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  “The gain-loss asymmetry and single-self preferences” 

by Antoni Bosch-Domènech and Joaquim Silvestre 

 
Abstract 

 

Kahneman and Tversky asserted a fundamental asymmetry between gains and losses, 

namely a “reflection effect” which occurs when an individual prefers a sure gain of $ pz to an 

uncertain gain of $ z with probability p, while preferring an uncertain loss of $z with probability p 

to a certain loss of $ pz. 

We focus on this class of choices (actuarially fair), and explore the extent to which the 

reflection effect, understood as occurring at a range of wealth levels, is compatible with single-self 

preferences.  

We decompose the reflection effect into two components, a “probability switch” effect, 

which is compatible with single-self preferences, and a “translation effect,” which is not. To argue 

the first point, we analyze two classes of single-self, nonexpected utility preferences, which we 

label “homothetic” and “weakly homothetic.” In both cases, we characterize the switch effect as 

well as the dependence of risk attitudes on wealth. 

We also discuss two types of utility functions of a form reminiscent of expected utility but 

with distorted probabilities. Type I always distorts the probability of the worst outcome 

downwards, yielding attraction to small risks for all probabilities. Type II distorts low probabilities 

upwards, and high probabilities downwards, implying risk aversion when the probability of the 

worst outcome is low.  By combining homothetic or weak homothetic preferences with Type I or 

Type II distortion functions, we present four explicit examples: All four display a switch effect 

and, hence, a form of reflection effect consistent a single self preferences.  
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1. Introduction 

Many decisions involve risk. A basic issue is risk attitude: when do people display risk 

aversion or risk attraction?  Daniel Kahneman and Amos Tversky argued that decisions under risk 

display a fundamental asymmetry between gains and losses: many people prefer a sure gain of $ pz 

to an uncertain gain of $ z with probability p, while preferring an uncertain loss of $z with 

probability p to a certain loss of $ pz: they labeled this phenomenon the reflection effect.  It is 

generally accepted that gain-loss asymmetries are incompatible with the canonical expected utility 

model, where the individual maximizes the expectation of final wealth. But, are they compatible 

with single-self preferences of the non-expected utility variety, or do they necessarily have to 

appeal to multiple selves, with intersecting families of indifference curves, one for each reference 

point? This is a more fundamental question than the one concerning expected utility.1 

If the individual has consistent, single-self preferences, which do not vary with the 

circumstances in which she makes decisions, then policy recommendations can be based in a 

nonpaternalistic way on the premise that an individual is the ultimate judge of her welfare. But if 

her preferences depend on circumstances, then external criteria are needed to evaluate the 

individual’s welfare across circumstance-consumption pairs. 

Several regularities have appeared in our experimental work (Bosch-Domènech and 

Silvestre, 1999, 2004, in press), which has focused on actuarially fair choices, with objective 

probabilities, between certain and uncertain alternatives involving money.  

  (a) We systematically find what we call an amount effect, i.e., both for choices involving 

gains and for choices involving losses, people tend to display risk attraction when the amounts at 

play are small, and risk aversion when they are large. 

 

                                                 
1 See Mark Machina (1982). 
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  (b) We often observe what we call a probability-switch effect: increasing the probability of 

the bad outcome (i. e., the probability of the loss in choices involving losses, or the probability of 

gaining nothing in choices involving gains) tends to increase the frequency of risk attraction.  

  (c) We also observe what we call a translation effect: moving from gains to losses without 

changing the probability of the bad outcome tends to increase the frequency of risk attraction. 

  (d) Finally, when comparing the attitudes of groups with different wealth levels, we 

observe more frequent risk attraction among the wealthier for choices involving small and 

moderate amounts of money. 

The translation effect turns out to be incompatible with single-self preferences. But Section 

5 below develops a family of single-self, nonexpected-utility, ex ante preferences that display a 

switch effect, with various forms of dependence of the willingness to assume fair risks on the 

person’s wealth and on the amount of money at stake.  Because Kahneman and Tversky’s 

reflection effect can be decomposed into a translation effect and a switch effect, it follows from 

our analysis that some forms of reflection effect, namely those that can be totally attributed to a 

switch effect, are compatible with single-self preferences. Reflections due to a translation effect, 

on the contrary, are incompatible with single-self preferences.  

  We should emphasize that here we focus on single-self vs. multiple-selves preferences, 

rather than on expected vs. nonexpected utility. In fact, there are no differences among the amount, 

switch and translation effects regarding expected vs. nonexpected utility. 2 

 

2.  Single-self vs. multiple-selves preferences: the case of certainty  

Consider, for comparison purposes, the basic model of individual choice under certainty. 

There is a list of N economic variables, or goods, that affect the individual’s welfare: the 

underlying space of economic goods can thus be modeled as ℜN, and we focus on a subset X of it, 

called the consumption set, that specifies possible physical constraints, e.g., X = ℜN
+. The 

individual’s economic activity involves acquiring or relinquishing various amounts of these goods, 

as for instance in the process of buying commodities, selling labor, or saving.  

Society offers the individual an attainable set, or set of consumption opportunities among 

which the consumer may choose. In the usual case of price-taking with linear prices, as in price 
                                                 
2 More precisely, all three violate single-self, expected utility, while all three are compatible with multiple-selves, 
expected utility. See Section 6 below. 
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vector P, this set is }:{ WxPXx ≤•∈=Ξ , where W is the wealth of the consumer, which may 

depend on P and on her property rights (via value of endowments, profit income or other 

components of wealth).  The theory has the positive aim of understanding and predicting the 

choice of an individual with opportunity set Ξ, as well as the normative aim of judging individual 

welfare, e. g., whether the individual is better off at Ξ 0 than at Ξ,1 and thus evaluating economic 

policies that affect Ξ. 

Standard economic theory postulates a well-defined, complete and transitive preference 

relation ≿ on X, which we will call single-self preferences. Given Ξ, the individual chooses x ∈ Ξ  

in order to maximize ≿ on the attainable set Ξ. This induces an indirect preference relation ≿* on 

attainable sets expressing whether the individual is better off at Ξ 0 than at Ξ1 for all possible       

(Ξ 0, Ξ1) pairs.  

A special case of the standard theory is the model of an exchange economy, where the 

individual owns an endowment vector ω ∈ ℜN which determines her wealth as ω•= PW . For an 

individual who maximizes her preferences ≿ on the attainable set, changes in ω will induce 

changes in the individual’s net trade vector z = x - ω, and, thus her net trade vector depends in a 

sense on her endowment ω. But whenever 10 ωω •=• PP , both her consumption vector  and her 

welfare levels will be the same at 00 ω•= PW  and at 11 ω•= PW , and, hence, she will display no 

“endowment effect” in the sense of the modern literature exemplified by Jack Knetsch (1989), 

Amos Tversky and Daniel Kahneman (1991) and Kahneman, Knetsch and Richard Thaler (1991).  

This literature postulates that the preferences of the individual on X vary with a vector x ∈ 

ℜN , where perhaps x  =  ω (endowment effect), or x is a “reference vector” determined by 

“customary consumption,” the status quo, expectations or aspirations (reference-dependent 

preferences): the various interpretations yield different insights: see Alistair Munro and Robert 

Sugden (2003, Sections 7-8), but share a formal similarity: each reference point x defines a 

different self, with a different preference relation on X.  

Consider for illustration purposes an individual who consumes two goods: good one is an 

index of the quality of the environment where she lives, whereas good two is the numeraire. There 

is an extensive literature that discusses observed discrepancies between the “willingness to pay” 

(WTP) and the “willingness to accept” (WTA) for the environmental good (see, e.g., Michael 
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Hahneman, 1991, Jason Shogren et al, 1994, and John Horowitz and K. E. McConnell, 2003). To 

be precise, consider two levels x0 and x1 of environmental quality, and let the individual be 

endowed with an amount w of the numeraire good: see Figure 1. The WTP for the improvement 

from x0 to x1 is the amount of numeraire that makes the individual indifferent between (x1, w – 

WTP) and (x0, w), whereas the WTA for the deterioration from x1 to x0 is the amount of numeraire 

that makes the individual indifferent between (x0, w + WTA) and (x1, w). Many empirical and 

experimental studies systematically yield measures of WTA that are larger than those of WTP. 

Both for positive and for normative purposes, it is important to know whether the discrepancy is 

consistent with single-self preferences, or, on the contrary, is due to an “endowment effect,” where 

the preferences of the individual over (environment, numeraire) pairs change with the “reference” 

quality of the environment. 

It is clear from Figure 1 that some positive difference WTA – WTP is consistent with 

single-self preferences, represented by the solid indifference curves. Indeed, as long as the 

environment is a normal good, we must have that WTA > WTP, because writing “x2 = f j(x1)” for 

the equation of the indifference curve that goes through point ωj ≡ (xj, w), j = 0, 1, normality 

implies that 0)()( 1
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. As both the WTP and the WTA measure 

the vertical distance between the two indifference curves, but the WTP does it at a point further to 

the right, it follows that, under normality WTP < WTA.  

 Multiple-selves preferences would occur if the solid curves of Figure 1 were indifference 

curves contingent on the reference point ω0, i. e., contingent on the individual having the right to 

the environmental level x0, whereas if she had rights to the higher level x1, so that her reference 

point became ω1, then the indifference curve through ω1 would become the steeper dashed curve, 

crossing the one relevant for the reference point ω0, and yielding  a “willingness to pay” that 

exceeds the former one by the length AB.  

More generally, such reference-dependence or “endowment effect” would lead the 

individual to choose different consumption points in cases where W0 = W 1. Understanding these 
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choices by preference maximization requires a family {≿ x : x ∈ Ω} of preference relations on X, 

where Ω is an index set of possible endowment or reference points x (again, perhaps x = ω, an 

endowment point), instead of a single preference relation ≿.3 We then say that preferences are of 

the multiple-selves type if they vary with x , i.e., if ≿ x  ≠ ≿ x ´ for some x , x ´ ∈ Ω. By this 

definition, multiple selves require the possibility of changes in x : a single self would be present if 

x  never varied, i.e., if Ω were the singleton { x }.4  

Multiple selves present positive challenges and normative difficulties. A recent literature 

has developed the positive aspects of the theory by exploring the implications of conditions 

relating ≿ x  and ≿ x ´ for different x , x ´ ∈ Ω, and developing models where reference points are 

endogenized by an implicit dynamic process, see Tversky and Kahneman (1991), Ian Bateman et 

al. (1997), and Munro and Sugden (2003).  

