
Computation of Multiple Correspondence
Analysis, with code in R

Oleg Nenadić1 and Michael Greenacre 2

1 Institut für Statistik und Ökonometrie
Georg-August-Universität Göttingen

Platz der Göttinger Sieben 5
37073 Göttingen. Germany

E-mail: onenadi@uni-goettingen.de

2 Departament d’Economia i Empresa
Universitat Pompeu Fabra
Ramon Trias Fargas, 25-27

08005 Barcelona. Spain

E-mail: michael@upf.es

Acknowledgement
The support of the BBVA Foundation (Fundación BBVA) in Madrid in sponsoring this
research is gratefully acknowledged.



Computation of Multiple Correspondence
Analysis, with code in R

Oleg Nenadić1 and Michael Greenacre 2

Abstract

The generalization of simple correspondence analysis, for two categorical vari-
ables, to multiple correspondence analysis where they may be three or more vari-
ables, is not straighforward, both from a mathematical and computational point of
view. In this paper we detail the exact computational steps involved in performing a
multiple correspondence analysis, including the special aspects of adjusting the prin-
cipal inertias to correct the percentages of inertia, supplementary points and subset
analysis. Furthermore, we give the algorithm for joint correspondence analysis where
the cross-tabulations of all unique pairs of variables are analysed jointly. The code
in the R language for every step of the computations is given, as well as the results
of each computation.

Keywords

Adjustment of principal inertias, Burt matrix, correspondence analysis, multiple cor-
respondence analysis, R language, singular value decomposition, subset analysis.

1 Introduction

Multiple correspondence analysis (MCA) is essentially the application of the simple cor-
respondence analysis (CA) algorithm to multivariate categorical data coded in the form
of an indicator matrix or a Burt matrix (see, for example, Greenacre, 1984, 1993, 2005).
Blasius and Greenacre (1994) described in detail the computations involved in CA. In this
paper we describe the steps involved in computing MCA solutions as well as related results
such as the coordinates of supplementary points and the adjustment of principal inertias
(eigenvalues). We shall also describe an algorithm for joint correspondence analysis (JCA).
Our computing environment is mainly the freeware program R (www.R-project.org) but
all the analyses described in this Appendix have also been implemented in the XLSTAT

2



package (www.xlstat.com) and the results have all been corroborated using XLSTAT. In
Section 8 we give the actual code in R that computed all the results described here.

The computing steps are illustrated using the western German sample taken from the
International Survey Program on Environment (ISSP, 1993). There were four questions
on attitudes to science, labelled “A” to “D”, with responses on a 5-point scale (1=agree
strongly to 5=disagree strongly), as well as three demographic variables, sex (2 categories),
age (6 categories) and education (6 categories).

A B C D sex age education

1 2 3 4 3 2 2 3
2 3 4 2 3 1 3 4
3 2 3 2 4 2 3 2
4 2 2 2 2 1 2 3
5 3 3 3 3 1 5 2
...

...
...

...
...

...
...

...
871 1 2 2 2 2 3 6

Table 1: Extract from the ISSP survey (ISSP, 1993).

Table 1 shows a part of the survey data for western Germany. The columns of this
data matrix contain Q (= 4) questions corresponding to the active variables and Q′ (=
3) questions corresponding to the supplementary variables. Each question q, active or
supplementary, has a certain number Jq of response categories. In the R language, each
of the questions defines a factor, and each factor has a certain number of levels. In our
example Jq = 5 for each active factor and the supplementary factors have 2, 6 and 6
levels respectively. Initially we only consider the MCA of questions A, B, C and D. The
supplementary variables sex, age and education are used at a later stage for showing the
computations for supplementary points in MCA.

2 Computations based on the indicator matrix

The most classical and standard approach to MCA is to apply a simple CA to the indicator
matrix Z. The indicator matrix Z = {zij} corresponds to a binary coding of the factors -
instead of using a factor with Jq levels one uses Jq columns containing binary values, also
called dummy variables. Table 2 illustrates a part of the indicator matrix for the ISSP
survey data:

3



A B C D

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
2 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
3 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
4 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
5 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

871 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

Table 2: Extract from the indicator matrix for the first four columns of Table 1.

We assume here that a (simple) CA program is available, based on the singular value
decomposition (SVD). (see Greenacre and Blasius (1994) for more details of the computa-
tions involved).

The number of nonzero singular values of an indicator matrix based on Q factors with
a total of J levels (J =

∑
q Jq) is J − Q, which in our example is 20 − 4 = 16. Table 3

gives some of the 16 principal inertias (squares of the singular values) and the explained
percentages of inertia.

s 1 2 3 4 . . . 16
λs 0.457 0.431 0.322 0.306 . . . 0.125

Explained inertia (in %) 11.4 10.8 8.0 7.7 . . . 3.1

Table 3: Some principal inertias and explained inertia for the MCA of Table 2.

The column standard and principal coordinates (bjs and gjs, respectively) for the first
two dimensions (s = 1, 2) are shown in Table 4. The results are given only for the responses
to the questions A and D.

A D

1 2 3 4 5 ... 1 2 3 4 5
bj1 1.837 0.546 – 0.447 – 1.166 – 1.995 ... 1.204 – 0.221 – 0.385 – 0.222 0.708
bj2 – 0.727 0.284 1.199 – 0.737 – 2.470 ... – 1.822 0.007 1.159 0.211 – 1.152
gj1 1.242 0.369 – 0.302 – 0.788 – 1.349 ... 0.814 – 0.150 – 0.260 – 0.150 0.479
gj2 – 0.478 0.187 0.787 – 0.484 – 1.622 ... – 1.196 0.005 0.761 0.138 – 0.756

Table 4: Some column standard and principal coordinates for the first two dimensions.

