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Rationalizability and Recoverability (Identification) problems are 
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PROLOGUE (2005) 

The notes on Stochastic choice that follow were presented at a 

meeting held in San Sebastian in June of 1983 and organised by 

Salvador Barberà. It was research in progress that, alas, was never 

pursued. But it seems, by its subject, a most indicated contribution 

to a volume to honour Ket Richter. Obviously, I have the hope, but 

not the certainty, that something is still of interest in them. Or 

simply that there will be something to catch the sharp analytical eye 

of Ket. With my best regards to Ket, a model for us all of how theory 

should be done, here they go. I have corrected some obvious 

inaccuracies and, occasionally, tightened some looseness of language. 

I have also added some references (in particular, Falmagne,1978, 

Fishburn,1998, Barberà and Pattanaik,1986, McFadden and Richter,1991, 

McFadden,2004, are very relevant to the subject matter of these 

notes) and taken into account the remarks of a referee(whom I thank). 

Otherwise the text is as in 1983.  

 
 

I. A General Formalism 
 

A very general setting for the stochastic choice problem can be 

described thus (see also Manski, 1977). There is given as data: 

 
(1) A set of alternatives X .  It is convenient to think of X  

as finite. 

(2) A set of “budgets” .  Put X2⊂� ∏
∈

=
BB

BY .  A point of Y  is 

a selection of an alternative in every budget.  Denote by 

 the probability measures on M Y . 

(3) A set of admissible statistics .,: JjRf j ∈→M   

(4) A set of observed values Jja j ∈,  of the statistics. 
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As an example, the usual stochastic choice problem corresponds to the 

above where the admissible statistics in (3) are the marginal 

distributions.  [Precisely:  is admissible if and only if it is of 

the form 

f

( ) ( )∫= dvyvf ψ  where ( )yψ  is the projection on one 

variable].  Even more restricted, if the admissible statistics are 

the mean of every marginal we have as data a sort of aggregate 

demand.  Another situation falling in the above setting would be one 

where for every alternative x  we are given the probability that x  is 

chosen for some budget, etc. 

 

Denote by  the set of linear orders on P X . 

Every probability measure µ  on induces a probability measure  

on 

P µv

Y  by the rule ( ) { P∈= fµµ Av : denoting by ( )Bx  the maximal 

element on 

−f

B∈B  we have ( )B B{ } }Ax ∈∈B . 

 

That is to say,  is the measure generated on µv Y  by the choice 

vectors induced by preferences. 

 

We then have two problems: 

 

Rationalizability problem:  A stochastic choice situation (described 

by (1)-(4) above) can be rationalized if there is a probability 

measure µ  on P such that ( ) jj avf =µ  for every j . 

 

Which conditions must the data of the problem satisfy in order for a 

rationalization to exist? 
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Recoverability (or identification) problem:  Assuming that the data 

are rationalizable, when is the rationalization unique? 

 

Remark:  Strictly speaking there is still a third problem, previous 

to the rationalizability one and vacuously non-restrictive in the 

usual stochastic choice model.  It could be called the compatibility 

problem, namely, under which conditions there is a probability 

measure  on v Y  such that ( ) jj avf =  for every j . 

 

 

 

 

 

II.- A Particular Case 
 

After so much generality I become very concrete.  I concentrate for 

the rest of the Notes on the particular case where there is a 

distinguished alternative, denoted 0, every B∈B  includes 0 and for 

each B∈B  there is an admissible statistic which is the probability 

that 0 is not selected in B .  In other words, the data of the 

problem is an array p (B ), B∈B , to be interpreted as asserting 

that given B  the probability that 0 be the preferred element is 

. We always put ( )Bp−1 { }( )0 0=p . 

 

Define the equivalence relation ≈ on P  by f f′≈  iff " .  

Obviously, if 

"00 ff ′⇔ xx

ff ′≈  then the data of the problem will never be able 

to distinguish between  and f f′.  Therefore, the rationalizability 

and, above all, the recoverability problem should properly be posed 

with respect to ∗P  = ≈
P .  Note that for the elements of ∗P  the 
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transitivity requirement has no strength. Avoiding the transitivity 

issue is the main advantage of analyzing the particular case of a 

distinguished alternative. 