But, normatively, the family of preference relations {≿ x : x ∈ Ω} is not sufficient to 

evaluate individual welfare, because, under multiple selves, it is unnatural to assume that the 

individual has metapreferences on X × Ω that induce the family {≿ x  : x  ∈ Ω} by the equivalence 

x ≿ x x’ ⇔ (x, x ) ≿ (x’, x )). In other words, it is unnatural to assume that the individual can 

compare the final consumption of vector x when the reference point is x , denoted (x, x ), with the 

final consumption of x’ when the reference point is x ’, denoted (x’, x ’). This basic difficulty 

remains in the recent positive theories of reference dependence.5 

Even if unnatural, it is theoretically possible for the individual to have a preference relation 

on (x, x ) pairs: We may be unable to infer it from her choices, but perhaps we can ask her. 6 

                                                 
3 More generally, the preference relation could conceivably be indexed by both a reference point x  and by the 
attainable set  Ξ: this is precisely the case for regret theory in a world of uncertainty, see Sugden (1993). 
4 Trivially, if Ω = { x }, then reference dependence by any definition is irrelevant. 
5 In particular, the “long run” preferences of Munro and Sugden (2003) are preferences on X and not on X × Ω.  
6 Even when they exist, it may be impossible to derive these metapreferences from observed behavior in the manner 
in which single self preferences can be deduced, via integrability, from the knowledge of the demand functions.  The 
problem is that we cannot tell from observing the individual’s behavior whether the individual is better off at ( x 0, 
x 0) than at ( x 0, x 1) because the individual never has a chance to choose between ( x 0, x 0) than at ( x 0, x 1). 
This displays formal similarities with the estimation of preferences for nonmarketed goods, such as quality or the 
environment, for which ingenious positive results can be obtained by a priori postulating particular forms of 
complementarity or substitutability between marketed and nonmarketed goods (see, e.g., Robert Willig, 1978, and 
Douglas Larson, 1992). Some of these methods could conceivably be adapted to the present context, but the 
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Suppose that she asserts to be better off at ( x 0, x 0) than at ( x 0, x 1), i.e., she asserts that she 

would be better off if her endowment or reference point were x 0 and she stayed at it than if it were 

x 1 and she moved to x 0: this is usually referred to as an “endowment effect.” But suppose also 

( x 0, x 0) is socially more costly than ( x 0, x 1). (Perhaps the implementation of ( x 0, x 0) requires 

more bureaucracy.) It is not clear why her preferences should be respected in this case.7 

At the crux of the matter is the question, why does she prefer ( x 0, x 0) to ( x 0, x 1)? If the 

reference point is an endowment vector, and endowments can change, what distinguishes a change 

in endowments from a trade? The normative relevance of an expressed preference of ( x 0, x 0) over 

( x 0, x 1) has to be justified by appealing to basic principles.  

More generally, multiple selves appear when the preferences of an individual vary 

according to the situation in which the individual makes her decision. Besides endowments or 

reference points, the multiplicity of selves may be defined by circumstances such as time (a present 

self vs. a future self) or past consumption (addicted self vs. addiction-free selves). In all these 

cases, any social evaluation of the individual’s welfare across different circumstances will to some 

extent appeal to an external criterion of welfare. Some recent papers (see Colin Camerer et al., 

2003, and Richard Thaler and Cass Sunstein, 2003) have developed policy recommendations for 

some such instances of multiplicity of selves.  

 

3. Risk: single-self vs. multiple-selves preferences, and the expected utility hypothesis 

3.1. The model: contingent balances and objective probabilities 

The model of Section 2 can be extended to decisions under risk, with the interpretation that 

preferences are ex ante, before the uncertainty is resolved. For simplicity, we posit a single ex post 

good, called money. Ex ante preferences will depend on the possible amounts of ex post money, 

and are defined on contingent money balances with a finite number of states of the world endowed 

with probabilities, which we assume objective. We will focus on a simple model of ex ante 

preferences. 

                                                                                                                                                 
procedure would be justified only if it could be reasonably assumed that the individual does have well-defined 
preferences on ( x , x ) pairs.   
 
7 If, on the contrary, changing endowments were exactly as costly as trading, then Pareto efficiency in a society where 
everybody had this type of preferences would require the redistribution of endowments and no trade. 
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There are S < ∞ possible states: the number xs denotes an amount of money available to the 

individual in the contingency that state s occurs. A vector x = (x1,…, xS) ∈ ℜS
+ is interpreted as a 

point of contingent money balances. The individual has an initial position ω ∈ ℜS
+, or reference 

point x  ∈ ℜS
+. Thus, in principle the “initial position” may be uncertain. But, for concreteness, 

here we shall focus on initial positions or reference points that are certain, namely those 

determined by a certain level w of wealth. Thus, the reference or initial endowment points are of 

the form ω = (w, …, w) ∈ ℜS
+, on the “certainty line.”  Society offers her some opportunities to 

trade money balances contingent on the various states: we denote by Z the individual’s set of 

trading opportunities understood as deviations from ω, so that the set of attainable vectors of 

contingent money balances is, using the notation Ξ of Section 2 above, the attainable set Ξ = (Z + 

{ω}) ∩ ℜS
+. The ex ante preferences of the individual depend on both the vector of contingent 

money balances (x1,…, xS) and on the probabilities (p1,…, pS), understood as objective, of the 

various states. We postulate that these preferences are state-independent, i.e., invariant to 

permutations of the indices {1,…, S}: the uncertain states just provide a random device, without 

direct welfare effects.  

 

3.2. Single-self vs. multiple-selves preferences  

As in Section 2, single-self preferences are modeled as a single ex ante preference relation 

≿ on the space of contingent money balances cross probabilities. Under standard completeness, 

transitivity and continuity assumptions, these preferences are representable by a utility function 

),...,;,...,(),...,;,...,(:: 1111
1

SSSS
SL ppxxUppxxU vℜ→∆×ℜ −

+ , 

where }1:),...,{(
11

1 =ℜ∈≡∆ ∑ =+
− S

s s
L

S
S ppp is the standard (S-1)-dimensional probability simplex.  

A certain outcome x is then represented as a point ),...,;,...,( 1 Sppxx on the “certainty line” 

of the space of contingent money balances.  

Given a certain initial amount of money w, we can express any money magnitude x as its 

deviation z (positive for a gain, negative for a loss) from w, i. e., so that final wealth is x = w + z.  

Thus, the utility function could equivalently be written as a family of functions Uw with gains or 

losses z as arguments, defined by Uw(z1, …, zS,  p1, …, pS) ≡ U(w + z1, …, w + zS,  p1, …,  pS). In 

addition, we could as well use x instead of z as arguments, writing  
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),...,,,...,(),...,,,...,(ˆ
1111 SSwSSw ppwxwxUppxxU −−≡ : all this is just alternative notation. The 

substantive assumption of single-self preferences can be formally expressed in these alternative 

notations as requiring that, 0),...,,,( 1 ≥∀ Sxxww  and 1
1 ),...,( −∆∈∀ S

Spp , 

),...,,,...,(),...,,,...,( 1111 SSwSSw ppwxwxUppwxwxU −−=−− , or 

),...,,,...,(ˆ),...,,,...,(ˆ
1111 SSwSSw ppxxUppxxU = . 

On the other hand, and paralleling Section 2 above, we say that ex ante preferences are of 

the multiple-selves type if they involve a family {≿w: w ∈ ℜ+} of preference relations instead of a 

single preference relation ≿, so that ≿w ≠ ≿w´ for some w and w´.  

Again, under continuity such a family of preference relations will be representable by a 

family of utility functions {Uw: w ∈ ℜ+} (or { wÛ : w ∈ ℜ+}), but now, contrary to the single-self 

case, ),...,,,...,(),...,,,...,( 1111 SSwSSw ppwxwxUppwxwxU −−≠−− ( or 

),...,,,...,(ˆ),...,,,...,(ˆ
1111 SSwSSw ppxxUppxxU ≠ ) for some ),...,,,...,,,( 11 SS ppxxww .  

 

3.3. Expected utility  

As is well known, under some assumptions, among the utility functions representing the ex 

ante, single-self preference relation ≿ there is at least one of the form 

U(x1,…, xS ; p1,…, pS) = )(
1 s

S

s s xup∑ =
, 

where u (which is the same function at all states of the world) is a real-valued function called the 

individual’s von Neumann-Morgenstern (vNM) utility function, defined over final money balances, 

in which case we say that the individual has (state-independent) Single-Self Expected Utility (ex 

ante) Preferences.  This reflects the oldest formulation of decision-making in the face of risk, due 

to Daniel Bernoulli (1738): he postulated this type of preferences and proposed the function u(x) =  

ln x: see the top left panel of Figure 2. Of course, understood as a function of the probabilities 

(p1,…, pS), the function )(
1 s

S

s s xup∑ =
 is linear, with u(xs) as the coefficient of ps. 

As in Section 3.2, nothing substantial would change if, instead of the single function u(x), 

we consider a family {uw(z) : w ∈ℜ+} or a family { )(ˆ xuw : w ∈ℜ+} of functions: these families 

would still represent single-self preferences provided that u(x) = u(w + z) = uw(z)  ≡ )(ˆ xuw .  
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Consider now the multiple-selves preferences of Section 3.2 above. As a special case, there 

may be a family of real valued functions {uw: w ∈ ℜ+} such that ),...,,,...,( 11 SSw ppwxwxU −−  = 

)(
1

wxupS

s sws −∑ =
(or a family { wû : w ∈ ℜ+} such that )(ˆ),...,,,...,(ˆ

111 ∑ =
= S

s swsSSw xupppxxU ). 

This view can be traced to Harry Markowitz (1952): see the center bottom panel of Figure 2. 

Again, we have multiple selves if )()( wxuwxu ww −≠− for some ),,( wwx .8 

We will call preferences defined by such a family of utility functions (state-independent) 

Multiple-Selves (ex ante) Expected Utility Preferences, even though the usage of the term 

“expected utility” in this instance is not universal: some authors, such as Matthew Rabin (2000), 

would likely refrain from it.  

 

3.4. Risk attitudes: Bernoulli, Friedman-Savage and Markowitz 

Let an individual face the choice between the uncertain alternative of adding to her current 

wealth w the positive or negative amounts of money (z1,…, zS) with probabilities (p1,…, pS), and 

the certain alternative of adding the positive or negative amount of money  ∑ =

S

s ss zp
1

. (The choice 

is actuarially fair, because the expected gain or loss is the same in both alternatives.) If the 

individual prefers the certain alternative, then we say that she displays risk aversion in that choice. 

If, on the contrary, she prefers the uncertain alternative, then she displays risk attraction. If she is 

indifferent between the two, then she displays risk neutrality. Aversion, attraction and neutrality 

are the three possible risk attitudes.  

 Bernoulli (1738) believed that most people display risk aversion in most choices. Indeed, 

for (single-self or multiple-selves) expected-utility preferences, the strict concavity of the function 

)(zuw guarantees risk aversion, and this is certainly the case in Bernoulli’s (single-self) u(w + z) 

)(zuw = ln (w + z) (top left panel of Figure 2).  

 Two centuries after Bernoulli, and in order to accommodate some extent of risk attraction, 

Milton Friedman and Savage (1948) assumed, again in the single-self context, that u was concave 

(risk aversion) for low wealth levels, convex (risk attraction) for intermediate ones and concave 

again for high wealth levels: the center top panel of our Figure 2, which is based on their famous 

Figure 3. However, justifying its shape is not trivial. Nathaniel Gregory (1980) postulates that 
                                                 
8 See Sugden (2003) for a recent axiomatization of this type of preferences in the context of subjective probabilities à 
la Leonard Savage (1954). 
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wealth has two effects on utility: the usual direct effect, and a social rank effect, based on the 

comparison with the wealth of others, which will depend on the distribution of wealth in society. 