A small part of the row principal coordinates fis is displayed in Table 5

4



i 1 2 3 4 5 ... 871
fi1 – 0.210 – 0.325 0.229 0.303 – 0.276 ... 0.626
fi2 0.443 0.807 0.513 0.387 1.092 ... 0.135

Table 5: Some row principal coordinates for the first two dimensions.

Figure 1 gives the complete result as a (symmetric) map for the first two dimensions.
The four questions from the survey are coded with different symbols and the rows (i.e.
individuals) are displayed as small dots. Notice that a potential inversion in sign with
respect to the axes is irrelevant to the interpretation and is a function of the algorithm
used to calculate the solution.

  Question  

A
B
C
D

λ1 = 0.457 (11.4%)

λ2 = 0.431 (10.8%)

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

C1

C2
C3

C4

C5

D1

D2

D3

D4

D5

Figure 1: Symmetric map of the ISSP dataset.

3 Computations based on the Burt matrix

The Burt matrix C is obtained directly from the indicator matrix Z: C = ZTZ. Table 6
shows a part of the Burt matrix from the ISSP dataset, corresponding to questions A and
D.

5



A D

1 2 3 4 5 ... 1 2 3 4 5

A

1 119 0 0 0 0 15 25 17 34 28
2 0 322 0 0 0 22 102 76 68 54
3 0 0 204 0 0 . . . 10 44 68 58 24
4 0 0 0 178 0 9 52 28 54 35
5 0 0 0 0 48 4 9 13 12 10
...

...
. . .

...

D

1 15 22 10 9 4 60 0 0 0 0
2 25 102 44 52 9 0 232 0 0 0
3 17 76 68 28 13 . . . 0 0 202 0 0
4 34 68 58 54 12 0 0 0 226 0
5 28 54 24 35 10 0 0 0 0 151

Table 6: Data of the ISSP survey in the form of a Burt matrix.

The computation of MCA is again the application of the (simple) CA algorithm to the
Burt matrix C. Notice, however, the following properties of this analysis and its relation
with the CA of the indicator matrix Z.

• Since C is symmetric, the solution for the rows and for the columns is identical

• The analysis of C only gives a solution for the response categories (that is, what were
previously the columns of Z)

• The standard coordinates of the rows (equivalent to columns) of C, are identical to
the standard coordinates of the columns of Z.

• The principal inertias of C are the squares of those of Z.

• Since the matrix of standardized residuals in the analysis of C is positive definite
symmetric, the singular values in the analysis of C are also eigenvalues.

It is useful here to give the steps for a minimal stand-alone computing algorithm for
performing an MCA starting from the Burt matrix C:

1. Divide C by its grand total n =
∑

i,j cij to obtain the correspondence matrix P:

P = {pij} = cij/n (1)

and calculate the row totals (masses) ri (equal to column masses).

2. Perform an eigenvalue-eigenvector decomposition on standardized residuals A (which
- as pointed out above - is the same as the SVD)

S = {sij} = (pij − rirj)/
√

rirj (2)

6



The decomposition returns the eigenvectors U = {uis} and the eigenvalues λs from the
solution of S = VΛVT . The eigenvalues (= singular values) are equivalent to the λs from
Table 3, hence are the principal inertias of Z. If the principal inertias of C are required,
they need to be squared. Table 7 gives the principal inertias for the MCA based on the
Burt matrix.

s 1 2 3 4 . . . 16
λ2

s 0.2092 0.1857 0.1036 0.0939 . . . 0.0157
Explained inertia (in %) 18.6 16.5 9.2 8.3 . . . 1.4

Table 7: Some principal inertias and explained inertia for the CA of Table 6.

3. The i-th row (or column) standard coordinate for the s-th dimension is obtained as

ais = vis/
√

ri (3)

4. The corresponding principal coordinates are given by

fis = aisλs (4)

Table 8 contains a part of the eigenvectors for the first two dimensions (ui1 and ui2),
the (row or column) category masses (ri) and the (row or column) standard and principal
coordinates (ai1 and ai2 and fi1 and fi2, respectively). The principal coordinates differ
from those reported in Table 4, because they are the standard coordinates scaled by λs

whereas in Table 4 they are scaled by
√

λs.

A D

1 2 3 4 5 ... 1 2 3 4 5
ui1 0.339 0.166 – 0.108 – 0.264 – 0.234 ... 0.158 – 0.057 – 0.093 – 0.056 0.147
ui2 – 0.134 0.086 0.290 – 0.167 – 0.290 ... – 0.239 0.002 0.279 0.054 – 0.240
ri 0.034 0.092 0.059 0.051 0.014 ... 0.017 0.067 0.058 0.065 0.043

ai1 1.837 0.546 – 0.447 – 1.166 – 1.995 ... 1.204 – 0.221 – 0.385 – 0.222 0.708
ai2 – 0.727 0.284 1.199 – 0.737 – 2.470 ... – 1.822 0.007 1.159 0.211 – 1.152
fi1 0.840 0.250 – 0.204 – 0.533 – 0.913 ... 0.551 – 0.101 – 0.176 – 0.101 0.324
fi2 – 0.314 0.123 0.517 – 0.318 – 1.064 ... – 0.785 0.003 0.499 0.091 – 0.496

Table 8: The eigenvectors, masses, standard and principal coordinates for the analysis of
the Burt matrix.