 

I briefly discuss three subcases that differ by the nature of the 

admissible .  Take � X  finite, with # 1+= nX . 

 

 

(a) { }BB X ∈∈= 0:2B  

 

The rationalization problem for this subcase has been extensively 

treated and is completely solved. See Falmagne, 1978, Barberà and 

Pattanaik, 1986, Cohen and Falmagne, 1990, Barberà, 1991..   

 

 

Every preference in ∗P  can be identified with a set B∈B , i.e. B  

is the set of alternatives at least as good as 0.  Then a probability 

on ∗P  can be identified with a list ( ) 10 ≤≤ Bπ , 1)( =∑
∈BB
π B .    If 

π (  ) rationalizes p (  ) then we must have ( )
{ }

( )∑
∩
∈

=

0BA
BA
π−1  for 

every 

Ap B

B∈B .  Therefore, p (  ) can be rationalized if and only if 

the following recursion process (see Barberà and Pattanaik, 

1986)yields a probability measure.  Put first.  { }( ) − ( )Xp= 10π .  

Suppose now that ( )Cπ  has been computed for any C  up to size m .  

Put then 

1+

( )B 1= ( X(p−π \ { }) ( )∑
⊄

−
BC

B π0∪) C  for B of size m + 2   

Obviously, this recursion process gives us a complete list (B)π , 

B∈B .  Also, ( ) = 1∑
∈BB

Bπ  by construction.  Therefore, π is a 
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probability measure, i.e. in admissible rationalization, if and only 

if ( )Bπ  is non-negative for all B .  Those are the conditions 

obtained in the above references. Note that if p (  ) is 

rationalizable then the rationalization is unique and can be 

recovered by the previous recursion. 

B

=B

) )B

 

Recoverability, i.e. uniqueness, is not surprising in view of the 

fact that one gets from π  to p  by a linear transformation and that 

there are as many equations (one for each B ) as unknowns (one for 

each ). 

 

(b) { BB X ∈∈ 0:2 , #  }2=B

 

This is in a sense the polar opposite to subcase (a).  Here we only 

have the outcome of the pairwise matching of 0 against every .  

We write . 

0≠x

{ }( ) (xpxp =,0 )

 

It is obvious that in this subcase, where there is much less 

information than in (a), any p (  ) can be rationalized.  Indeed, any 

p (  ) can be looked at as a point in [ ]n1,0 .  Every extreme point of 

this convex set is of the form p (  ) { }1,0∈  and can be rationalized 

(by ordering ).  Therefore, the entire ( ) "10" =⇔ xpx f [ ]n1,0  can be 

rationalized. 

 

The counterpart to the above pleasant fact is that the preference 

distribution cannot be recovered.  This is clear counting equations 

 and unknowns , one for every (n n2( XB 2∈ , ∈0 . 
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(c) Intermediate subcases 

 

To get clean results for families  intermediate between subcases 

(b) and (a)is hard. Consider, for example, the subcase 

�

{ BB X ∈∈= 0:2 � , # . It is a good exercise to verify that for 

the instance represented in the figure below (with 

}3=B

dcbax ,,,,0= ) 

there is no rationalizing preferences. 

 
1 
 

a          1          b          1          c 
 

½          ½          ½ 
 
 
d 

 

 

 

 

 

 

 

 

From now on I limit myself to subcase (b), i.e. our data is the 

probability  of any  winning against 0. The common fact in 

the next two sections is that restrictions are imposed on underlying 

permissible preferences.  In section III I study a rationalization 

problem with a convexity hypothesis on preferences.  In section IV I 

sketch and discuss an analytic treatment of the recoverability 

problem. 

( )xp Xx∈

 

 

 

III.- Rationalizability with convex preferences 
 

With 0 a distinguished alternative in X  we are given, for every 

,  a number Xx∈ 0≠x ( ) 10 ≤≤ xp  which is interpreted as the 
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probability of x winning over 0.  We have seen (subcase (b) in II) 

that p  can always be rationalized by a distribution µ  on P .  In 

applications, however, it may be important that µ  give positive 

weight only to preferences satisfying some restrictions. 