An alternative justification is provided by Arthur Robson (1992). 

 Markowitz (1952) criticized the Friedman-Savage view, and proposed what we call 

multiple-selves, expected-utility preferences, with risk aversion for large gains and small losses, 

and risk attraction for small gains and large losses. His Figure 5, page 154, is reproduced in the 

center bottom panel of our Figure 2.   

 

 3.5. Kahneman and Tversky’s gain-loss asymmetry and their reflection effect 

 Daniel Kahneman and Amos Tversky (1979), see also Tversky and Kahneman (1992) 

postulated a basic asymmetry between gains and losses. The right-bottom panel of our Figure 2 is 

inspired by their Figure 3 (1979, page 279). For positive z’s, the function is strictly concave, 

suggesting risk aversion for gains, whereas, for negative z’s the function is strictly convex, 

suggesting risk attraction for losses. 

  It should be noted that they did not subscript the function by w: on the contrary, they 

argued that the level of wealth was unimportant. And they did not call it a “utility function,” but a 

“value function,” and denoted it by v(z). More significantly, they did not consider the expectation 

)(
1∑ =

S

s ss zvp , but the sum of the v(zs)’s weighted by “decision weights,” or “probability 

distortions,” nonlinear in the (true) probabilities. Thus, any utility function representing ex ante 

preferences for one of the selves must be nonlinear in the probabilities: therefore, their theory is of 

the multiple-selves, nonexpected utility in our terminology.  

 Kahneman and Tversky’s nonlinearity in the probabilities is a major departure from 

previous literature. Because of it, the strict concavity or convexity of the “value function” does not 

determine risk attitude: it must be combined with the form of the “decision weight” functions, so 

that no general implications for risk attitudes can be derived from their assumptions. But based on 

their observations, they did claim as an empirical regularity that replacing gains by losses through 

a reflection, i.e., the multiplication by minus one of all money amounts, would make the individual 

move from risk aversion to risk attraction. They called this phenomenon the reflection effect, 

defined as “…the reflection effect implies that risk aversion in the positive domain is accompanied 

by risk seeking in the negative domain.” (Kahneman and Tversky, 1979, page 268.) 
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4. Fair, binary choices and changes in risk attitudes 

4.1. Translation, switch and reflection effects on risk attitudes 

Consider the choice between the uncertain alternative of adding to the current wealth w the 

positive or negative amount of money z with probability p and zero with probability 1- p, and the 

certain alternative of adding the positive or negative amount of money pz: again, the choice is 

actuarially fair. Denote such a choice by < z, p w> . Note that, in the uncertain alternative of 

choice < z, p w >, if z > 0, then the good state is the one where the individual gains z, which 

occurs with probability p, whereas the bad state is the one where the individual gains nothing, 

which occurs with probability 1 – p.  If, on the contrary,  z < 0, then the bad state is the one where 

the individual loses z , which occurs with probability p, whereas the good state is the one where 

the individual loses nothing, which occurs with probability 1 – p.   

Graphically, we can represent the two alternatives of choice <z, p w> in the contingent 

money balances graph of Figure 3: A point in the graph is a pair (x1, x2), where x1 represents an 

amount of wealth contingent on State 1, and x2 represents an amount of wealth contingent on State 

2. Note that, for points above the certainty line, State 1 is the bad state, whereas it is the good state 

for points below the certainty line.  

Given 1
21 ),( ∆∈pp  and E > 0, the set of pairs ),( 21 xx satisfying Expxp =+ 2211  have the 

same expected value E (geometrically, they constitute the E-fair-odds line (or the fair odds line 

through (E, E), or at level E). For instance, putting the bad state on the horizontal axis, the choice 

<100, 0.8 1000> is the choice between the uncertain point G = {1000, 1100} and the certain point 

C1 = (1080, 1080): both are on the fair-odds line corresponding to the expected money balance 

1080.  

Suppose that the individual displays a particular risk attitude in the choice < z, p w>, say 

that she displays risk aversion by preferring the certain to the uncertain alternative in choice. We 

wish to explore possible changes in risk attitude if she instead faces a different choice <z’, p ’w’> 

that is related to < z, p w> in a specific fashion. 

First we consider a family of transformations of choices that leave w invariant, and either 

change the sign of z, or switch the probabilities p and 1 – p, or both.   

Define the probability switch operator s by s(< z, p w>)  = < z, 1 – p w>. This operator 

switches the probabilities of the good and the bad state. In our previous example, s(<100, 0.8 
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1000>) = <100, 0.2 1000>, i.e., the uncertain outcome is a gain of 100 with probability 0.2. The 

choice s(<100, 0.8 1000>) can be represented in Figure 3 as the choice between the uncertain 

point G’= (1100, 1000) (below the certainty line, because now the state that occurs with 

probability 0.2 is the good state) and the certain point C2 = (1020, 1020). 

Next, define the translation operator t by t(< z, p w>) = < - z, 1 – p w>. This operator 

translates the discrete probability density functions along the money axis, but keeps unchanged the 

probabilities of the good and bad outcomes. If z > 0, at the uncertain alternative of choice <z, p w> 

the bad event yields the gain of zero, which occurs with probability 1 – p, while at the translated 

choice t(< z, p w>) = < - z, 1 – p w> the bad event is the loss of z , which also occurs with 

probability 1 – p. Similarly for the good event. Thus, in this case the translation operator translates 

the probability distribution leftwards along the money axes. If z < 0, at the uncertain alternative of 

choice <z, p w> the bad event yields the loss of z , which occurs with probability p, while at the 

translated choice t(< z, p w>) = < - z, 1 – p w> the bad event is the gain of zero, which also 

occurs with probability p. Thus, in this case the translation operator translates the probability 

distribution rightwards along the money axes.  

In our previous example, t(<100, 0.8 1000>) = < -100, 0.2 1000>, i.e., the uncertain 

outcome is a loss of 100 with probability 0.2. It can be represented in Figure 3 by the choice 

between the uncertain point L = (900, 1000) and the certain point C3 = (980, 980). 

Last, define the reflection operator r as r(< z, p w>)  = < - z, p w>. This operator 

transforms a gain of z with probability p into a loss of z also with probability p. In our previous 

example, r(<100, 0.8 1000>) = <-100, 0.8 1000>, i.e., the uncertain outcome is a loss of 100 with 

probability 0.8. It can be represented in Figure 3 by the choice between the uncertain point L’  = 

(1000, 900) and the certain point C4 = (920, 920). 

Kahneman and Tversky’s reflection effect asserts a change in risk attitude when a choice is 

transformed by the reflection operator, no matter what the wealth w is.   

It is clear that any of the three operators can be obtained by the application of the other two: 

in fact, the three operators s, t, and r on choices, together with the identity operator e, constitute the 

Klein 4-group, see Table 1. In particular, Reflection = Translation + Switch. 
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 e s t r 

e e s t r 

s s e r t 

t t r e s 

r r t s e 
 

Table 1. The group of operators identity, switch, translation and reflection (Klein 4) 

  

Along the lines of Kahneman and Tversky, we say that an individual displays a switch 

(resp. translation) effect if she displays risk aversion in choice < z, p w > (where z can be positive 

or negative), but risk attraction in choice s(<z, p w >) (resp. t(<z, p w >)) for a wide range of 

initial wealth levels w.  

Because a reflection can be decomposed into a switch and a translation, a change of risk 

attitude along a reflection may be due solely to a switch effect, or solely to a translation effect, or 

to both. The main theme of this paper is the asymmetry between the switch and the translation 

effect in what concerns the implied preferences: in a nutshell, while the switch effect (and hence 

the reflection effect) is compatible with single-self preferences, the translation effect is not. This 

suggests that the switch effect parallels the wealth-effect-induced gap between WTA and WTP 

(see Section 2 above), and that the translation effect parallels the endowment-effect-induced WTA-

WTP gap. However, the parallelism is not exact, because the suggestion of an alternative 

theoretical model in terms of single-self vs. multiple-selves came, in Section 2 above, from the 

magnitude of WTA-WTP gap (a large gap suggesting an endowment effect), whereas now we also 

have a qualitative distinction between switch and translation effect.  

 

4.2. Small vs. large risks: the amount effect on risk attitudes 

 Next, we consider transformations of a choice that leaves probabilities, wealth level and 

the sign of z unchanged, but change the magnitude of z. Formally, for λ > 0 define the λ-scale 

operator by λ(<z, p w>) = <λz, p w>. Given <z, p w >, where z can be positive or negative, and 

where w can be large or small, our experimental work (Bosch-Domènech and Silvestre, 1999, 

2004, in press) has consistently evidenced risk attraction for choices λ(<z, p w >) when λz is 
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small, and risk aversion when λz is large. We call this an amount effect, understood as occurring at 

a range of values of initial wealth.  

Graphically, we have an amount effect at the level of wealth w if, along the fair-odds line 

with expected money balances of w + pz and on one side of the certainty line, the individual 

displays risk attraction for choices involving uncertain alternatives close to the certainty line, but 

risk aversion away from it. 

An individual displaying an amount effect takes small risks (of a certain type) but avoids 

large ones. Let the probability of the gain be p = 0.8 and let our individual display risk attraction 

for z = 100, but risk aversion for z = 200, both when her initial wealth is 1000 and when her initial 

wealth is 920. Choosing the risky gain of 100 when her wealth is 1000 means that she chooses the 

random variable 1~x , that gives a money balance of 1000 with probability 0.2 and a balance of 1100 

with probability 0.8, to the degenerate random variable 0~x , that gives the certain balance of 1080. 

Note that the two random variables have the same expectation of 1080, and that 0~x second-order 

stochastically dominates (SOSD) 1~x . Thus, the individual’s choice shows attraction to a pure risk, 

but one that is relatively small.  

 On the other hand, by choosing the certain gain of 160 over the 0.8 chance of gaining 200 

when her wealth is 920, she chooses 0~x over the random variable 2~x , which results in a money 

balance of 1120 with probability 0.8 and a balance of 920 with probability 0.2. Again, E 2~x = E 0~x  

= E 1~x  = 1080, and 0~x SOSD 1~x  SOSD 2~x . Thus, she is attracted to the relatively small pure risk 

of 1~x , but averse to the larger pure risk of 2~x . 

 

4.3. The role of wealth on risk attitudes: the wealth effect 

The work of Kenneth Arrow (1971) and John Pratt (1964), in the context of expected 

utility, single self preferences, studies an individual’s willingness to bear actuarially favorable risk 

depending on her wealth level: special interesting cases are those of preferences with constant 

absolute risk aversion or CARA (vNM utility function rxexu −−=)( , r > 0), and those with constant 

relative risk aversion or CRRA (either u(x) = ln x or u(x) = ),1()1,0(,
1

1

∞∪∈
−

−

r
r

x r

). An individual 

with any of these preferences facing fair choices will choose the certain alternative, and, therefore, 

all these preferences display risk aversion.  



 17

In order to study the dependence of risk attitudes on the level of wealth, Sections 5.5 to 

5.11 below consider single-self preferences that are related to the CARA or CRRA types, but that 

allow for risk attraction, and, hence, that violate the hence, single-self, expected-utility hypothesis. 

