abnsidered arg;, 1 < 7 < m, and

Yo Ui 1 <i<m,1<s<kandanexpression fdf,, x(z1,. .., Zm, Y0 1 Yors UL 1s - -+ Yiny) =
1Ck;é@ is:
m m k
0 0 1 1
Fm,r(zh e >Zm7y1717 e >ym7r7y1717 e >ym7r) = \/ /\ /\ lXi,sZXj,s ’
i=1j5=1s=1
JFi

Tjs = (1 - Zi) A y?,s V oz A yil,s )

where the indicator functionsx, .>x,, can be expressed in terms of the Boolean functions

1 <i<m,1 <t < susing standard implementations of binary adders and bic@mparators.

The computational cost of the ROBDD based method is mairtlsrdéned by the size (humber
of nodes) of the resulting ROBDD. It is also affected by thakppumber of reserved nodes. The

ROBDD of the function is built (Bryant 1986) by traversingttiescription of the Boolean function
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in terms of basic Boolean functions such as NOT, AND and ORtfans and combining the ROB-
DDs of the nodes of that description. Then, the peak numbersairved nodes is the maximum sum
of the nodes in the ROBDDs which have to be held during thege®c The size of the ROBDD
depends on the ordering chosen for the variables on whictutftion depends and can be reduced
by using ROBDDs with complement edges (Brace et al. 1990% vEhmiable ordering is typically
chosen using heuristics based on the Boolean descriptiihredtinction . We have used the topol-
ogy heuristic (Nikolskaia et al. 1998) with good results.ifdgdsthat heuristic and ROBDDs with
complement 0-edges, we have been able to compute the plitteslit-(r) for values ofm andk

as large as0. As expected, the size of the ROBDDs increased with bo#ndr. Form = 10 and

k = 10, the ROBDD for the ZIAC model had 320,558 nodes and its canstn resulted in a peak
number of reserved nodes of 5,182,179. For the PIAC model¢cdhresponding ROBDDs were a
bit larger. Form = 10 andk = 10, the ROBDD had 681,216 nodes and its construction resuited i
a peak number of reserved nodes of 11,639,367. To build tHeRORS we used the CU Decision
Diagram Package (CU 2005).

Figure 4 plots|Pg],., for values ofk ranging from 3 to 10 and values af ranging from
2 to 10, for the ZIAC model fop = 0.2, 0.5, 0.8 and for the PIAC model fpr= 0.5 andp =
0.0, 0.2, 0.5. We can note that in all casé&%|,. is significantly larger thamPg]y,s (Figure 2).
As [Pg]ms, for a fixed number of alternatives, [Pg|y,. decreases witk but, contrary tg Pg|s,
[Pgibe Never decreases fast with As for [ Pg ], for fixed k, there exists a turning point*, for m
before which Pg|j,,. decays withn and beyond whichiPg |y, increases withn. The explanation of
the existence of those turning points is similar to the exatimn of the corresponding turning points
for [Pp|is but in terms of cumulative dominance instead of in terms ofpd¢ dominance. For
fixed k andm, the values of Pg]y,. improve (increase) with the average quality of the altéveat
(higher p) and with a positive inter-attribute correlation (highgr It is noteworthy thaf Pg]i,.
is very close to 1 when either the alternatives have goodageequality (ZIAC modelp = 0.8)
or there exists strong positive correlation among thelaifiei values of a given alternative (PIAC
model,p = 0.5, p = 0.5). In those cases, the presence of cumulative dominanceoiggbrto
explain a very good performance of any cumulative dominatrmrapliant heuristic, including, of
course DEBA It is also noteworthy that, contrary {®z]1,s and contrary to intuition,Pz]y,. has a
significant value even when the alternatives have a pooitgaaild there does not exist any positive

correlation among the values of the attributes of a givesriaditive (ZIAC modelp = 0.2).
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Figure 4:[Pg]n,. for the ZIAC model (left) for several values pfand the PIAC model (right) for