7



4 Adjustment of Inertias

The so-called “percentage of inertia problem” can be improved by using adjusted inertias:

λadj

s =

(
Q

Q− 1

)2 (
λs − 1

Q

)2

(5)

The adjusted inertias are calculated only for each singular value λs that satisfies the in-
equality λs ≤ 1/Q. They are expressed as a percentage of the average off-diagonal inertia,
which can be calculated either by direct calculation on the off-diagonal tables in the Burt
matrix, or from the total inertia of C as follows:

Q

Q− 1

(
inertia(C)− J −Q

Q2

)
(6)

where inertia(C) is the sum of the principal inertias
∑

s λ2
s in Table 7. The value of (6) in

our ISSP example is 0.17024 and Table 9 lists the adjusted inertias for the six dimensions
that satisfy λs ≤ 1

4
.

s 1 2 3 4 5 6
λadj

s 0.07646 0.05822 0.00920 0.00567 0.00117 0.00001
Explained inertia (in %) 44.9 34.2 5.4 3.3 0.7 0.0

Table 9: Adjusted principal inertias and explained inertia for the ISSP survey.

5 Joint Correspondence Analysis

The main diagonal submatrices of the Burt matrix are the key issue. The JCA analysis of
the ISSP example is performed here by using iteratively weighted least squares for updating
the diagonal submatrices of the Burt matrix. The updating is carried out by calculating
the MCA solution for the dimensions 1, . . . , S∗ where S∗ is the required dimensionality of
the solution (this has to be chosen in advance, since the solution is no longer nested).

The procedure is carried out in the following steps:

1. Set C∗ = {c∗ij} = cij

2. Perform an MCA on C∗.

3. Reconstruct the approximation of the data from the solution:

Ĉ = {ĉij} := n rirj

(
1 +

S∗∑
s=1

λsaisajs

)
(7)

8



where S∗ is the required dimensionality of the solution. (In the first iteration of the
algorithm, one can optionally use adjusted inertias.)

4. Update main diagonal submatrices of C∗ with the corresponding entries of Ĉ

5. Repeat steps 2 - 4 until convergence

One possibility to measure the convergence is given by considering the maximum absolute
difference between the entries of the main diagonal matrices of C∗ and Ĉ in step 4).
Table 10 shows the updated Burt matrix after 45 iterations, after achieving a maximum
absolute difference less than 0.0001, based on a two-dimensional solution. Values in the
main diagonal submatrices that were modified are typed in boldface.

A D

1 2 3 4 5 ... 1 2 3 4 5

A

1 30.72 53.14 18.59 13.79 2.58 15 25 17 34 28
2 53.14 130.55 76.80 51.80 9.71 22 102 76 68 54
3 18.59 76.80 62.59 38.86 6.80 . . . 10 44 68 58 24
4 13.97 51.80 38.86 53.51 19.85 9 52 28 54 35
5 2.58 9.71 6.80 19.85 9.06 4 9 13 12 10
...

...
. . .

...

D

1 15 22 10 9 4 9.02 14.67 5.03 13.27 18.01
2 25 102 44 52 9 14.67 62.46 55.78 60.90 38.20
3 17 76 68 28 13 . . . 5.03 55.78 63.56 56.49 21.14
4 34 68 58 54 12 13.27 60.90 56.49 59.74 35.60
5 28 54 24 35 10 18.01 38.20 21.14 35.60 38.04

Table 10: The updated (or modified) Burt matrix.

In order to measure the quality of the approximation, it should be remembered that
in the final CA of the modified Burt matrix C∗ in Table 10, the total inertia includes
contributions due to the modified diagonal blocks and that these are perfectly fitted by
the two-dimensional solution. These must be discounted from both the total inertia and
the first two principal inertias. The principal inertias and the explained inertia for the
two-dimensional JCA solution are given in Table 11, corresponding to a total inertia of the
modified Burt matrix of 0.18242.

s 1 2
λJCA

s 0.09909 0.06503
Explained inertia (in %) 54.3 35.6

Table 11: Adjusted principal inertias and explained inertia for the JCA case.

9



By direct calculation on Table 10, the contributions to the total inertia due to the
different submatrix blocks are given in Table 12.

A B C D

A 0.00745 0.01486 0.01215 0.00329
B 0.01486 0.02244 0.01858 0.00530
C 0.01215 0.01858 0.02103 0.00966
D 0.00329 0.00530 0.00966 0.00381

Table 12: Contributions to the total inertia of each submatrix of table 10.

The total of Table 12 is 0.18242, the total inertia of the modified Burt matrix, of
which the sum of the diagonal values 0.05474 needs to be discounted from the first two
principal inertias as well as the total. This gives the proportion of inertia explained by the
two-dimensional JCA solution as

0.09909 + 0.06503− 0.05474

0.18242− 0.05474
=

0.10938

0.12768
= 0.8567

hence 85.7% of the (off-diagonal) inertia is explained by the JCA solution. This percentage
is necessarily less than the percentage explained in the whole matrix (equal to 89.9%, see
Table 11), since the latter calculation includes the modified diagonal blocks which are fitted
perfectly.

Notice finally that the denominator 0.12768 of this proportion (and thus the difference
of 0.05474 due to the diagonal blocks) can be obtained easily from our previous results
concerning the average off-diagonal inertia, formula (6). We had calculated the average
off-diagonal inertia to be 0.17024, which is the average of 12 inertias from individual off-
diagonal tables, whereas our present calculation involves the average of 16 tables. Hence
the inertia in the modified Burt matrix due to the off-diagonal tables is 12

16
0.17024, that is

0.12768. Hence, the part due to the modified tables on the diagonal is 0.18242−0.12768 =
0.05474, and so it is actually not necessary to calculate the contributions on the diagonal
of Table 12 directly.