For ∆w > 0, we define the ∆w-operator by ∆w(<z, p w>) = <z, p w + ∆w >. Given <z, p w >, 

where z can be positive or negative, the risk attitudes of the individual are wealth dependent if she 

displays risk aversion for the choice <z, p w> but risk attraction for the choice <z, p w+ ∆w>. We 

call this the wealth effect. 

 

5. Single-self preferences and the translation, switch, amount and wealth effects 

5.1. Introduction   

  It is easy to see that translation-dependent risk attitudes imply multiple-selves preferences. 

Following the discussion in Bosch-Domènech and Silvestre (2004), let z = 100 and p = 0.8. 

Assume that, both for initial wealth 1000 and 1100, the individual displays risk aversion for the 

choice < 100, 0.8 w > but risk attraction for the choice < -100, 0.2 w >, i.e., when the individual’s 

wealth is 1000, she prefers a sure gain of 80 to a gain of 100 with probability 0.8, whereas when 

her wealth is 1100 she prefers a loss of 100 with probability 0.2 to a certain loss of 20. In the graph 

of contingent money balances of Figure 3, this means that she prefers C1 to G when her 

endowment or reference point is ω1, but G to C1 if the endowment point is ω2. Thus, no single set 

of indifference curves can rationalize her behavior. 

Note that the attitude reversal occurs for a range of initial wealth values. There would be no 

problem if it only occurred for a single w, in which case the expected utility hypothesis could be 

maintained, with a vNM utility function convex in the interval (w – z, w) and concave in (w, w + 

z), as in the Friedman-Savage example illustrated in the center bottom of Figure 2.  

On the other hand, it is easy to show that the amount and switch effects violate single-self 

expected utility. Let us start with the amount effect. If the reversal of risk attitude occurred at a 

single level of wealth, then preferences could well be of the single self, expected utility variety, as 

in those of Friedman and Savage (1948). But single-self, expected utility preferences require the 

second derivative u”(x) to be positive on the interval where the individual is attracted to small 

risks, and thus u(x) must be convex on that interval. This contradicts the aversion to large risks 

involving quantities within this interval. Thus, amount-dependent attitudes are incompatible with 

single-self, expected utility preferences.  
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For the switch effect, again there would be no problem if the attitude change only took 

place for a single w and z, in which case the single self, expected utility hypothesis could be 

maintained, with a vNM utility function u that is convex in the interval (w, w + 0.5z) and concave 

in (w + 0.5 z, w + z).  But it is not difficult to show that if the switch effect changes the risk attitude 

over a range of wealth levels, then single-self, expected utility preferences must be ruled out: see 

Bosch-Domènech and Silvestre (2004), where it is also shown that the amount, switch and 

translation effects are consistent with multiple-selves, expected utility preferences.  

 

5.2. The amount and switch effects  

Recall that, throughout this paper, we consider an individual facing (actuarially fair) 

choices between an uncertain final wealth of x1 with probability p1 and of x2 with probability p2, 

and the certain final wealth of p1x1 + p2 x2 , and that we say that the individual displays risk 

attraction in that choice if she prefers the uncertain alternative, and risk aversion if she prefers the 

certain alternative. Accordingly, the discussion is limited to S = 2.  

Assumption 1 below is maintained throughout the paper. 

Assumption 1: State independence. The ex ante, single-self utility function 

ℜ→∆×ℜ+
12:U satisfies 12 )',(,)',(),,',,'()',,',( ∆∈∀ℜ∈∀= + ppyyppyyUppyyU .  

State independence requires utility to depend only on the outcomes and their probabilities, 

and not on the state where the outcomes occur, i.e., the utility of a lottery that gives the final 

wealth y with probability p and the final wealth y’ with probability p’ can equivalently be written 

either as )',,',( ppyyU or as ),',,'( ppyyU .  

The following definitions formalize the various effects described above. 

Definition. The ex ante, single-self utility function ℜ→∆×ℜ+
12:U displays an amount 

effect (above the certainty line) for 1
21 ),( ∆∈pp  and E > 0 if there exists an 0),,( 21 >ε Epp such 

that, defining }&:),{(),,( 221112
2

2121 ExpxpxxxxEppF =+>ℜ∈≡ +  

(i) )),,(sgn()),,,(),,,(sgn( 2211212121 xEppxppEEUppxxU −ε+=− ,  

for all ),( 21 xx in ),,( 21 EppF , 

(ii) 0),,,(),,,( 212121 <− ppEEUppxxU , for some ),,(),( 2121 EppFxx ∈ . 

The phrase “above the certainty line” will always be left implicit in what follows. 
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Geometrically, the set ),,( 21 EppF is the fair-odds line above the certainty line defined by 

),,( 21 Epp . An amount effect occurs at ),,( 21 Epp if the individual displays risk attraction for 

uncertain prospects close to the certainty line, and risk aversion for those distant from the certainty 

line. Point )),,(),,,(( 211212 EpppEEpppE εε +−  depicts the boundary between these two sets of 

points (an “attraction-aversion boundary”). 

Definition. If ℜ→∆×ℜ+
12:U displays an amount effect for 1

21 ),( ∆∈pp  and all E > 0, 

then we simply say that U displays an amount effect for ),( 21 pp .  

Note that ),,,( 2121 ppxxU is the utility of the risky alternative, whereas ),,,( 21 ppEEU is 

that of the safe alternative. An amount effect occurs if, for a point (x1, x2) in the E-fair-odds line for 

which the good outcome is x2, the individual displays risk attraction if ),,( 21121 Eppxxx ε+<< , 

i.e.,  if x2 is close to x1, but risk aversion if ),,( 2112 Eppxx ε+> , i.e., x2 is far from x1. The 

equality “ ),,( 2112 Eppxx ε+= ” defines the attraction-aversion boundary. Figure 4 illustrates: the 

individual prefers any point in the segment ),( AC  to point C ≡ (E, E), thus displaying risk 

attraction in these choices, but she prefers point C to any point in the segment ),( BA , therefore 

displaying risk aversion in these choices.  

Clearly, (E, E) second-order stochastically dominates any (x1, x2) with expected money 

balances E. Because ),,( 21 Eppε is the supremum of the “x2 – x1 gaps” (or differences between 

money balances in the good and bad states) for which the individual displays risk attraction at the 

constant expected value, ),,( 21 Eppε indicates the largest absolute fair risk that the individual is 

willing to accept.  

Definition. The ex ante, single-self utility function ℜ→∆×ℜ+
12:U displays a switch effect 

for 1
21 ),( ∆∈pp  at 2

21 ),( +ℜ∈xx if  

1)),,,(),,,(sgn(
)),,,(),,,(sgn(

12211221121221

21221122112121

−=++−×
++−

ppxpxpxpxpUppxxU
ppxpxpxpxpUppxxU

. 

Note that the sign of any such difference of utilities is plus one if the individual prefers the 

risky alternative to the safe alternative, and minus one if she prefers the safe alternative. In words, 

a switch effect occurs at point (x1, x2) if the individual displays risk aversion when the probability 

of the bad outcome is p1, but risk attraction when the probability of the bad outcome is 1- p1 (or 
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vice-versa), i.e., switching the probabilities of the good and the bad outcomes reverses the risk 

attitude.  

Figure 5 illustrates. Let (x1, x2) = ),( xx , and let the individual prefer point C1 to point A 

when (p1, p2) = (q, 1 - q), where q ∈ (0,1/2), so that 1
1

<
− q
q , i.e., the individual displays risk 

aversion in the choice between the risky prospect that gives x with probability q and x with 

probability 1- q, and the certain prospect that gives its expected value xqxq )1( −+ . Note that here 

the bad outcome is x and its probability is relatively low. In addition, let the individual prefer point 

A to point C2 when (p1, p2) = (1- q, q), i.e., when the probability of the bad outcome is a relatively 

high 1 – q, i. e., the individual displays risk attraction in the choice between the risky prospect that 

gives x with probability 1- q, and x with probability q and its expected value xqxq +− )1( . 

Switching the probabilities of the good and the bad outcomes has led the individual to a reversed 

risk attitude.  

Lemma 1. The ex ante, single-self, state-independent utility function ℜ→∆×ℜ+
12:U  

displays a switch effect for 1
21 ),( ∆∈pp  at 2),( +ℜ∈xx if and only if 

1)),,,(),,,(sgn(
)),,,(),,,(sgn(

21212121

21212121

−=++−×
++−

ppxpxpxpxpUppxxU
ppxpxpxpxpUppxxU

. 

Proof. By state independence,  

),,,(),,,( 2112 ppxxUppxxU =      (1) 

and  

),,,(),,,( 212121122121 ppxpxpxpxpUppxpxpxpxpU ++=++ .   (2) 

By definition, there is a switch effect for 1
21 ),( ∆∈pp  at 2),( +ℜ∈xx if and only if 

1)),,,(),,,(sgn(
)),,,(),,,(sgn(

12121212

21212121

−=++−×
++−

ppxpxpxpxpUppxxU
ppxpxpxpxpUppxxU

.  (3) 

But by (1) and (2), ),,,(),,,( 12121212 ppxpxpxpxpUppxxU ++−  

= ),,,(),,,( 21121221 ppxpxpxpxpUppxxU ++− . 

Hence, (3) is equivalent to  

1)),,,(),,,(sgn(
)),,,(),,,(sgn(

21212121

21212121

−=++−×
++−

ppxpxpxpxpUppxxU
ppxpxpxpxpUppxxU

. 8� 
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 Intuitively, under state independence, the individual is indifferent between switching 

probabilities and switching outcomes: for instance, point A of Figure 5 with the probability 1- q of 

x  is indifferent to point A’ with the probability q of x . By definition, a switch effect occurs if the 

individual prefers, say, C1 to A when the probability of x is q (risk aversion), but A to C2 when the 

probability of x is 1- q (risk attraction). Lemma 1 states that, in that case, the individual prefers 

point A’ to C2 at the same probability, q, of the outcome on the horizontal axis (i. e., contingent on 

State 1, which in A is the bad state, whereas in A’ is the good state). Referring to A’ vs. C2, instead 

of A vs. C2, for the choice between the uncertain alternative that gives x with probability q and x  

with probability 1 – q and the certain alternative that gives q x + (1 – q) x has the graphical 

advantage of keeping constant the probability, q, of the outcome of the horizontal axis and hence 

the slope of the fair-odds lines (
q

q
−

−
1

), as well as the map of indifference curves in (x1, x2) space.  

 Assumption 2 below will be postulated on occasion in what follows. 

Assumption 2: Strict concavity above the certainty line. For given 1
21 ),( ∆∈pp , the ex 

ante, single-self utility function ℜ→∆×ℜ+
12:U  is strictly concave with respect to the variables 

),( 21 xx  in the subdomain }:),{( 12
2

21 xxxx ≥ℜ∈ ++ . 

Note that Assumption 2, even if combined with Assumption 1, allows for failures of 

concavity with respect to the variables ),( 21 xx on 2
++ℜ . 

 

5.3. Homothetic, single-self preferences 

Definition. The ex ante, single-self utility function ℜ→∆×ℜ+
12:U is homothetic 

in ),( 21 xx if  

0)),,,,(),,,(sgn(

)),,,(),,,(sgn(

21
1
2

1
121

0
2

0
1

21
1
2

1
121

0
2

0
1

>∀−=

−

tpptxtxUpptxtxU
ppxxUppxxU

. 