X ∗

y

f

X ∗ j

(p

R

µ

 

Suppose, for example, that XX =∗ \{ }0  is a subset of a linear space.  

Say mR⊂ .  Then we may be interested in rationalizing by members 

of the set of convex (or, more precisely, convex-compatible) 

preferences, i.e.  if  for every , 

and  ∈ (convex hull  then . 

{ PPC ∈= f

)∩A

: "

"∗X

0xX ,if ∗⊂

}0f

A

y

Ax∈

 

It is no longer true that any p ( . ) can be rationalized by a µ  

concentrated on .  The problem of characterizing the set of 

admissible 

CP

p ( . ) seems pretty hard indeed.  But for the simple 

case, i.e.  (the set 1=m ∗X  lies in the real line) the solution is 

fairly trivial. 

 

Let R⊂ .  Put  where  for { nxxX ,...,1=∗ } ji xx > i .  Denote 

. 

>

( )ip )ix=

 

Proposition:  The function [ ]1,0: →∗Xp  can be rationalized by a µ  

on CP  if and only if { } 1,0max
2

11 ≤−+∑
=

=
−

ni

i
ii ppp .   

Remark:  Presumably the proposition can be extended to the case where 

X ⊂∗  is compact.  The general statement would then be along the 

lines: “The function [ ]1,0: →∗Xp  can be rationalized by a  on  CP
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if and only if it is of bounded variation and has variation norm 

”. 1≤

iB

ip

jx

max

=n

1x

 

Proof of the Proposition: 

 

(1) Necessity:  Identifying sets with preferences let  be the set 

of convex preferences.  For every 

CB

n 1,...,i =  denote 

{ BxBxB ii ∈ }∉∈= − ,: 1CB .  These sets constitute, by the convexity 

hypothesis, a partition of .  So, if CB π   is a probability measure 

concentrated on  we have .  Suppose now that CB ( ) ≤ 1i∑
=

n

i 1
Bπ π  

generates p .  Then ( )1B 1p=π .  Consider any 1i > .  We have 

{ }( )BxB i ∈∈= :CBπ .  But { } { Bxi ∈BBxiB ∈∪=∈∈ :Ci BB:CB  and 

 for some j less than i) .  This is a disjoint union and, by 

convexity, the second set is a subset of 

B∈

{ }BxB i ∈∈ −1:CB  which 

probability is .  Therefore 1-ip ( ) 1−+≤ ii pip Bπ , or 

{ } ( )ii Bp π≤− −1,0 ip .  Hence,  and necessity 

is established. 

{ 1− −ip } 1, ≤ip0max
2
∑
=

n

i
+1p

 

(2) Sufficiency:  We shall actually show that: “There is always a π  

such that ”.  So, let the bracketed 

statement be an induction hypothesis on .  It is obviously true for 

.  Let it be true for 

( ) { }∑∑
=

−
≠

−+=
n

i
ii

B
pppB

2
11 ,0max

φ

π

1

n

1 −n

}

.  In particular for the set 

, i.e. there is a probability measure { ,..., 1−nx π  on 

 such that: { }Bxn ∉:CBB∈=1-n
CB
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(a) , and  ( ) { } 1,0max
1

2
11 ≤−+= ∑∑

−

=
−

≠
∈

n

i
ii

B
B

pppB

φ

π
1-n

CB

(b) for every . ( )∑
∈
∈

=−≤
1-n

CBB
Bx

i
i

Bpni π,1

Now we extend π  to *X  as follows.  Let { }nn pp ,min 1−=nq . 

 

For any  such that 1-n
CB∈B Bxn ∈−1  consider the rule .  

Under 

{ }nxBB ∪→

this rule transfer a probability weight  from nq

{ }Bxn ∈−1:B∈ 1-n
CB  to .  If CB nn pq =  then we are done:  the equality 

in (a) has not been altered and (b) also holds for ni = . If 

 then we in addition transfer a probability weight 

 from the set 

np<nn pq = −1

1−− nn pp φ  to the set { }nx

1



p

.  This can be done because 

by the induction hypothesis .  Then 

again the equality in (a) remains and (b) has been extended to .  