6 Supplementary variables

In simple CA supplementary row or column points are commonly calculated as weighted
averages of the column or row standard coordinates respectively: for example, to position
a supplementary column in principal coordinates, the profile of the supplementary column
is used to calculate a weighted average of the row standard coordinates. In the MCA of the
indicator matrix there are two ways to represent supplementary variables: first, as regular
supplementary columns as just described, which amounts to averaging respondent points

10



in standard coordinates, second as averages of respondent points in principal coordinates,
which amounts to appending to the indicator matrix, as rows, the concatenated cross-
tabulations of the supplementary variables with the active variables. It is this latter option
that is preferable, since it is a unified strategy across all forms of MCA, in particular the
MCA with adjusted inertias, which is the form we prefer.

Before treating the second option, let us first recall the standard case in the analysis of
the indicator matrix Z, i.e. supplementary column categories whose position is obtained by
averaging over row standard coordinates. Suppose that we have a supplementary variable
coded in indicator form as the matrix Z∗, with (i,j)-th column element z∗ij and z∗·j its
corresponding column sum. Given the standard row (respondent) coordinates ais the
supplementary column principal coordinates g∗js are given as

g∗js =
I∑

i=1

z∗ij
z·j

ais (8)

which, since the values z∗ij are either 0 or 1, is the average of the standard coordinates of
those respondents in category j. Table 13 shows these column coordinates.

sex age education
1 2 1 2 3 4 5 6 1 2 3 4 5 6

g∗j1 -0.143 0.137 -0.166 -0.087 -0.025 -0.031 0.016 0.281 0.180 0.161 -0.068 -0.227 -0.172 -0.308
g∗j2 0.029 -0.028 -0.014 -0.081 -0.004 0.057 0.047 0.033 0.060 0.093 0.090 -0.279 -0.263 -0.291

Table 13: Supplementary principal coordinates for the variables sex, age and education, as columns
of the indicator matrix.

The second (and preferable) method is based on averaging the respondent row points in
principal coordinates, which is equivalent to appending the cross-tabulations Z∗TZ (of the
supplementary variable with the active variables) as supplementary rows of Z. This gives
the same numerical coordinates as appending Z∗TZ as supplementary rows to the Burt
matrix C. Or, since the Burt matrix is symmetric, one can append the transposed cross-
tabulations ZTZ∗ to C as supplementary columns. To illustrate the calculations, suppose
that C∗ denotes the latter cross-tabulations ZTZ∗ (stacked vertically) appended as columns
to the Burt matrix, with general element c∗ij and column sums c∗·j. In the analysis of C we
denote the (row) standard coordinates of the active response categories by ãis (these are
not the same as the ais of (8) which in that case refer to standard coordinates of respondent
points i in the analysis of the indicator matrix Z - in this case i refers to an active row
category of the Burt matrix and runs from 1 to J). Now the positions of the supplementary
columns C∗ are obtained by weighted averaging as follows:

g̃js =
J∑

i=1

c∗ij
c∗·j

ãis (9)

11



Table 14 gives the supplementary principal coordinates for the response categories of the
variables sex, age and education in the ISSP example, which (to emphasise) can be consid-
ered either as supplementary rows of Z or as supplementary rows or columns of C. Notice
that, since Table 12 contains averages over standard coordinates and Table 14 has effec-
tively calculated averages of row (respondent) points over principal coordinates, the values
in Table 14 are those in Table 13 multiplied by square roots of corresponding principal
inertias in the analysis of the indicator matrix Z:

g̃js = g∗js
√

λs

For example, the coordinate g∗11 = −0.143 for sex1 (male) on the first dimension in Table
13 would be multiplied by the square root of 0.457 (see Table 3) to give: −0.143

√
0.457 =

−0.097 – this checks with the corresponding element g̃11 in Table 14.

sex age education
1 2 1 2 3 4 5 6 1 2 3 4 5 6

g̃j1 -0.097 0.093 -0.112 -0.059 -0.017 -0.021 0.011 0.190 0.122 0.109 -0.046 -0.154 -0.116 -0.209
g̃j2 0.019 -0.018 -0.009 -0.053 -0.003 0.038 0.031 0.022 0.039 0.061 0.059 -0.183 -0.172 -0.191

Table 14: Supplementary principal coordinates for the variables sex, age and education, computed
as supplementary rows of Z or supplementary rows or columns of C.

7 Subset analysis

In this section we detail briefly the adaptation needed to the basic CA algorithm to perform
the subset analyses. For example, suppose we wished to exclude the middle “neither agree
nor disagree” responses for questions A to D from the analysis. Again, we can approach
this either from the viewpoint of the analysis of the indicator matrix Z or of the Burt
matrix C. The idea is to execute the same CA algorithm to the corresponding submatrix
of Z or C but maintain the original row and column margins of the matrix. We would thus
first calculate the complete matrix to be decomposed, centre them as usual with respect to
their row and column margins, and then extract the submatrix of interest, excluding rows
and/or columns to be ignored. In the case of Z in our example, this would give a 871× 16
submatrix (excluding the 4 columns corresponding to the 4 “neither ... nor” categories,
while in the case of C this would give a 16×16 submatrix (excluding 4 rows and columns).
In terms of our earlier description, the latter option would mean performing an SVD on
the submatrix of S calculated as in (2). The results are given in the Tables 15 and 16.
Note that in this case the subset analysis also has 16 dimensions, since there are no linear
dependencies between the rows or columns of the submatrix analysed. Notice further that
the percentages calculated in Table 15 are relative to that part of the inertia contained in
the 16 × 16 submatrix, which is inflated by values on diagonal blocks just as in MCA of
the full Burt matrix. Whether there are simple ways in this case to adjust these principal
inertias to obtain more realistic percentages of inertia still needs to be investigated.