 Lemma 2. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be homothetic 

in ),( 21 xx , and let U display an amount effect for ),( 21 pp  and E > 0, with associated ),,( 21 Eppε . 

Then, for all E > 0, U displays an amount effect for ),( 21 pp  and E, with 

E
E

EppEpp ),,(
),,( 21

21
ε

=ε . 
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 Proof. Let U be homothetic in ),( 21 xx and display an amount effect for 1
21 ),( ∆∈pp and E  

> 0.  Let ),( 21 xx satisfy 12 xx > and .02211 >=+ Expxp  Then  

)),,,(),,,(sgn( 212121 ppEEUppxxU −  

 = )),,,(),,,(sgn( 212121 ppE
E
EE

E
EUppx

E
Ex

E
EU −    [by homotheticity] 

= )),,(sgn( 2211 x
E
EEppx

E
E −ε+                [because Ex

E
Epx

E
Ep =+ 2211 and  

             U displays an amount effect for E ] 

= )),,(sgn( 2211 xEpp
E
Ex −ε+ . 

Thus U displays an amount effect for ),( 21 pp  and E, with E
E

EppEpp ),,(
),,( 21

21
ε

=ε .  

This proves (i) in the definition of the amount effect. To prove (ii), note that, by 

assumption, 0),,,(),,,( 212121 <− ppEEUppxxU , for some ),,(),( 2121 EppFxx ∈ . Thus, by 

homotheticity, 0),,,(),,,( 212121 <− ppE
E
EE

E
EUppx

E
Ex

E
EU , with Ex

E
Epx

E
Ep =+ 2211 , i.e., 

),,(),( 2121 EppFx
E
Ex

E
E ∈ .� 

Proposition 1. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be homothetic 

in ),( 21 xx  and satisfy Assumption 2. Then U displays an amount effect for 1
21 ),( ∆∈pp  if and only 

if there exists an 1x  ∈ (0, 1) that solves the equation in 1x   

“ ),,1,1(),,
1

,( 2121
2

11
1 ppUpp

p
xpxU =

−
,” 

in which case such a solution is unique, denoted ),( 211 ppx A , with 

(i) 
2

211
21

),(1
)1,,(

p
ppxpp

A−
=ε ; 

(ii) ∀E > 0, .
),(1

),,(
2

211
21 E

p
ppxEpp

A−
=ε  

Moreover, in this case we say that 1),( 21 >ppt A  exists, where  
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),(
),(1

),(
2112

2111
21 ppxp

ppxpppt A

A
A −

≡ , 

with the properties 

(iii) 2
2121 ),,,( +ℜ∈∀ ppxx  such that x2 > x1,  

)),(sgn(
)),,,(),,,(sgn(

2121

21221122112121

xxppt
ppxpxpxpxpUppxxU

A −=

++−
, 

(i.e., the attraction-aversion boundary is a ray through the origin given by 

“ 1212 ),( xxxtx A= ”) 

(iv) ∀E > 0, E
pptpp

pptEpp A

A

),(
1),(

),,(
2121

21
21 +

−
=ε . 

Proof.  Consider the function ),,1,1(),,
1

,()(:]1,0[: 2121
2

11
11 ppUpp

p
xpxUx −

−
≡ϕℜ→ϕ . 

Clearly, for x1 < 1,  ϕ(x1) > 0 (resp. ϕ(x1) < 0)  means that the individual displays risk attraction in 

the choice between the uncertain alternative that gives x1 with probability p1 and 
2

111
p

xp−
with 

probability p2 and the certain alternative that gives its expected value, namely E = 1. Note also that 

ϕ(1) = 0. 

We want to show that ϕ is strictly concave. For θ ∈ (0, 1), we compute 

),,,1,1(),,)1(,)1((

),,1,1(),,11)1(,)1((

),,1,1(),,))1((1,)1(())1((

2121
1
2

0
2

1
1

0
1

2121
2

1
11

2

0
111

1
0
1

2121
2

1
1

0
111

1
0
1

1
1

0
1

ppUppxxxxU

ppUpp
p

xp
p

xpxxU

ppUpp
p

xxpxxUxx

−+−+−=

−−+−−+−=

−+−−+−≡+−

θθθθ

θθθθ

θθθθθθ

  

for 
2

0
110

2
1

p
xpx −

= and 
2

1
111

2
1

p
xpx −

= . The strict concavity of U on }:),{( 12
2

21 xxxx ≥ℜ∈ +  

guarantees that, when 0
2

0
1 xx ≠ , the last expression is greater than 

)),,1,1(),,
1

,(()),,1,1(),,
1

,()(1(

)),,1,1(),,,(()),,1,1(),,,()(1(

2121
2

1
111

12121
2

0
110

1

2121
1
2

1
12121

0
2

0
1

ppUpp
p

xpxUppUpp
p

xpxU

ppUppxxUppUppxxU

−
−

+−
−

−=

−+−−

θθ

θθ
 

= (1 - θ)ϕ +)( 0
1x  θϕ )( 1

1x ,  
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proving the strict concavity of ϕ. Thus, because ϕ takes the value zero at x1 = 1, it can take the 

value zero at most once in the interval [0, 1).  

If ϕ does not take the value zero in the interval (0, 1), then ϕ does not change sign there, 

and therefore the risk attitude does not change as x1 ranges over (0, 1) and 
2

11
2

1
p

xpx −
= : in this 

case, the individual does not display an amount effect.   

If, on the contrary, ϕ 0)( 1 =x  for some )1,0(1 ∈x , then such a solution is unique, to be 

written ),( 2111 ppxx A= , with ϕ )1,(,0)( 111
Axxx ∈∀> , and ϕ ),0[,0)( 111

Axxx ∈∀< , i.e., 

)sgn(),,1,1(),,
1

,(sgn( 112121
2

11
1 xxppUpp

p
xpxU −=−

−
, hence displaying an amount effect for 

(p1, p2) and E = 1, with ε(p1, p2,1) = 
2

1

2

1211
1

2

11 111
p

x
p

xpxpx
p

xp AAA
A

A −
=

−−
=−

−
, proving (i). 

It follows from Lemma 2 that U displays an amount effect for ),( 21 pp  and any E > 0, with 

E
p
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211
21
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−
=ε , proving (ii). 
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−
=
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(ii), 

 

)),(sgn(

)1sgn(

)
1

sgn(

)sgn(

)
1

1
1

1sgn(

))(
1

sgn(

)),,(sgn(
)),,,(),,,(sgn(

2121

2
1

1

2

11

211
2

11

2
2

1222
1

2

1112

2
2

1
21

2

1
1

22211
2

1
1

22211211

21221122112121

xxppt

x
x
x

p
xp

xxx
p

xp

x
p

xpppx
p

xppp

x
p

xpx
p

xp

xxpxp
p

xx

xxpxpppx
ppxpxpxpxpUppxxU

A

A

A

A
A

AA

AA

A

−=

−−=

−






 −
=








 +−
−







 −+
=








 −
−−







 −
+=

−+
−

+=

−++=
++−

ε

 



 25

proving (iii).  From (ii) and the definition of ),( 21 ppt A  we obtain (iv). � 

Proposition 2. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be homothetic 

in ),( 21 xx  and satisfy Assumptions 1 and 2.  

(i) If both 1),( 21 >ppt A  and 1),( 12 >ppt A  exist, as defined in Proposition 1, and 

),(),( 1221 pptppt AA ≠ , then U displays a switch effect for 1
21 ),( ∆∈pp  at any (x1, x2) satisfying 

)},(),,(max{)},(),,(min{ 1221
1

2
1221 pptppt

x
xpptppt AAAA << ; 

(ii) If 1),( 21 >ppt A  exists, as defined in Proposition 1, but the equation in x1  

),,1,1(),,
1

,( 1212
1

12
1 ppUpp

p
xpxU =

−
 

does not have a solution 1x  < 1 (i.e., no 1),( 12 >ppt A  exists), then U displays a switch effect 

for 1
21 ),( ∆∈pp  and either any (x1, x2) satisfying ),(1 21

1

2 ppt
x
x A<< or any (x1, x2) satisfying 

),( 21
1

2 ppt
x
x A> .  

 Proof. (i) Assume that ),( 21 ppt A and ),( 12 ppt A exist and are greater than one, and let 

)},(),,(max{)},(),,(min{1 1221
1

2
1221 pptppt

x
xpptppt AAAA <<< . Without loss of generality, 

let ),(),( 1221 pptppt AA < . Because 11212 ),( xxpptx A >> , Proposition 1 (iii) implies that 

1)),,,(),,,(sgn( 21221122112121 −=++− ppxpxpxpxpUppxxU . Similarly, because 

),( 1221 pptxx A<< , we have that 1)),,,(),,,(sgn( 12211221121221 =++− ppxpxpxpxpUppxxU . 

Thus, the product of the two signs is negative, showing the presence of a switch effect.  

 (ii). As just argued, if ),( 21 ppt A exists and is greater than one, then the sign of  

),,,(),,,( 2121
2

11
1 ppEEUpp

p
xpExU −

−
is positive for large x1 and negative for small x1. But if the 

equation “ 0),,1,1(),,
1

,( 1212
1

12
1 =−

− ppUpp
p

xpxU ” does not have a solution in x1 on the interval 

(0,1), then the sign of ),,1,1(),,
1

,( 1212
1

12
1 ppUpp

p
xpxU −

−
is either positive on that interval, or 
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negative on it, which by homotheticity implies that, given E > 0, the sign of 

),,,(),,,( 1212
1

12
1 ppEEUpp

p
xpExU −

−
is either positive on (0, E), in which case we have a 

switch effect for small x1, or negative on (0, E), in which case we have a switch effect for large x1. 

� 

Proposition 3. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be homothetic 

in ),( 21 xx  and satisfy Assumptions 1 and 2.  

 If there exists an )1,1(
1

1 p
x ∈  that solves the equation in 1x   

“ ),,1,1(),,
1

,( 2121
2

11
1 ppUpp

p
xpxU =

−
,” 

then such a solution is unique, denoted ),( 211 ppx B , and )1,0(
),(1

2

211 ∈
−

p
ppx B

 solves the equation 

in 1x   

“ ),,1,1(),,
1

,( 1212
1

12
1 ppUpp

p
xpxU =

−
,” 

i.e., defining 1
),(

),(1
),(

2112

2111
21 <

−
≡

ppxp
ppxpppt B

B
B , we have that 1

),(
1),(

21
12 >=

ppt
ppt B

A , where 

),( 12 ppt A satisfies the properties specified in Proposition 1.  