p = 0.5 and several values of
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4.3 An upper bound for the expected loss of fully cumulative dminance compliant

heuristics

The probability that a heuristic chooses a best alternédia® important metric of the performance
of the heuristic. Guaranteeing that probability will besddo 1 certainly shows that the heuristic is a
good heuristic. The expected loss of the heuristic, i.eelpected difference between the utility of
a best alternative and the utility of the alternative chdsgthe heuristic is another relevant metric,
which is specially useful when the probability of chosen atlaternative is not close to 1. The
reason is simple: in many cases, we would be content with ébeehalternative as far as its utility
is reasonably close to the utility of a best alternative. Wtfitat motivation, in this section, we will
derive, for the two probabilistic models under consideratian upper bound for the expected loss
of any fully cumulative compliant heuristic, including, oburse DEBA Since fork = 2 any fully
cumulative dominance compliant heuristic will choose at ladternative with probability 1, and,

therefore, the expected loss will be 0, we will assume 3.
Let b the alternative chosen by the heuristic. Then, the losseoh&uristic is

L= max U, —U,. 9)

1<i<m

We will derive an upper bound fat as a function of-*. Note thatL is a random variable. The

upper bound for the expected loss will follow by conditigion+* and taking expectations.

Since the heuiristic is fully cumulative dominance comgliare know thath € C,«. Leti be
any other alternative. Compareditchow much better canbe? To answer that question, it is useful
to consider the following formulation for the utility of atternativeU; = E’;zl wsT; s IN terms of

its cumulative profile.
U, = Z ws—i—l Xz s+ kaz k-

According to this formulation, given a set of weights, thghwast loss occurs when the cumulative
profile of : meets the following two conditions: 1¥;, = X, 1 < s < r* (sinceb € Cyx,
Xis < Xps: 1 <s<7"),2)X;=Xps+ (s—r*),r*+1 < s <k (which is possible, since all

Zie 7" +1 < s < kcouldbe1andaly, r* +1 < s <k could be 0). Thus, for a given set of

weights,
k—1
L< Z (ws — wst1)(s — ") +wi(k Z W .
s=r*+1 s=r*+1

To find an upper bound fof. independent of the weights, it remains to maximEé:wrl Ws

subject to the restrictions which the, r* + 1 < s < k have to satisfy. The restrictions are (the last
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one comes fromu; > wy > -+ > w4y and Y wy = 1):
wy > 07

ws—1 > ws, r+2<s<k,

k

(r* + Dwp=41 + Z we < 1.
s=r*+42

This is a linear programming problem with bounded domain asdt is well known, the maximum
occurs at some vertex of the polyhedron defined by the rastriz The vertices of the polyhedron

are

(wr*+17w7”*+27w7’*+37 v 7wk) = (07 0707 v 70) )

1
(wr*+1,wr*+2,wr*+3,...,wk) = < 0,0,...,0 5

r*+ 1’
1 1
(Wrrg1, Wrrg2, Wyey 3, ..oy W) = mvm70>"'70 )
111 1
(wr*+17w7‘*+27w7‘*+37 v ,U]k) = E? Ev Ev Tt P

and, therefore, the maximum is

max =
r*+1<s<k 8 k

Then, we can state the following result:

Theorem 7. Any heuristic that fully complies with cumulative dominanill have a loss with

respect to a best alternative upper bounded by- r*)/k.

Note that the upper bound for the loss given by Theorem 7 isasiticted to the binary attribute

case.