12



s 1 2 3 4 . . . 16
λsub

s 0.2016 0.1489 0.0980 0.0721 . . . 0.0017
Explained inertia (in %) 23.4 17.3 11.4 8.4 . . . 0.2

Table 15: Some principal inertias and explained inertia for the subset MCA of Table 6,
excluding the categories “neither ... nor”

A D

1 2 4 5 ... 1 2 4 5
bj1 1.837 0.538 – 1.316 – 2.449 ... 0.888 – 0.273 – 0.222 0.482
bj2 1.153 – 0.517 – 0.015 2.746 ... 2.482 – 0.462 – 0.683 1.210
gj1 0.761 0.242 – 0.591 – 1.100 ... 0.399 – 0.123 – 0.100 0.216
gj2 0.445 – 0.200 – 0.006 1.060 ... 0.957 – 0.178 – 0.264 0.467

Table 16: Some column standard and principal coordinates for the first two dimensions of
the subset MCA of Table 6, excluding categories “neither ... nor”.

8 A sample session in R

In this section we give some selected code using the programming language R (R Develop-
ment Core Team, 2005). The complete language and associated material such as program
manuals and contributed packages from researchers all over the world are freely download-
able from http://www.r-project.org. The code that follows gives the results given in Tables
1 to 16 of the previous sections.

We assume that the dataset is loaded into R as a data.frame named dat, using the
function read.table() with the option colClasses="factor" so that columns are de-
clared to be factors. Suppose that the first lines of the data file look like this:

A B C D sex age edu

2 3 4 3 2 2 3

3 4 2 3 1 3 4

2 3 2 4 2 3 2

2 2 2 2 1 2 3

3 3 3 3 1 5 2

. . . . . . .

that is, a header with the variable (column) names, followed by the data for each
respondent. Further, suppose it is stored under the name WG93.txt in the current working
directory. Then the R statement to input the data matrix would be:

dat <- read.table("WG93.txt", header = TRUE, colClasses = "factor")

13



The following R statements that are displayed with an indent are used to calculate the
numerical results given in the previous tables. The results for the tables are displayed with
the R commands written without indent at the bottom of each subsection.

# Table 1 (response pattern matrix)

sup.ind <- 5:7
dat.act <- dat[,-sup.ind]
dat.sup <- dat[,sup.ind]
I <- dim(dat.act)[1]
Q <- dim(dat.act)[2]

dat[c(1:5,I),]
# A B C D sex age edu
# 1 2 3 4 3 2 2 3
# 2 3 4 2 3 1 3 4
# 3 2 3 2 4 2 3 2
# 4 2 2 2 2 1 2 3
# 5 3 3 3 3 1 5 2
# 871 1 2 2 2 2 3 6

# Table 2 (indicator matrix)

lev.n <- unlist(lapply(dat, nlevels))
n <- cumsum(lev.n)
J.t <- sum(lev.n)
Q.t <- dim(dat)[2]
Z <- matrix(0, nrow = I, ncol = J.t)
newdat <- lapply(dat, as.numeric)
offset <- (c(0, n[-length(n)]))
for (i in 1:Q.t)
Z[1:I + (I * (offset[i] + newdat[[i]] - 1))] <- 1

fn <- rep(names(dat), unlist(lapply(dat, nlevels)))
ln <- unlist(lapply(dat, levels))
dimnames(Z)[[2]] <- paste(fn, ln, sep = "")
dimnames(Z)[[1]] <- as.character(1:I)
ind.temp <- range(n[sup.ind])
Z.sup.ind <- (ind.temp[1]-1):ind.temp[2]
Z.act <- Z[,-Z.sup.ind]
J <- dim(Z.act)[2]

Z.act[c(1:5,I),]
# A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5
# 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
# 2 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
# 3 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
# 4 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
# 5 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
# 871 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

14



# Table 3 (inertias of Z)

P <- Z.act / sum(Z.act)
cm <- apply(P, 2, sum)
rm <- apply(P, 1, sum)
eP <- rm %*% t(cm)
S <- (P - eP) / sqrt(eP)
dec <- svd(S)
lam <- dec$d[1:(J-Q)]^2
expl <- 100*(lam / sum(lam))

rbind(round(lam[c(1:4,(J-Q))], 3),round(expl[c(1:4,(J-Q))], 1))

# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.457 0.431 0.322 0.306 0.125
# [2,] 11.400 10.800 8.000 7.700 3.100

# Table 4 (column standard / principal coordinates)

b.s1 <- dec$v[,1] / sqrt(cm)
b.s2 <- dec$v[,2] / sqrt(cm)
g.s1 <- b.s1 * sqrt(lam[1])
g.s2 <- b.s2 * sqrt(lam[2])

round(rbind(b.s1,b.s2,g.s1,g.s2)[,c(1:5,16:20)], 3)

# A1 A2 A3 A4 A5 D1 D2 D3 D4 D5
# b.s1 1.837 0.546 -0.447 -1.166 -1.995 1.204 -0.221 -0.385 -0.222 0.708
# b.s2 -0.727 0.284 1.199 -0.737 -2.470 -1.822 0.007 1.159 0.211 -1.152
# g.s1 1.242 0.369 -0.302 -0.788 -1.349 0.814 -0.150 -0.260 -0.150 0.479
# g.s2 -0.478 0.187 0.787 -0.484 -1.622 -1.196 0.005 0.761 0.138 -0.756

# Table 5 (row principal coordinates)

f.s1 <- dec$u[,1] * sqrt(lam[1]) / sqrt(rm)
f.s2 <- dec$u[,2] * sqrt(lam[2]) / sqrt(rm)
a.s1 <- f.s1 / sqrt(lam[1])
a.s2 <- f.s2 / sqrt(lam[2])

round(rbind(f.s1,f.s2)[,c(1:5,I)], 3)