 Proof.   The uniqueness of the solution, denoted ),( 211 ppx B or simply Bx1 , follows from the 

concavity argument in the proof of Proposition 1. Accordingly, let )1,1(
1

1 p
x B ∈ satisfy  

“ ),,1,1(),,
1

,( 2121
2

11
1 ppUpp

p
xpxU

B
B =

−
.” By state independence,  

),,,
1

(),,
1

,( 121
2

11
21

2

11
1 ppx

p
xpUpp

p
xpxU B

BB
B −

=
−

and ),,1,1(),,1,1( 1221 ppUppU = , i.e., 

),,1,1(),,,
1

( 12121
2

11 ppUppx
p

xpU B
B

=
−

, with )1,0(
),(1

2

211 ∈
−

p
ppx B

 because )1,1(
1

1 p
x B ∈ . Thus, 

writing ),( 12 ppt A in accordance with the definition in the statement of Proposition 1 above, we 
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have that 1
),(

1
),(1

),(
),(1

),(
),(

212111

2112

2

2111

211
12 >=

−
=

−
=

pptppxp
ppxp

p
ppxp

ppxppt BB

B

B

B
A , where ),( 21 ppt B is 

defined as 
),(

),(1
),(

2112

2111
21 ppxp

ppxpppt B

B
B −

≡ . � 

 

5.4. Weakly homothetic, single-self preferences 

Definition. The ex ante, single-self utility function ℜ→∆×ℜ+
12:U is weakly homothetic 9 

in ),( 21 xx if 

0)),,,,(),,,(sgn(

)),,,(),,,(sgn(

21
1
2

1
121

0
2

0
1

21
1
2

1
121

0
2

0
1

>δ∀δ+δ+−δ+δ+

=−

ppxxUppxxU
ppxxUppxxU

. 

Lemma 3. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be weakly 

homothetic in ),( 21 xx , and let U display an amount effect for ),( 21 pp  and E > 0, with associated 

),,( 21 Eppε . Then, for all ),,( 212 EpppE ε> , U displays an amount effect for ),( 21 pp  and E, with 

).,,(),,( 2121 EppEpp ε=ε  

 Proof. It parallels that of Lemma 2. Let U be weakly homothetic and display an amount 

effect for 1
21 ),( ∆∈pp and E  > 0.  Let ),( 21 xx satisfy 12 xx > and .02211 >=+ Expxp  Then  

)),,,(),,,(sgn( 212121 ppEEUppxxU −  

 = )),,,(),,,(sgn( 212121 ppEEEEEEUppEExEExU −+−+−−+−+    

      [by weak homotheticity] 

 = ])[),,(sgn( 2211 EExEppEEx −+−ε+−+    

                [because EEExpEExp =−++−+ ][][ 2211 , and  

    U displays an amount effect for E ]  

= )),,(sgn( 2211 xEppx −ε+ . 

This proves (i) in the definition of the amount effect. To prove (ii), note that, by the 

statement of the lemma, ),,( 212 EpppE ε> , i.e., (0, 
2p

E ) satisfies: 0 + ),,( 21 Eppε  - 
2p

E  < 0, and 

                                                 
9 This term is inspired by John Chipman (1965, p. 691). 
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E
p
Epp =+×

2
21 0 , i.e., (0, 

2p
E ) ),,( 21 EppF∈ . Thus U displays an amount effect for ),( 21 pp  

and E, with ).,,(),,( 2121 EppEpp εε = 8� 

Proposition 4. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be weakly 

homothetic in ),( 21 xx  and satisfy Assumption 2. Then U displays an amount effect for 1
21 ),( ∆∈pp  

and E if and only if the equation in ε  

“ ),,,(),,,0( 212221 ppppUppU εεε = ” 

has a positive solution, in which case the solution is unique and denoted 0),( 21 >ppAε , and 

),( 212 pppE Aε> , in which case ),(),,( 2121 ppEpp Aεε = . 

 Proof. To show the uniqueness of the solution under weak homotheticity and Assumption 

2, suppose as contradiction hypothesis that two such solutions ε  and ε exist, with ε > ε . By weak 

homotheticity, and noting that εεεε 222 )( ppp =−+ , we have that 

),,,(),),(),(( 21222122 ppppUppppU εεεεεεε =−+− , and, because ε  solves the equation, 

),,,0( 21 ppU ε also equals ),,,( 2122 ppppU εε .  But 

[ ] [ ] ( )
( ) ( ) εεεεεεεε

εεεεεεεεεε

2
2

22
2

222

2
22222221

)()(

)()()1()()(

pppppp

pppppppp

=−++−−−=

−++−−=−++−
, 

i.e., point ))(),(( 22 εεεεε −+− pp is on the fair-odds line that goes through points ),0( ε  

and ),( 22 εε pp , contradicting the strict concavity of U above the certainty line by the argument in 

the proof of Lemma 3.  

To prove the “if” part of the proposition, assume that such an 0),( 21 >ppAε exists and 

choose an ),( 212 pppE Aε> . We compute 

)),,,(),,,(sgn( 212112 ppEEUpppEpEU AA −+− εε  

= ),,,(sgn( 212122 ppEppEEppEU AAAA −++−+− εεεε   

   )),,,( 2122 ppEpEEpEU AA −+−+− εε   [by weak homogeneity] 

= )),,,(),,,0(sgn( 212221 ppppUppU AAA εεε −  

= 0.       [by the definition of ),( 21 ppAε ] 
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Moreover, the point ),( 12
AA pEpE εε +− is in the segment joining ),( EE and ),0(

2p
E , a 

subset of the fair-odds line through these points, because EpEppEp AA =++− )()( 1221 εε . 

Hence, the strict concavity of U above the certainty line implies that  

),()),,,,(),,,( 212121
2

11
1 EpExppEEUpp

p
xpExU Aε−∈∀>

−
, while 

∅≠−∈∀<
−

),0[)),,,,(),,,( 212121
2

11
1

ApExppEEUpp
p

xpExU ε , proving the presence of an 

amount effect for (p1, p2) and E , and, by Lemma 3, for (p1, p2) and any ),( 212 pppE Aε> , with 

),(),,( 2121 ppEpp Aεε = . 

To prove the “only if” part of the proposition, observe that when the equation in ε  

“ ),,,(),,,0( 212221 ppppUppU εεε = ” has no positive solution, it must be the case that, given E > 

0, the expression )),,,(),,,( 2121
2

11
1 ppEEUpp

p
xpExU −

−
is either always positive for 

),0[1 Ex ∈∀ or always negative there, ruling out the presence of an amount effect. � 

Proposition 5. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be weakly 

homothetic in ),( 21 xx  and satisfy Assumptions 1 and 2.  

(i) If both 0),( 21 >ε ppA  and 0),( 12 >ε ppA exist, as defined in Proposition 4, and 

),(),( 1221 pppp AA ε≠ε , then U displays a switch effect for 1
21 ),( ∆∈pp  at any (x1, x2) satisfying 

)},(),,(max{)},(),,(min{ 1221121221 ppppxxpppp AAAA εε<−<εε ; 

(ii) If 0),( 21 >ε ppA  exists, as defined in Proposition 4, but the equation in ε   

),,,(),,,0( 121112 ppppUppU εεε =  

does not have a positive solution (i.e., no 0),( 12 >ε ppA exists), then U displays a switch effect 

for 1
21 ),( ∆∈pp  and either any (x1, x2) satisfying 1212 ),(0 xppx A +<< ε  or any (x1, x2) satisfying 

2121 ),( xxppA <+ε . 

 Proof. Easy adaptation of the proof of Proposition 2, using Proposition 4. � 

Proposition 6. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be weakly 

homothetic in ),( 21 xx  and satisfy Assumptions 1 and 2.  
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If the equation in ε  “ ),,,(),,0,( 211121 ppppUppU εε=ε ” has a positive solution, then 

such solution is unique, to be denoted ),( 21 ppBε , and it satisfies 

),),,(),,((),,0),,(( 122122121221 ppppppppUppppU BBB εε=ε , i.e., ),(),( 1221 pppp AB ε=ε as 

defined in Proposition 4.  

Proof.  Uniqueness follows from the concavity argument in the proof of Proposition 1.      

Let ),( 21 ppBε satisfy ),),,(),,((),,0),,(( 212112112121 ppppppppUppppU BBB εεε = . By state 

independence, ),,0),,((),),,(,0( 21211221 ppppUppppU BB εε = and 

),),,(),,((),),,(),,(( 2121221212212212 ppppppppUppppppppU BBBB εεεε = . Thus, 

),),,(),,((),),,(,0( 122122121221 ppppppppUppppU BBB εεε = , i.e., ),(),( 2112 pppp BA εε = . � 

Proposition 7. Let the ex ante, single-self utility function ℜ→∆×ℜ+
12:U  be weakly 

homothetic in ),( 21 xx  and satisfy Assumptions 1 and 2, and let (z, w) satisfy w + z > 0, and w – z > 

0. The individual displays risk aversion (resp. attraction) in choice  < z, p w > if and only if she 

displays risk aversion (resp. attraction) in choice t(< z, p w >) = < - z, 1 - p w >. 

Proof.  Without loss of generality, let z < 0 and let the individual display risk aversion in 

choice <z, p w >, i.e., U(w + z, w,  p, 1- p) < U(w + pz, w + pz, p, 1- p). By Proposition 4, this 

implies that w – ( w + z) < )1,( ppA −ε , i. e., 0 < - z < )1,( ppA −ε . But then w – z – w < 

)1,( ppA −ε  = ),1( ppB −ε , by Proposition 6. Thus, U(w - z, w,  1- p, p) < U(w - (1- p) z, w - (1- p) 

z , 1- p , p), i. e., the individual displays risk aversion in choice < - z, 1 - p w >. The cases where z 

> 0 and/or the individual displays risk attraction in choice < z, p w > are similarly argued. � 

 Remark 1. Proposition 7 shows that a translation never affects risk attitude if preferences 

are single-self and weakly homothetic. This is a stronger property that the one mentioned in 

Section 5.1 above, namely that, if preferences are single self, then an attitude reversal due to 

translation cannot occur over a range of initial wealth values.  

 

5.5. A class of single-self preferences 

 We illustrate the possibility of single-self ex ante preferences displaying the various effects 

by exhibiting examples of such preferences. Our examples belong to the following class of ex ante 
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utility functions 





≥>+
≥≥+

=ℜ→∆×ℜ+ ,0),()()()(
,0),()()()(

),,,(::
21222111

12222111
2121

12

xxforxupxup
xxforxupxup

ppxxUU BB

AA

ψψ
ψψ

 (4) 

where u” < 0, guaranteeing that Assumption 2 is satisfied, and where the superscripts A and B 

suggest, respectively, “above” and “below” the certainty line of the contingent-consumption space 

(x1, x2), and where, for s = 1, 2, and for J = A, B, J
sψ :[0,1] → [0,1]. Following tradition, we can 

think of the J
sψ  functions as “distortions of probability” or, à la Kahneman and Tversky, as 

“decision weight functions,” but any such interpretation is orthogonal to the examples: the 

essential point is that, in our examples, the sψ  functions are nonlinear, and hence the function U 

represents preferences that violate the expected utility hypothesis, yet they are of the single-self 

type, i.e., well-defined on lotteries with final wealth balances x as prizes.  

 We restrict ourselves to well-behaved preferences, in the sense that, for J = A, B, the 

functions J
1ψ  and J

2ψ are continuous on [0, 1] and differentiable on (0, 1), with 0)0( =ψ J
s  and 

1)1( =ψ J
s , and J

1ψ  and J
2ψ satisfy Assumptions 3-5 below. In some of our examples, B

s
A
s ψ=ψ , 

implying that U is differentiable at the certainty line, whereas in others, B
s

A
s ψ≠ψ , in which case U 

may have a kink at the certainty line.  