Recall that forn > 3, EWn/DEBAIs not fully cumulative dominance compliant. Hence, the
upper bound on the expected loss does not apply. Considagaig the example with = 3 and
m = 2 given byz; = (1,0,0) andze = (0, 1,1), the maximum loss guaranteed by any heuristics
that fully complies with cumulative dominance(is — r*)/k = 1/3. DEBA chooses alternative 1
and, as expected, the maximum loss in the most pessimisiihtxseenarioq; = we = w3 = 1/3)
is given by = U, — U; = 1/3. In contrastEW3/DEBAchooses alternative 2, and for appropriate

weights w, = 1 — 2¢, wy = w3 = €), this choice may vyield aloss @f = Uy — Us =1 — 42 = 1.
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As noted, in the binary attribute ca8e< r* < k. Let P(r) = P[r* =r],2 <r < k. Then,
conditioning on the value of* and taking expectations:

k
E[L] =) _P(r)E[L|r* =]
r=2

and using Theorem 7, for any fully cumulative dominance danpheuristic:

E[L] < ) P(r)

This is the sought upper bound for the expected loss. Letlug d&[L]].,. It remains to discuss
a procedure for computing(r), 2 < r < k — 1 for the two considered probabilistic models. Let

Q(r) = P[r* > r]. We have
P(r)=Q(r)—Q(r+1), 2<r<k-1.

Sincer* > 2, Q(2) = 1. TheQ(r), 3 < r < k required to computé(r), 2 < r < k — 1 can be
obtained, noting tha) (r) = P[C, # ()], using the ROBDD approaches described in Section 4.2 for
the computation ofPg|i,. = Q(k) for the ZIAC and the PIAC probabilistic models with the index
k replaced by the index.

Figure 5 plots[E[L]],p, for values ofk ranging from 3 to 10 and values @i ranging from
2 to 10, for the ZIAC model fop = 0.2, 0.5, 0.8 and for the PIAC model fpr= 0.5 andp =
0.0, 0.2, 0.5. For fixed number of alternatives [E[L]],, increases withk, but in no case does
so fast. For fixed: , there exist a turning point.* before which[E[L]],;, increases withn and
beyond which[E[L]],, decreases withn . Not surprisingly, the value ofE[L]],y is very small
when either the alternatives have good average quality@4tfdel,p = 0.8) or there exist strong
positive inter-attribute correlation (PIAC model,= 0.5, p = 0.5). The values of E[L]],; are
reasonably small in the presence of a moderate positive-atiigute correlation (PIAC model,
p = 0.5, p = 0.2) and are moderate in all cases. Those observations contpietxplanation of
the observed good performance@EBA and make that good performance extensible to any fully

cumulative dominance compliant heuristic.

5 Final Remarks and Conclusions

Using the cumulative dominance concept we have justifiadhibinary attribute case and for two

probabilistic models, the observed good performance obtaBAheuristic. The results obtained in
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Figure 5:[E[L]].» for the ZIAC model (left) for several values pfand the PIAC model (right) for
p = 0.5 and several values of

25



the paper are applicable to any cumulative dominance camigtieuristic and any fully cumulative
dominance compliant heuristic and examples of heuristitisdse classes different frodEBAhave
been given. Our results can be used to bound the performdrlsese heuristics independently of
the particular values of the weights, which are unknown. €umputational procedures are feasible
for quite large values ofn andk (we have given results for up to 10 andk up to 10). Previous
studies concerning the performanceXEBA and EWn/DEBA (Hogarth and Karelaia 2003) used
simpler enumeration approaches and were restricted to Ith€ model withp = 0.5 and more

modest values af» andk (m up to 5 andk up to 5).

Our study is one more step in the direction of reducing therijats/e—prescriptive gap in
multi-attribute decision making. We have shown tBbdBA and other related heuristics achieve a
good performance in the binary attribute setting with a matenumber of attributes. This strongly
supports the insight thalhe keymanagerial skill is to identify and rank the most relevamtiaites
or factors. Efforts to specify exact values of weights and&e a informational-intensive decision
procedures may have a minor return and be justified only fonalldraction of decisions (Keeney
2004). Since much may not be lost by the binary encoding obate values (Hogarth and Karelaia
2005b), our results can also justify good performancddBBA and related heuristics when the

attribute are continuous random variables.