# 1 2 3 4 5 871
# f.s1 -0.210 -0.325 0.229 0.303 -0.276 0.626
# f.s2 0.443 0.807 0.513 0.387 1.092 0.135

# Table 6 (Burt matrix)

B <- t(Z.act) %*% Z.act
B[c(1:5,16:20), c(1:5,16:20)]

15



# A1 A2 A3 A4 A5 D1 D2 D3 D4 D5
# A1 119 0 0 0 0 15 25 17 34 28
# A2 0 322 0 0 0 22 102 76 68 54
# A3 0 0 204 0 0 10 44 68 58 24
# A4 0 0 0 178 0 9 52 28 54 35
# A5 0 0 0 0 48 4 9 13 12 10
# D1 15 22 10 9 4 60 0 0 0 0
# D2 25 102 44 52 9 0 232 0 0 0
# D3 17 76 68 28 13 0 0 202 0 0
# D4 34 68 58 54 12 0 0 0 226 0
# D5 28 54 24 35 10 0 0 0 0 151

# Table 7 (principal inertias of Burt matrix)

P.2 <- B / sum(B)
cm.2 <- apply(P.2, 2, sum)
eP.2 <- cm.2 %*% t(cm.2)
S.2 <- (P.2 - eP.2) / sqrt(eP.2)
dec.2 <- eigen(S.2)
delt.2 <- dec.2$values[1:(J-Q)]
expl.2 <- 100*(delt.2 / sum(delt.2))
lam.2 <- delt.2^2
expl.2b <- 100*(lam.2 / sum(lam.2))

rbind(round(lam.2, 3),round(expl.2b, 1))[,c(1:4,16)]
# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.209 0.186 0.104 0.094 0.016
# [2,] 18.600 16.500 9.200 8.300 1.400

# Addendum: ”check” that δs is equivalent to λs:
rbind(round(delt.2, 3),round(expl.2, 1),

round(lam, 3),round(expl, 1))

# Table 8 (eigenvectors, column masses, column sc/pc’s)

u.s1 <- dec.2$vectors[,1]
u.s2 <- dec.2$vectors[,2]
a2.s1 <- u.s1 / sqrt(cm.2)
a2.s2 <- u.s2 / sqrt(cm.2)
f2.s1 <- a2.s1 * sqrt(lam.2[1])
f2.s2 <- a2.s2 * sqrt(lam.2[2])

round(rbind(u.s1,u.s2,cm,a2.s1,
a2.s2,f2.s1,f2.s2), 3)[,c(1:5,16:20)]

# A1 A2 A3 A4 A5 D1 D2 D3 D4 D5
# u.s1 0.339 0.166 -0.108 -0.264 -0.234 0.158 -0.057 -0.093 -0.056 0.147
# u.s2 -0.134 0.086 0.290 -0.167 -0.290 -0.239 0.002 0.279 0.054 -0.240
# cm 0.034 0.092 0.059 0.051 0.014 0.017 0.067 0.058 0.065 0.043

16



# a2.s1 1.837 0.546 -0.447 -1.166 -1.995 1.204 -0.221 -0.385 -0.222 0.708
# a2.s2 -0.727 0.284 1.199 -0.737 -2.470 -1.822 0.007 1.159 0.211 -1.152
# f2.s1 0.840 0.250 -0.204 -0.533 -0.913 0.551 -0.101 -0.176 -0.101 0.324
# f2.s2 -0.314 0.123 0.517 -0.318 -1.064 -0.785 0.003 0.499 0.091 -0.496

# Table 9 (adjusted inertias)

lam.adj <- (Q/(Q-1))^2 * (delt.2[delt.2 >= 1/Q] - 1/Q) ^ 2
total.adj <- (Q/(Q-1)) * (sum(delt.2^2) - ((J-Q)/Q^2))

rbind(round(lam.adj, 5),100 * round(lam.adj / total.adj, 3))

# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 0.07646 0.05822 0.0092 0.00567 0.00117 1e-05
# [2,] 44.90000 34.20000 5.4000 3.30000 0.70000 0e+00

# Table 10 (updated Burt matrix)

nd <- 2
maxit <- 1000
epsilon <- 0.0001
lev <- lev.n[-sup.ind]
n <- sum(B)
li <- as.vector(c(0,cumsum(lev)))
dummy <- matrix(0, J, J)
for (i in 1:(length(li)-1)) {
ind.lo <- li[i]+1
ind.up <- li[i+1]
ind.to <- diff(li)[i]
dummy[rep(ind.lo:ind.up, ind.to) +

(rep(ind.lo:ind.up, each = ind.to)-1) * J] <- 1
}

iterate <- function(obj, dummy, nd, adj = FALSE) {
Bp <- obj/n
cm <- apply(Bp, 2, sum)
eP <- cm %*% t(cm)
cm.mat <- diag(cm^(-0.5))
S <- cm.mat %*% (Bp - eP) %*% cm.mat
dec <- eigen(S)
lam <- dec$values
u <- dec$vectors
phi <- u[, 1:nd] / matrix(rep(sqrt(cm), nd), ncol = nd)
if (adj)
lam <- (Q / (Q - 1))^2 * (lam[lam >= 1 / Q] - 1 / Q) ^ 2