Assumption 3: Adding-up property. For J = A, B, ]1,0[,1)1()( 21 ∈∀=−+ ppp JJ ψψ .  

The adding-up property ensures that 

)()1()()()()()1()()(

)()1()()(lim],1,0[

212211

2211),(),(
21
21

xupxupxuxupxup

xupxupp

AABB

BB

xx
xxxx

−+==−+=

−+∈∀
>

→

ψψψψ

ψψ
, 

which in particular implies that the function U is continuous at the certainty line, even when 
B
s

A
s ψ≠ψ , and that )()1,,,(],1,0[ xuppxxUp =−∈∀ , i.e., the probabilities of the states do not 

matter when the outcomes are the same. 

 Remark 2. Note the contrast with Kahneman and Tversky (1979, p. 281), who write 

“…there is evidence to suggest that, for all 0 < p < 1, π(p) + π(1- p) < 1. We label this property 

subcertainty.” (Their π notation corresponds to our ψ’s.) If we write 

)()1()()()1,,,( 2121 xupxupppxxU −+=− ππ , then we must have 

)()]1()([)1,,,( xuppppxxU −+=− ππ , and the so defined subcertainty yields, for p ∈ (0,1), 



 32

)()1,,,( xuppxxU <− . But if π(1) = 1 and π(0) = 0, then 

)()()0()()1()0,1,,,( xuxuxupxxU =+= ππ , i.e., the utility of x with probability 1 is higher than the 

utility of a lottery that gives x no matter what! For these reasons, we view Assumption 3 as 

capturing the well-behavedness of preferences. 

The adding-up property can be rewritten )(1)1( 12 pp JJ ψψ −=− , J = A, B, yielding 

     
p

J

p

J

dp
d

dp
d

1

1

12

2 ψψ =
−

.      (5) 

Assumption 4: B
1ψ = A

2ψ  and B
2ψ = A

1ψ  equalities. The functions B
1ψ and A

2ψ are the same 

function, i.e., B
1ψ (q) = A

2ψ (q), ∀ q ∈ [0,1], and, therefore, B
1ψ  transforms p1 in the same manner as 

A
2ψ  transforms p2; similarly, B

2ψ and A
1ψ  are the same function. 

Proposition 8. Let U be of the form (4). Then state independence (Assumption 1) is 

equivalent to Assumption 4. 

Proof. Postulate form (4). Assumption 4 then guarantees Assumption 1, because 

)'()'()()()',,',( 21 yupyupppyyU AA ψ+ψ≡ = ),',,'()()()'()'( 21 ppyyUyupyup BB =+ ψψ . 

Conversely, without loss of generality assume that y’ > y, i.e., y’ = y + ε, ε > 0. Assumption 1 

guarantees that U(y, y + ε, p, p’) = U(y + ε,  y, p’, p), which under (4) can be written 

)()()()'()()'()()( 2121 yupyupyupyup BBAA ψεψεψψ ++=++ , i.e., 

)()]'()'([)()]()([ 2121 εψψψψ +−=− yuppyupp ABBA . Differentiating both sides with respect to ε 

yields )(')]'()'([0 21 εψψ +−= yupp AB , which if evaluated at a point where u’(y + ε) ≠ 0 implies  

)'()'(0 21 pp AB ψψ −= , and, in turn, )()( 21 pp BA ψψ = .  � 

It follows from Assumption 4 that A
1ψ and B

1ψ are the same function (guaranteeing the 

differentiability of U at the certainty line) if and only if A
1ψ and A

2ψ are also the same function, i.e., 

they are all the same function.   

Assumption 5: Monotonicity. For J = A, B, and p1 ∈ (0, 1), 0
1

1 >
dp
d Jψ

.  

It can be easily shown that, in conjunction with (5), Assumption 5 implies that 0
2

2 >
dp
d Jψ

, ∀ 

p2 ∈ (0, 1), and that utility increases as the good outcome becomes more likely. Indeed, 
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write )1,,,(),,(~
2121 ppxxUpxxU −≡ , and compute 

21

~

p
U

p
U

p
U

∂
∂−

∂
∂=

∂
∂ = )()( 2

2

2
1

1

1 xu
dp
dxu

dp
d JJ ψψ

− = 

))()(( 21
1

1 xuxu
dp
d J

−
ψ

, by (5). If x1 < x2, then x1 is the bad outcome, J = A, u(x1) - u(x2) < 0, and 

utility decreases with the probability (p1 or p) of x1. If, on the contrary, x1 > x2, then x1 is the good 

outcome, J = B, u(x1) - u(x2) > 0, and utility increases with the probability of x1. 

Assumptions 3 and 4 imply that, given one of the four functions J
sψ , the other three are 

determined, e. g., if A
1ψ , is given, then A

2ψ  is determined by Assumption 3 as 

)1(1)( 12 qq AA −ψ−=ψ , B
2ψ is determined by Assumption 4 as )()( 12 qq AB ψ=ψ , and hence, using 

Assumption 3 once more, B
1ψ is determined by )1(1)( 11 qq AB −ψ−=ψ , see Figures 6 and 7 below.    

Let x1 be the bad outcome (x1 < x2). If )( 11 pAψ > p1, then ))(()( 2111211 xxpxxp A −>− ψ . 

Thus,  

))(())1(( 22112111 xxxpuxpxpu +−=−+  > )))((( 22111 xxxpu A +−ψ  [as long as u is increasing] 

    = )))(1()(( 211111 xpxpu AA ψψ −+  

    > )()(1()()( 211111 xupxup AA ψψ −+   [by concavity] 

    = )()1()()( 212111 xupxup AA −+ ψψ  [by Assumption 3], 

i.e., if )( 11 pAψ > p1, then the individual displays risk aversion above the certainty line. If we 

interpret )( 11 pAψ as a distortion of the true probability p1, and if )( 11 pAψ > p1 and x1 < x2, then the 

probability of the bad outcome x1 is distorted upwards leading to risk aversion above the certainty 

line. If, on the contrary, )( 11 pAψ < p1, then the probability of x1 is distorted downwards  when x1 is 

the bad outcome, leading to risk attraction for small deviations from certainty, i.e., for points close 

to (and above) the certainty line, because the (one-sided) slope of the indifference curve at the 

certainty line is 
)(1

)(

11

11

p
p

A

A

ψ
ψ
−

< 
1

1

1 p
p
−

there. (The slope is one-sided because the indifference curve 

may possibly have a kink at the certainty line.) For larger amounts, risk attitude will depend on the 

relative strengths of the curvature of u and the gap between p1 and its “distortion,” and an amount 

effect occurs if, in addition, there is risk aversion for larger deviations from certainty. 
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We focus on two special types of ψ functions, which do not exhaust the possibilities for 

functions satisfying Assumptions 3-5.  

Type I. Defined by the inequality )1,0(,)( 1111 ∈∀<ψ pppA . 

It follows from Assumption 3 that ,)( 222 ppA >ψ and hence, from Assumption 4, that 

111 )( ppB >ψ  and 222 )( ppB <ψ . Type I is inspired by John Quiggin (1982, 1993), and Faruk Gul 

(1991). Intuitively, the individual systematically distorts the probability of the bad event 

downwards, i.e., 111 )( ppA <ψ  and 222 )( ppB <ψ . This implies that B
s

A
s ψ≠ψ , leading to kinks of U 

at certainty line. Consider the numerical example 

111 11)( ppA −−=ψ ,      222 )( ppA =ψ , 

            111 )( ppB =ψ  ,         222 11)( ppB −−=ψ ,  (6) 

 

which clearly satisfies Assumptions 3-5.  See Figure 6. 

Type II. Defined by the following condition: there exists a )1,0(∈p such that 

),0(,)(1 ppppA ∈∀>ψ and )1,(,)(1 ppppA ∈∀<ψ .  

It follows that from Assumption 3 that )1,1(,)( 2222 ppppA −∈∀<ψ , and 

)1,0(,)( 2222 ppppA −∈∀>ψ , with the analogous implications for B
1ψ  and B

2ψ . 

Type II is inspired by Kahneman and Tversky’s interpretation of the distortion of 

probabilities: small probabilities are distorted upwards, and large probabilities downwards, but 

what is large or small may depend on whether the outcome is good or bad.  

For instance, for a > 0 and b > 0, we may consider functions in the family 

,
1

)(
11

1
11 pbpa

pa
pA

−+
=ψ    

22

2
22 1
)(

pbpa
pb

pA

+−
=ψ , 

11

1
11 1
)(

pbpa
pb

pB

+−
=ψ   ,            

22

2
22 1
)(

pbpa
pa

pB

−+
=ψ ,  (7) 
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which clearly satisfy Assumptions 3-5, see Figure 7. Note that, as long as a ≠ b, the functions A
1ψ  

and B
1ψ are different, and U is not differentiable at the certainty line. Differentiability requires a = 

b, in which case all four functions coincide, i.e., 
qq

q
qqqq BBAA

−+
=ψ=ψ=ψ=ψ

1
)()()()( 2121 . 

 

5.6. A special case of homotheticity  

Let u(x) = 1,0,
1

1 1 ≠>
−

− rrx
r

r . Then, for U of the form (4), we have that 

U(x1, x2, p1, p2) = 
r

xp
r

xp
r

J
r

J

−
ψ+

−
ψ

−−

1
)(

1
)(

1
2

22

1
1

11 , where J = A if x2 > x1, and J = B otherwise.  

Clearly, U is homothetic in (x1, x2). Similarly, if u(x) = ln x, then U(x1, x2, p1, p2) = 

222111 ln)(ln)( xpxp JJ ψ+ψ , which is also homothetic in (x1, x2).  

As noted in Section 4.3 above, if rx
r

−

−
1

1
1  (resp. ln (x)) were the vNM utility function of 

preferences satisfying the expected utility hypothesis, then they would exhibit CRRA, with 

coefficient of RRA equal to r ≠ 1 (resp. one). But here the expected utility hypothesis is violated, 

because the J
sψ functions are nonlinear. Yet, Lemma 2 above parallels the fact that, in the CRRA 

expected utility case, the wealth expansion paths are rays through the origin.10 Of course, under 

expected utility and risk aversion, risk taking requires favorable odds, while here we focus on 

some forms of risk taking under fair odds. 

Will our U display an amount effect? Given homotheticity and Lemma 2, the answer 

depends on whether the equation in x “ ))1(()()1()1()( 111211 tpputupup AA −+=−ψ+ψ ” has a 

solution with t > 1.  Examples 1 and 2 below illustrate the possibility of amount and switch effects. 

 

5.7. Example 1. Homotheticity with Type-I ψ function 

 We take a specific function of the class discussed in Section 5.6, namely 
1)( −−= xxu  (r = 2), and the Type-I ψ function given by (6) above. By Propositions 1-3, we focus 

on the equation in tA 
                                                 
10 This is in general true for preferences which are homothetic in (x1, x2).  
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))1(()()1()1()( 111211
AAAA tpputupup −+=−ψ+ψ ,   (8) 

and the equation in tB 

))1(()()1()1()( 111211
BBBB tpputupup −+=−ψ+ψ .   (9) 

 Here, (8) becomes AA tppt
pp

)1(
111)11(

11
11 −+

=−+−− , 

with solution 1
11

)1,(
11

1
11 >

−+−
=−

pp
pppt A , implying that there is an amount effect at all 

probabilities.  