This concludes the induction step. 

( )= -1  φπ (
1

2
1

−

=
−+∑

n

i
iip ) ≥




1−− nn pp

i =

− p

n

 

Remark:  As it should be expected if the condition of the proposition 

holds then the admissible probability on preferences need not be 

unique.  Suppose that { }2,1=∗X  and 
3
1

1 =p , 
3
1

2 =p .  Then two 

admissible π  are  { }( ) {( )}
3
1" =π 21 = π , ( ) "

3
1

=φπ  and 

{ }( )
3
12,1" =′π , ( ) "

3
2

=′ φπ .  The π  obtained by construction in the proof 

of the proposition would be π ′ in this example, namely, it is the 

one that maximizes the probability that 0 be the overall maximin, 
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i.e. ( )φπ .  The construction of the proof seems to indicate that this 

maximizing probability measure is unique. 

[ .0→

= qµ

M

 

 

 

 

IV.- Analytic treatment of the recoverability problem 
 

We keep studying the distinguished alternative case.  We now take X  

to be an Euclidean space nR .  The distinguished alternative is the 

origin 0.  The function [ ]1,0→: Xp  gives the probability  that ( )xp

x  wins against 0.  For convenience, p is left undefined at 0. 

 

For an analytic treatment it is important (or, at least, convenient) 

that the set of admissible preferences be somehow restricted to 

depend on a finite number of parameters.  So, we assume that we have 

given a parameter set  which, to make life simple, we identify with 

some Euclidean space 

Q

mR .  For every parameter value Qq∈  

preferences are expressed by a utility function , normalized 

to equal zero whenever

)q,U(x

x  = 0. It is assumed that  is a 

“nice” function (continuous, differentiable, analytic,…). 

R→Rmn x R:U

 

Given a probability measure µ  on  a probability choice function 

 is generated as follows: 

Q

1: XP ]

( ) ( ){ } ( )
( ){ }
∫

>

=>
oqxq

dqqfqxxp
,U:

0,U:  where the second equality applies 

only if  has a density .  From now on we shall assume that all f

µ  we deal with have densities which, moreover, are sufficiently nice 
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(say of class  and equal to zero outside of a compact set, or, at 

least, “rapidly decreasing”). 

∞C

)q

2
2bx +

)e =

 

The recoverability problem is then: Assuming that p  is generated as 

above, can  be uniquely recovered from f p (in the class of “nice” 

densities)? 

 

Remark:  Strictly speaking the recoverability problem should be posed 

only for the family of indifference curves passing through the origin 

because this is all the information that p  uses.  But, in the 

parameterized world we are now working in, recovering the 

indifference curve will usually be tantamount, (i.e. except perhaps 

for a normalizing parameter) to recovering the entire utility 

function.  So, I do not worry about the distinction. 

 

For the remaining of this section I discuss an extended example with 

 and  a general quadratic: 

.  So, without further a priori 

restrictions we have five parameters, i.e. 

2=n

,U qx

(x,U

2
1 +( ) 2121 exdxxcxax ++=

5=m .  I consider a 

sequence of three subcases, which differ by the type of a priori 

restriction imposed. 

 

Example 1:  Take  as a priori restrictions. 0=== cba

 

(The same qualitative features of the example are obtained with other 

combinations of three zero restrictions, eg. 0=== edc , or 

).  In this case 0=== edb ( )qx,U  reduces to 

. ( ) (U,U xqx ≡ 21,, exdxd +
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This model is not identified.  Take, for example, ( )
2
1

=xp  for all 

x .  Any symmetric density  on the df e−  plane will generate p  

because, for any x { 1 }0:,, 2 >+ exdxed  is just the half space above the 

hyperplane with normal x  and the integral of a symmetric density on 

a half space is 
2
1
. See the figure. 

 

 

p(x) 

d

e

x

 

 

 

 

 

 

 

 

 

Example 2:  As in example 1, 0=== cba .  But suppose now that 

in addition there is another restriction in the form of a non-

homogeneous linear equation.  For instance, 1=+ ed .  The origin of 

this restriction could be, for example, a normalization convention. 