for (s in 1:nd) {
if (exists("coord")) {

17



coord <- coord + lam[s] * (phi[,s] %*% t(phi[,s]))
} else {

coord <- lam[s] * (phi[,s] %*% t(phi[,s]))
}

}
obj * (1 - dummy) + n * eP * dummy * (1 + coord)
}

# first iteration (adjusted lambda)
B.star <- iterate(B, dummy, 2, adj = TRUE)
# subsequent iterations
k <- 1
it <- TRUE
while (it) {
temp <- iterate(B.star, dummy, 2)
delta.B <- max(abs(B.star - temp))
B.star <- temp
if (delta.B <= epsilon | k >= maxit) it <- FALSE
k <- k + 1
}

round(B.star [c(1:5,16:20), c(1:5, 16:20)], 2)
# A1 A2 A3 A4 A5 D1 D2 D3 D4 D5
# A1 30.72 53.14 18.59 13.97 2.58 15.00 25.00 17.00 34.00 28.00
# A2 53.14 130.55 76.80 51.80 9.71 22.00 102.00 76.00 68.00 54.00
# A3 18.59 76.80 62.95 38.86 6.80 10.00 44.00 68.00 58.00 24.00
# A4 13.97 51.80 38.86 53.51 19.85 9.00 52.00 28.00 54.00 35.00
# A5 2.58 9.71 6.80 19.85 9.06 4.00 9.00 13.00 12.00 10.00
# D1 15.00 22.00 10.00 9.00 4.00 9.02 14.67 5.03 13.27 18.01
# D2 25.00 102.00 44.00 52.00 9.00 14.67 62.46 55.78 60.90 38.20
# D3 17.00 76.00 68.00 28.00 13.00 5.03 55.78 63.56 56.49 21.14
# D4 34.00 68.00 58.00 54.00 12.00 13.27 60.90 56.49 59.74 35.60
# D5 28.00 54.00 24.00 35.00 10.00 18.01 38.20 21.14 35.60 38.04

# Table 11 (JCA inertias)

P.3 <- B.star / sum(B.star)
cm.3 <- apply(P.3, 2, sum)
eP.3 <- cm.3 %*% t(cm.3)
S.3 <- (P.3 - eP.3) / sqrt(eP.3)
delt.3 <- eigen(S.3)$values
lam.3 <- delt.3^2
expl.3 <- 100*(lam.3 / sum(lam.3))

rbind(round(lam.3, 3),round(expl.3, 1))[,1:2]
# [,1] [,2]
# [1,] 0.099 0.065
# [2,] 54.300 35.600

18



# Table 12 (Inertia conributions of submatrices)

subinr <- function(B, ind) {
nn <- length(ind)
subi <- matrix(NA, nrow = nn, ncol = nn)
ind2 <- c(0,cumsum(ind))
for (i in 1:nn) {
for (j in 1:nn) {
tempmat <- B[(ind2[i]+1):(ind2[i+1]),

(ind2[j]+1):(ind2[j+1])]
tempmat <- tempmat / sum(tempmat)
ec <- apply(tempmat, 2, sum)
ex <- ec%*%t(ec)
subi[i,j] <- sum((tempmat - ex)^2 / ex)
}

}
subi / nn^2
}

si <- subinr(B.star, lev)
round(si, 5)

# [,1] [,2] [,3] [,4]
# [1,] 0.00745 0.01486 0.01215 0.00329
# [2,] 0.01486 0.02244 0.01858 0.00530
# [3,] 0.01215 0.01858 0.02103 0.00966
# [4,] 0.00329 0.00530 0.00966 0.00381

# Table 13 (supplementary principal coordinates as columns of Z)

Z.star <- Z[,Z.sup.ind]
I.star <- dim(Z.star)[1]
cs.star <- apply(Z.star, 2, sum)
base <- Z.star / matrix(rep(cs.star, I.star), nrow = I.star,

byrow = TRUE)
b.star1 <- t(base) %*% cbind(a.s1, a.s2)

round(t(b.star1), 3)

# sex1 sex2 age1 age2 age3 age4 age5 age6
# a.s1 -0.143 0.137 -0.166 -0.087 -0.025 -0.031 0.016 0.281
# a.s2 0.029 -0.028 -0.014 -0.081 -0.004 0.057 0.047 0.033
# edu1 edu2 edu3 edu4 edu5 edu6
# a.s1 0.18 0.161 -0.068 -0.227 -0.172 -0.308
# a.s2 0.06 0.093 0.090 -0.279 -0.263 -0.291

19



# Table 14 (supplementary principal coordinates via cross-tabulation)

ct.star <- t(Z.star)%*%Z.act
I.star2 <- dim(ct.star)[2]
cs.star2 <- apply(ct.star, 1,sum)
base2 <- ct.star / matrix(rep(cs.star2, I.star2),

ncol = I.star2)
b.star2 <- base2 %*% cbind(a2.s1, a2.s2)

round(t(b.star2), 3)

# sex1 sex2 age1 age2 age3 age4 age5 age6
# a2.s1 -0.097 0.093 -0.112 -0.059 -0.017 -0.021 0.011 0.190
# a2.s2 0.019 -0.018 -0.009 -0.053 -0.003 0.038 0.031 0.022
# edu1 edu2 edu3 edu4 edu5 edu6
# a2.s1 0.122 0.109 -0.046 -0.154 -0.116 -0.209
# a2.s2 0.039 0.061 0.059 -0.183 -0.172 -0.191

# Table 15 (principal inertias from subset analysis)

sub.ind <- c(3,8,13,18)
P.4 <- B / sum(B)
cm.4 <- apply(P.4, 2, sum)
eP.4 <- cm.4 %*% t(cm.4)
S.sub <- ((P.4 - eP.4) / sqrt(eP.4)) [-sub.ind,-sub.ind]
dec.sub <- eigen(S.sub)
lam.sub <- dec.sub$values[1:(J-Q)]^2
expl.sub <- 100*(lam.sub / sum(lam.sub))

rbind(round(lam.sub, 4),round(expl.sub, 1))[,c(1:4,(J-Q))]

# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.2016 0.1489 0.098 0.0721 0.0017
# [2,] 23.4000 17.3000 11.400 8.4000 0.2000

# Table 16 (column standard and principal coordinates from subset analysis)

cm.sub <- cm.4[-sub.ind]
u.sub.s1 <- dec.sub$vectors[,1]
u.sub.s2 <- dec.sub$vectors[,2]
a.sub.s1 <- u.sub.s1 / sqrt(cm.sub)
a.sub.s2 <- u.sub.s2 / sqrt(cm.sub)
f.sub.s1 <- a.sub.s1 * sqrt(lam.sub[1])
f.sub.s2 <- a.sub.s2 * sqrt(lam.sub[2])

round(rbind(a.sub.s1,a.sub.s2,f.sub.s1,
f.sub.s2), 3)[, c(1:4,13:16)]

# A1 A2 A4 A5 D1 D2 D4 D5
# a.sub.s1 1.696 0.538 -1.316 -2.449 0.888 -0.273 -0.222 0.482
# a.sub.s2 1.153 -0.517 -0.015 2.746 2.482 -0.462 -0.683 1.210
# f.sub.s1 0.761 0.242 -0.591 -1.100 0.399 -0.123 -0.100 0.216
# f.sub.s2 0.445 -0.200 -0.006 1.060 0.957 -0.178 -0.264 0.467

20



9 R functions for CA, MCA and JCA

The above code and more has been implemented in an R package mjca. The package
comprises two core functions: ca() for simple correspondence analysis, and mjca() for
multiple and joint forms of correspondence analysis. Each core function has methods for
printing, summarizing and plotting (in two dimensions and three dimensions).

A short description of these functions, extracted from their help files, follows.

ca Simple correspondence analysis

Description

Computation of simple correspondence analysis.

Usage

ca(obj, nd = NA, suprow = NA, supcol = NA, subsetrow = NA, subsetcol = NA)

Arguments

obj A two-way table of non-negative data, usually frequencies.
nd Number of dimensions to be included in the output; if NA the maximum possible dimen-

sions are included.
suprow Indices of supplementary rows.
supcol Indices of supplementary columns.

subsetrow Row indices of subset.
subsetcol Column indices of subset.

Details

The function ca computes a simple correspondence analysis based on the singular value decomposition.
The options suprow and supcol allow supplementary (passive) rows and columns to be specified. Using
the options subsetrow and/or subsetcol result in a subset CA being performed.

Value

sv Singular values
rownames Row names
rowmass Row masses
rowdist Row chi-square distances to centroid

rowinertia Row inertias
rowcoord Row standard coordinates
rowsup Indices of row supplementary points

colnames Column names
colmass Column masses

21



coldist Column chi-square distances to centroid
colinertia Column inertias

colcoord Column standard coordinates
colsup Indices of column supplementary points

mjca Multiple and joint correspondence analysis

Description

Computation of multiple and joint correspondence analysis.

Usage

mjca(obj, nd = 3, lambda = "adjusted", suprow = NA, supcol = NA)

Arguments

obj A response pattern matrix containing factors.
nd Number of dimensions to be included in the output; if NA the maximum possible dimen-

sions are included.
lambda Gives the scaling factor for the eigenvalues. Possible values include "indicator", "Burt",

"adjusted" and "JCA". Using lambda = "JCA" results in a joint correspondence anal-
ysis.

suprow Indices of supplementary rows.
supcol Indices of supplementary columns.

Details

The function mjca computes a multiple or joint correspondence analysis based on the eigenvalue de-
composition of the Burt matrix.

Value

Ev Eigenvalues
lambda Scaling mathod for the eigenvalues

levelnames Names of the factor/level combinations
levels.n Number of levels in each factor
rownames Row names
rowmass Row masses
rowdist Row chi-square distances to centroid

rowinertia Row inertias
rowcoord Row standard coordinates

rowsup Indices of row supplementary points
colnames Column names
colmass Column masses
coldist Column chi-square distances to centroid

22



colinertia Column inertias
colcoord Column standard coordinates

colsup Indices of column supplementary points
Burt Burt matrix

subinertia Inertias of sub-matrices
call Return of match.call

10 XLSTAT implementation of CA and MCA

XLSTAT is a commercial statistical package for performing a range of univariate and multi-
variate statistical analyses in a Microsoft Excel environment. The package includes simple
and multiple correspondence analysis. We have collaborated to update these two programs
in XLSTAT so that they contain additional features not found in regular correspondence
analysis software, such as the adjustment of principal inertias in MCA and the subset
correspondence analysis option. The advantage of XLSTAT is its simple interface and the
fact that all results are returned in the Excel environment. This means that it is very
easy to make additional computations on the results as well as modify maps (changing
the coordinate values, labels, etc). An example of its ease of use is the following. In the
context of our present example, we can read the whole data matrix into Excel, both the
four substantive variables as well as the three demographic variables, and then produce
the complete Burt matrix of all cross-tabulations of these seven variables, in Excel format,
using the MCA program. Then we can freely select with the mouse which part of the Burt
matrix we want to analyse, using the CA program. The fact that both data and results are
contained in the same format in Excel worksheets means that there is a seamless interface
that is very easy to use, especially for Excel users.

References

Greenacre, M.J. and Blasius, J. (1994). Computation of Correspondence Analysis.
In Greenacre and Blasius (eds) Correspondence Analysis in the Social Sciences, Academic
Press, London.

ISSP (1993). International Social Survey Program on the Environment. Central
Archive for Empirical Social Research, University of Cologne, Germany.

R Development Core Team (2005). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org

23