Our analysis can be extended in several directions. Rinstuld be interesting to analyze the
impact of a negative inter-attribute correlation. Howewdnereas this can be introduced in several
ways, it is not a simple task. Another, obvious, directioth&consideration of probabilistic models
in which attributes are continuous random variables, pbssiorrelated. Another possibility is the
consideration of different scenarios for the availablevidedge about the values of the weighig
1 <i < k (see Barron 1992). Our analysis has been restricted to Heeafamon-increasing weights.
A possible extension is to consider the case where theweletinking of the firsty weights is not
known, i.e.wy,wa, ... wg > wgq1 > -+ > wy, > 0. Picking upg = 1 puts us in the non-increasing
weights scenario assumed in the paper, which is optimalyaziterized by cumulative dominance.
Picking upg = k puts us in the non-negative weights scenario, which is @ilyncharacterized by
simple dominance. It is easy to check that the more geneealbso is optimally characterized by
g-dominance: an alternativieexhibits g-dominance over another alternativé and only if d,.(¢, 5)
forallr,1 <r < gandc,.(i,5) forall r, ¢ + 1 < r < k. Using theg-dominance concept we could
derive in a similar way as it has been done in the paper pedioce measures fgrdominance
compliantheuristics andully ¢-dominance compliartteuristics. All those extensions are expected

to be the subject of future work.
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Appendix

Proof of Theorem 1 ThatY" = (|G|, m —|G]|) is by definition. We will compute the probabilities
PIYE = (j9,°)| Y = (1G,m~|G]), (%,3") € {(5,5),0 <i < |G|,0 < j < m—|G|} and the
probabilitiesP[Y,%, = (9, %) |V, = (#9,°) AY,S | = (i9_,,ib_ ) A AYE = (€, ) AYE =
(1G], m |G, (4.8, <z;_1,z'$z_1>, (9,1, (79, 4) € {(1,4),0 < i < |G|,0 < j < m—|G]}.

It will trun out that the former are equal Q|| m—|q)),jo,;+) and the latter only depend @, i)
and (j¢,j*) and are equal t@ s ;) (jo v, thus proving tha’® = {Y,%;0 < r < k} is an
homogeneous discrete-parameter Markov chain (with ttedgaarameter) with one-step transition

probabilitiesq ;o ;v) (o jv)-

SinceY = (|G|,m — |G|) with probability 1, P[Y,¢ = (j9,5°) | Y& = (|G],m — |G|)] =
PIYE = (59,4%)]. First,Y¥ = (|G|,m — |G|) if and only if all alternatives have same attribute 1
value. ThenP [V = (|G| m— |G|V = (1G], m—~|G])] = py'p]"™“+-(1—pn) & (1—p)) =16,
,(59,3°) # (0,0), (79, 5°) # (1G], m—|G])

if and only if j° of the |G| good alternatives have attribute 1 value 1, the remaifi¥|g- ;¢ good

Secondy,© = (5%, 5%),0 < j9 <|G|,0 < j* <m—

alternatives have attribute 1 valuej®,of them — |G| bad alternatives have attribute 1 value 1, and
the remainingn — |G| — j° bad alternatives have attribute 1 value 0. Thef¥,¢ = (9, 5°) | Y =
(G m—1GD] = (g, (1 =pu)1=2° ("N pf (1= pr)=191=8", 0 < 2 < m— |G, (79, %) #

(0,0), (9,7°) # (|G|,m — \G\). Finally, Y, cannot be(0,0). Then, P[Y\¥ = (0,0) | V¢ =
(IGl.m = |G])] =

Let0 < r < k. Assume(i?,i®) = (0,0). Thus,Df = D! = (. SinceD?,, C Di
andDS—i—l - fo, Dg +1 = Dr—i—l = 0, Implymg P[ r+1 — (070) ’ Y;“G = (070) A Yrcil =
(#_,i_ ) A AYE = (,8) A Y = (IG],m — |G)] = 1andP[Y,S, = (49, 5°) | Y,7 =
(0,0) AYEy = (if_y 07 q) A s AY = (i,4]) A Y = (IG,m = |G)] = 0,0 <59 <G,

0 <j* <m—1G|, (9,7°) # (0,0). Assume(i9,i%) # (0,0). Thus,|D{| = i9 and|D?| = .