 

Then the model is obviously identified because given any underlying 

density  we can use f p  to compute the distribution function of  

on the line defined by 

f

1=+ ed  on the ed −  plane. 

 

Observe also that  can be recovered by using only the information 

contained in the 

f

p  function in any arbitrarily small neighbourhood 

of zero. 
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After discussing two more examples I shall present, in the next 

section, a recoverability proposition for arbitrary  and n  which 

generalizes Example 2. 

m

 

 

Example 3:  , , 1=a 1=b 0=c . 

 

In this case for given  the indifference curves of the utility 

function  are concentric circles around the 

vector 

ed ,

2
2x +( ) 21

2
1,,U exdxxdex ++=



−−

2
,

2
ed





.  i.e., x  is preferred to 0 according to if 





2
e



 −− ,

2
d

 is closer to x  than to 0. 

 

So, in the obvious way we can identify the variable and the parameter 

space and think of densities  as being defined on the f x  space 

itself (think of the parameter as the peak of the preferences).  Note 

that  is the integral of  on the half space of vectors to the 

side that includes  of the line perpendicular to 

( )xp f

x x  and cutting the 

segment  in its middle point (this is the half space of vectors 

closer to  than to 0): 

[ x,

x

]0

 

[Remark:  The similarities of this with the well known majority 

voting model are intended]. 

 

Now a mathematical disgression. 

 



 15

Let  be the 1-dimensional sphere in two dimensional Euclidean 

space.  Given  we can define a function  by letting 

1S

)t

f RRS →x : 1ψ

(v,ψ  be the integral of the  function on the line (more 

generally, affine subspace) 

f

{ }tyvy =.:  endowed with the usual 

Lebesgue measure.  In Fourier analysis this function (as well as its 

obvious higher dimensional generalizations ) is known 

as the 

RRS n →− x : 1ψ

Radon transform of  and, not surprisingly, it is useful in 

things like X-ray reconstruction.  The fact is that there is an 

inversion formula such that if  is “nice” then starting with 

f

f ( )tv,ψ  

we recover . f

 

The inversion formula is particularly simple for the case at hand 

where  is defined on the plane and the Radon transform (also called 

in this case the X-ray transform) evaluates integrals on lines.  For 

any  and  let n  be the average value of 

f

x 0>s ( )xs ( )tv,ψ  on lines 

which are at a distance  from s x , i.e. ( ) ( )+=
2
1

s dvsxx
π

( )

∫
1

.,
S

vvψn .  

Then it turns out that if  is continuous and has a compact support 

 can be recovered by the formula 

f

(xf ) ( )
∫
∞

=
0

1x
π s

xdnsf  where the 

integral is in the sense of Stieltjes.  More precisely, and 

integrating the above formula by parts: 

( ) ( ) ( )








→

ε

ε ε
η

π
ds

x
0

1
lim − ∫

∞

ε

=
s

xs
2

n
xf  

See Shepp and Kruskal (1978), Helgason, (1980), or Dym and McKean 

(1972) for these Fourier analysis techniques. Their relevance for 

recoverability problems in economics has been noted in another 
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context by Ph. Dybvig and A. McLennan. I would also like to thank A. 

Grunbaum for the mathematical references. 

 

Back to Example 3.  The relevance of the mathematical disgression to 

our problem is that the Radon Transform of the density  can be 

computed from the choice probabilities 

f

( )xp .  As it is clear from the 

geometric discussion: 

( ) ( )tvp
t

tv 2
∂
∂

−=,ψ  

(Strictly speaking the above applies to 0≠t .  For 0=t  just let 

( ) ( tvv
t

,lim0,
0

)ψψ
→

= ) 

 

Summing up:  the model of example 3 has the recoverability property.  

Note however that, in contrast to example 2, it is now essential to 

use all the information contained in ( )xp .  Restricting onerself to a 

small neighbourhood of 0 will not do. 

 

Remark:  Given an arbitrary p (  ) we can compute ( )tv,ψ  as above by 

means of the inversion formula to get a ( )xf .  That  be a well 

defined (and “nice”) density function (i.e. 

f

( ) ≥xf 0  and ) 

is, therefore, the necessary and sufficient condition for 

rationalizability within the restrictions of Example 3.  What one 

gets, unfortunately, is not precisely a transparent condition. 