The values of DY_, | and|D?_, | depend onD{| = ¢ and|D%| = i* and the values of the attributes
r + 1 of the alternatives as follows. FirsR’,;, ¢ Db andD?,, c D! imply DY | < |D}| =9
and|DY,,| < |DY = i and, then P, = (9,7%) | Y = (9,) A YE, = (2_,,i2_,) A
A YE = (i) A Y = (IGlm —|GD] =0, < j9 <G| P <50 < m |G,
(79,7%) # (i4,i%). Second, for(i?,i*) # (|G|,m — |G|), |D,,| = 0 and|DP,,| = 0 if and
only if all alternatives inDj have attribute- + 1 value 0, all alternatives ilﬂ)ff have attributer + 1

value 0, and some alternative {i,2,...,m} — Dy — D£ has attributer + 1 value 0. Then,
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PIYS, = (0,09 = (i9,i")AY,Z | = (ig_pi?_ﬂ/\'“AYG = (i, )Yy = (|G|, m—|G)] =
(1= pn)” (1 =p)" [L = (1 = )17 (1 — py)m=1€1=2"],
49 andj®, respectivelyp < j9 < 49,0 < 5 < ib, (59,5%) # (O 0), (59,4%) # (i9,4®) if and only

Y., and|D?_,| will have values

if j° alternatives inDY have attribute- + 1 value 1, the remaining® — j° alternatives inD¢ have
attributer + 1 value 0,;° alternatives inD% have attribute- 4 1 value 1, and the remaining — ;j°

alternatives inD? have attribute + 1 value 0. ThenP[Y,S, = (j9,4°) | ;& = (4, z‘b) A YG1 =

b

@@y, it ) A AYE = (i, i) AY = (1G], m—|G))] = (yg)ph (1=pn)"* =7 ( ) " (1—p) ",
0<j9<i9,0< 55 <P (49,5 # (0,0), (59,5°) # (i9,4°). Finally, DY, ;| will have value?
and| D, | will have valuei® if and only if either all alternatives iy U D? have attribute+1 value

1 or all alternatives have attributet 1 value 0. ThenP[Y, = (19,0 DYE = (9, AYE, =

(#_y B Ao AYE = (i,8) AYE = (IGl,m=|G])] = pip} +(1—pa)I€l(1—p)™~I€1. O

Proof of Theorem 3 ThatY," = (|G|, m — |G|) is by definition. We will compute the probabilities
PIY = (39,5 |Ys" = (IGlm—|G]], (79, 5°) € {(3,5),0 <4 < |G|,0 < j < m— |G|} and the
probabilitiesP[Y,%, = (j9,°)|Y,¢ = (19,i®) A\Y,% | = (i9_1, i) A AYE = (if i) ANY T =
(Gl m—|GD], (#,3%),- ., (i _y, 0 _1), (¢9,8), (59, 5°) € {(4,1),0 < i < |G],0 < j < m—|G[}.

It will turn out that the former are equal Q|| m—|q)),(jo,;+) and the latter only depend @, i)
and (j9,j*) and are equal t@ s ;») (jo v, thus proving tha’® = {Y,%;0 < r < k} is an
homogeneous discrete-parameter Markov chain (with ttedgaarameter) with one-step transition