( )∫ = 1dxxf

 

Example 4:  This is not a quadratic but a cubic example: 

( ) 1
2
1

3
12,U cxbxaxxqx −−−=

1
2
1

3
12 cxbxaxx −−=

  For given  the equation 

 yields a non-linear indifference curve through the 

origin. Actually, I have no idea if this model is identified or not.  

cba ,,
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Since we only have two variables but three parameters the guess is 

that it is not but… 

 

 

In the next section I present the promised generalization of   

Example 2. 

 

V. A generalization of Example 2. 
 

Let’s go back to the original set-up of Section IV with 

RRR mn →x :U  

Suppose first that  takes the additive form: U

( ) ( ) ( ) ( )qxgqxgqxgqx mm ....,U 11 =++=

3q

.  This covers all the polynomial 

cases and, pushed to the limit, could cover all the analytic utility 

functions.  If  lies in the segment [ ] nRqq ⊂21 ,  then ( )3, . U q  is 

intermediate between ( )1, . U q  and ( )2

3≥m

nRg →:

, . U q  (or, rather, their 

preference relations are) in the sense used by Chichilnisky and 

Grandmont.  In fact, one could wonder if for  the concept of 

intermediate preferences provides a characterization of the above 

additive form We assume that the function  is . mR 1C

 

Suppose that in the space of parameter mR  there are some a priori 

given identifying restrictions in the form of a system of  linear 

equations: 

s

ms
B
x

0=− cq  

The density  is supported in the set of solutions to the above 

system.  Hence, it is in the nature of the problem that solutions 

exists. 

f
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Proposition:  A sufficient condition for the model to be identified, 

i.e., for every nice f  to be recoverable, is that: 

 

( )( )
1

00

1xx

1xx +=












−

∂
m

cB

g
rank

sms

nmn

T

 

 

Moreover, only the values of p (  ) on a neighbourhood of 0 matter. 

 

Sketch of proof: Denote 

 

( )( )

{ }αα   :

,0

somefor cBqqM

RgL n

==

∂=
 

{ }cBqqN == : .   

The three are subspaces of mR  (  is affine). It is a simple 

exercise to verify that if the rank condition is satisfied then the 

dimension of L is not smaller than the dimension of M and, in fact, 

that the projection of L on M is onto. 

N

 

We now argue that any affine half space in  i.e. any set of the 

form 

N

{ }β<∈= yqNqA .:

L

, , can be realized by taking a  

belonging to  and putting 

mRy∈ y

0=β .  Indeed, we can first realize  

in the form of 

A

{ }z.qzq.:NqA <∈= , where  Aq ∈  and  belongs to the 

translate of  to the origin.  If the rank condition is satisfied 

then .  So, 0  and therefore 

z

N

0≠c N∉ { }zqzNq .q.: =∈  spans a 

hyperplane in M .  By the observation in the previous paragraph this 

hyperplane is realized for some Ly∈ .  This  does the job. y
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Appealing now (with some care) to the Implicit Function Theorem we 

conclude that any affine half space in  can be realized in the 

form 

N

( ){ 0.: <∈ xgqNq } for an arbitrarily small x . 

 

Because the density function  lies in  and f N ( ) (
( ){ }
∫

≤∈

=
0.: xgqNq

dxxfxp )  we 

can finally recover  from f p  by using the Fourier analysis 

techniques discussed in Example 3. This ends the sketch of proof. 

 

Example 3 shows that the rank condition is sufficient but not 

necessary for identification.  The ability to use any x  not limited 

to a neighbourhood of the origin, may make up for insufficient 

variation of g  at 0.  Nevertheless, it can be presumed (?) that a 

more general condition will again revolve on a counting of effective 

parameters versus independent directions of variations of . ( )xg

 

Remark:  The entire analysis of this section uses only the 

information contained in ( )xp , i.e. only on the pairwise comparison 

that include the origin.  It stands to reason that if more 

information was available, eg. on all pairwise comparisons, then 

fewer identifying restrictions would suffice. 
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