probabilitiesq ;o ;v) (o jv)-

SinceY " = (|G|,m — |G|) with probability 1, P[Y,¢ = (59,7°) | Y& = (|G|,m — |G]|)] =
P[YF = (59, 4%)]. First, Y,¢ = (|G|, m — |G|) if and only if all alternatives have same attribute 1
value. ThenP[Y,C = (|G|, m—|G))[YE = (|G|, m—|G])] = p}p" 1+ (1=pn) IS (1—py) 16,
Secondy,© = (5%, 5%),0 < j < |G|,0 < j* <m—|G|, (49, ) # (0,0), (59, ) # (|G|, m—|G|)
if and only if j of the |G| good alternatives have attribute 1 value 1, the remaifi¥|g- ;¢ good
alternatives have attribute 1 valuej®,of them — |G| bad alternatives have attribute 1 value 1, and
the remainingn — |G| — j* bad alternatives have attribute 1 value 0. Thef,¢ = (j9,5°) | Y& =
(IGLm—1GD] = (g (1 =pa)9=2° ("N pf (1= pr)191=8" 0 < 2 < m— |G, (79, %) #
(0,0), (59,7°) # (]G],m - \G\). Finally, ;¢ cannot be(0,0). Then, P[Y,® = (0,0) | Y{ =
(1G], m —1G])] =

Let0 < r < k. Assume(i?,i®) = (0,0). Thus,Df = D! = (. SinceD?,, C Di
andD)., C D}, D}, = Di.y =0, implying P[Y,; = (0,0) | ,¢ = (0,0) A Y%, =
(i) A AYE = (,8) A Y = (IG],m — |G)] = 1andP[Y,, = (49, 5°) | Y,7 =
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(0,00 ANY,Sy =@y ip_y) A - AYE = (i,30) A Y = (IGLm —|G])] = 0,0 < j9 < |G,

0 <j* <m—1G|, (9,7°) # (0,0). Assume(i9,i%) # (0,0). Thus,|D{| = i9 and|D?| = .

The values of DY_, | and|D?_, | depend onD{| = i¥ and|D?| = i* and the values of the attributes
r + 1 of the alternatives as follows. Firsh?,, ¢ Db andD?,, c D% imply DY, | < |D}| =49
and| Dl | < DY = i and, then Py, = (j%,7%) | Y. = (i9,) A YC, = (if_,,it_,) A
A YE = () A Y = (IGm = |G])] =0, < j9 < |G|, i < 5P < m -G,
(79,7%) # (i4,i®). Second, for(i?,i*) # (|G|,m — |G|), |D?,,| = 0 and|DP,,| = 0 if and
only if all alternatives inDj have attribute- + 1 value 0, all alternatives ||in3 have attribute- + 1
value 0, and some alternative {1,2,...,m} — Dy — D’ has attributer 4 1 value 0. Then,
PIY, %, = (0,0)[Y,% = (#,i")AY,S | = (if_y,a)_)A - AYE = (i, ) AYST = (|G|, m—|G])] =
(1—pp)¥ (1 —pp)? [1 = (1 = pp)IC1=# (1 — p)™~|G1="). Third, | DY, | and| DY, ,| will have values
49 and;j®, respectivelyp < j9 < 49,0 < j* < ib, (59,5%) # (0,0), (49, 4°) # (i9,%) if and only
if j° alternatives inDY have attribute- + 1 value 1, the remaining® — j° alternatives inD¢ have
attributer + 1 value 0,;° alternatives inD% have attribute- 4 1 value 1, and the remaining — ;°
alternatives inD? have attribute + 1 value 0. ThenP[Y,S, = (j9,5°) | Y, = (i9,i®) A Y9, =
(i), i) A AYE = (i, ) AY = (1G], m—|G)] = (gg)ph (1—pn)¥*=7° (i-l;)pjb(l—pl)ib_jb,
0<j9<i9,0< 55 <P (49,5 # (0,0), (59,5°) # (i9,4°). Finally, DY, ;| will have valuef

and| D!, | will have valuei® if and only if either all alternatives iy U D? have attribute+1 value

1 or all alternatives have attributet+ 1 value 0. ThenP[Y,%, = (i4,i%) | V,% = (i9,i%) A Y, =
(@_y il ) A AYE = (1,8 AYE = (G, m—|G))] = pi i +(1—pn)Cl1—p)mI€¢. O
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