 For (9), we write BB tppt
pp

)1(
11)1(

11
11 −+

=−+ , 

with solution 1
1

)1,(
1

1
11 <

+
=−

p
p

ppt B . Moreover, 
)1,(

1)1,(
11

11 ppt
ppt A

B

−
≠−  , except when 

p1 = 0.5, where no switch effect may occur by definition. Thus, a switch effect is present for a 

range of points (x1, x2) at all prices, except of course at p1 = 0.5. 

Figure 8 depicts the indifference curves in contingent consumption space for p1 = 0.2 and 

hence p2 = 0.8. A fair-odds line has then slope – ¼. At the certainty line, an indifference curve has 

the one-sided slope from above of
)2.0(1

)2.0(
)(1

)(

1

1

11

11
A

A

A

A

p
p

ψ−
ψ

=
ψ−

ψ
= 118.0

894.0
106.0 = < 

1

1

1
25.0

p
p
−

= . 

Thus, the individual of this example will take small fair risks, where x2 is greater than, and close to, 

x1. Similarly, the slope from below of an indifference curve at the certainty line is 

2.01
2.0

)(1
)(

11

11

−
=

ψ−
ψ

p
p

B

B

= >= 809.0
553.0
447.0

1

1

1
25.0

p
p
−

= , i.e., the individual will take small fair 

risks, where x2 is less than, and close to, x1. 

We compute: 

309.0)8.0,2.0(,472.0)2.0,8.0(,236.3)2.0,8.0(,118.2)8.0,2.0( ==== BBAA tttt , where we can 

check that 
)8.0,2.0(

1)2.0,8.0( A
B

t
t =  and 

)2.0,8.0(
1)8.0,2.0( A

B

t
t = , in accordance with Proposition 

3. Thus, for (p1, p2) = (0.2, 0.8), the individual takes the fair risk, hence displaying risk attraction, 

if 118.2
)2.0,8.0(

1)8.0,2.0(1
1

2 ==<< B
A

t
t

x
x

, whereas she chooses the certain outcome, thus 
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displaying risk aversion, if 118.2
1

2 >
x
x

. In other words, when (p1, p2) = (0.2, 0.8), there is an 

attraction-aversion boundary (AAB) above the certainty line given by the ray “x2 = 2.118 x1,” see 

Figure 8. This shows the presence of an amount effect for (p1, p2) = (0.2, 0.8). 

 On the other hand, for (p1, p2) = (0.8, 0.2), the individual takes the fair risk, thus displaying 

risk attraction, if 236.3
)8.0,2.0(

1)2.0,8.0(1
1

2 ==<< B
A

t
t

x
x

, whereas she chooses the certain 

outcome, thus displaying risk aversion, if 236.3
1

2 >
x
x

. Again, we have an amount effect. Figure 8 

also displays, as a dashed ray, the AAB above the certainty line for (p1, p2) = (0.8, 0.2), although it 

should be noted that the indifference curves of Figure 8 are drawn for (p1, p2) = (0.2, 0.8), and are 

not relevant for (p1, p2) = (0.8, 0.2). 

 The lack of coincidence between the AAB for (p1, p2) = (0.2, 0.8) and for (p1, p2) = (0.8, 

0.2) implies a switch effect. Indeed, the uncertain alternative represented by a point in the cone 

}236.3118.2:),{( 121
2

21 xxxxx <<ℜ∈ + is preferred to its certain expected value when the 

probabilities are (p1, p2) = (0.8, 0.2) (because such point is below the AAB for (p1, p2) = (0.8, 0.2)), 

hence displaying risk attraction in that choice, whereas when the probabilities are (p1, p2) = (0.2, 

0.8) then the point lies above the AAB for (p1, p2) = (0.2, 0.8), and corresponds to risk aversion. In 

other words, for points in that cone, increasing the probability of the bad outcome (which is x1 for 

points above the certainty line) from 0.2 to 0.8 leads the individual to switch from risk aversion to 

risk attraction, in line with our experimental results.  

 Because of state independence, the graphics below the certainty line exactly correspond to 

those above it. For (p1, p2) = (0.2, 0.8), there is risk attraction if 

309.0
)2.0,8.0(

1)8.0,2.0(1
1

2 ==>> A
B

t
t

x
x

, and risk aversion if 309.00
1

2 <<
x
x

, whereas for (p1, 

p2) = (0.8, 0.2), there is risk attraction if 472.0
)8.0,2.0(

1)2.0,8.0(1
1

2 ==>> A
B

t
t

x
x

, and risk 

aversion if 472.00
1

2 <<
x
x

. Again, for 472.0309.0
1

2 <<
x
x

, the risk attitude switches from 

aversion to attraction when the probability p2 of the bad outcome (which is x2 for points below the 

certainty line) increases from 0.2 to 0.8. 
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 If we maintain (p1, p2) = (0.2, 0.8), which are the probabilities for which the indifference 

curves of Figure 8 have been drawn, then risk attraction occurs in the cone 

},309.0118.2:),{( 21121
2

21 xxxxxxx ≠>>ℜ∈ + . At these probabilities, all the points in the line 

going through A, B, C have the same expected value, or, in other words, belong to the same fair-

odds line, and points A, B and C are also on the same indifference curve.  Restricting our attention 

to points on that fair-odds line, the individual prefers those inside the cone (i.e., between points A 

and C or between C and B), to point C, thus displaying risk attraction in these choices, while she 

prefers point C to points to the left of A or to the right of B, displaying risk aversion there.  

 Summarizing, Example 1 exhibits the following features.   

 Amount effect. At all levels of certain outcomes E, and both for low (0.2) and for high (0.8) 

probability of the bad outcome, the individual displays risk attraction for small deviations from 

certainty and risk aversion for larger deviations,  

 Switch effect. At all levels of certain outcomes, there are some pairs of outcomes for which 

the individual displays risk aversion when the probability of the bad outcome is low yet risk 

attraction when the probability of the bad outcome is high. 

 The attraction-aversion boundaries are rays through the origin. This is an implication of 

homotheticity, see Proposition 1. Given a probability pair, the individual displays risk attraction if 

the ratio of the good outcome to the bad outcome is lower than a certain number, and risk aversion 

if it is higher.  

 

5.8. Example 2. Homotheticity with Type-II ψ function.  

Again, let 1)( −−= xxu , and let the four functions BAA
121 ,, ψψψ  and B

2ψ  be the same function 

ψ defined by
pp

p
p

−+
=

1
)(ψ , which is (7) for  a = b. Because the ψ function is the same 

above or below the certainty line, the indifference curves are smooth there. Again, it can be easily 

checked that Assumptions 1-3 above are satisfied. 

Now equations (8) and (9) become the same equation             

tpptpp
p

pp
p

)1(
11

1
1

1 1111

1

11

1

−+
=

−+
−

+
−+

, 
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with solution 




>>
<<

−
=−=−

5.01
5.01

1
)1,()1,(

1

1

1

1
1111 pif

pif
p

p
pptppt BA . 

Thus, there is an amount effect (for x2 > x1) if p1 > 0.5, i.e., if the probability of the bad 

outcome is high: the attraction-aversion boundary is then given by “ 1
1

1
2 1

x
p

p
x

−
= .” If, for 

instance, p1 = 0.8, then the AAB is given by 12 2xx = , as illustrated in Figure 9, where the 

indifference curves and the illustrative fair-odds line also take ( p1,  p2) = (0.8, 0.2). Intuitively, 

because 8.0)8.0( <ψ , i. e., when the probability of the bad outcome is a high 0.8, ψ distorts is 

downwards, attracting to risk: more precisely, the slope of the indifference curve at the certainty 

line is then 
)2.0(
)8.0(

ψ
ψ , lower than 

2.0
8.0 , the slope of the fair-odds line, implying risk attraction for 2x  

above, but close to, 1x . 

But if the probability of the bad outcome is low, as in points (x1,  x2) below the certainty 

line when (p1,  p2) = (0.8, 0.2), then the ψ function distorts the probability of the bad outcome 

upwards, reinforcing the risk aversion favored by the strict concavity of u. Thus, maintaining (p1,  

p2) = (0.8, 0.2), no risk attraction appears below the certainty line: risk attraction only occurs in the 

cone }2:),{( 121
2

21 xxxxx >>ℜ∈ + , or, restricting our attention to points on the fair-odds line 

through points A and C in Figure 9, only the points between A and C are preferred to C.  

Summarizing, Example 2 exhibits the following features. 

Amount effect. At all levels of certain outcomes, when the probability of the bad outcome 

is high, then the individual displays risk attraction for small deviations from certainty and risk 

aversion for larger deviations. But when the probability of the bad outcome is low, then the 

individual displays risk aversion in all (fair) choices. Thus, an amount effect is present if and only 

if the probability of the bad outcome is high. 

 Switch effect. As long as the probabilities are not 50-50, there is a switch effect, because 

switching from a low probability of the bad outcome to a high probability leads from risk aversion 

to risk attraction as long as the deviation from certainty is small.  

The attraction-aversion boundaries are rays through the origin. Again, because of 

homotheticity, the attraction-aversion boundary occurs along rays through the origin. In this 

example, because the indifference curves are smooth at the certainty line, one such boundary is the 
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certainty line itself, and there is only another one, which lies either above or below the certainty 

line depending on the probabilities.  

 

5.9. A special case of weak homotheticity  

Alternatively, let 0,)( >−= − rexu rx . Then U(x1, x2, p1, p2) = 21 )()( 2211
rxJrxJ epep −− ψ−ψ− , 

where J = A if x2 > x1 and J = B otherwise, which is weakly homothetic in (x1, x2). As noted in 

Section 4.3 above, if u were the vNM utility function of an individual with preferences satisfying 

the expected utility hypothesis, then she would have CARA, with coefficient of ARA equal to r. 

Lemma 3 above displays a parallelism with the fact that, in the CARA expected utility case, the 

wealth expansion paths are straight lines of slope one.  

Will our U display an amount effect? Given weak homotheticity and Lemma 3, the answer 

depends on whether the equation in ε “ ))1(()()1()0()( 11211 εεψψ puupup AA −=−+ ” has a solution 

εA > 0. In that case, the individual will display risk attraction for ),( 112
Axxx ε+∈ and risk aversion 

for Axx ε+> 12 , as shown in Proposition 4. Propositions 5 and 6, in turn, can be applied to analyze 

the presence of a switch effect. It is harder to explicitly solve the case 0,)( >−= − rexu rx , with 

either of our specifications of BAA
121 ,, ψψψ  and B

2ψ , but the following sections offer simple 

numerical examples for xexu −−=)( (r = 1). 

 

5.10. Example 3. Weak homotheticity with Type-I ψψψψ function 

The ψ functions are given by (6), as in Example 1.  For (p1, p2) = (0.2, 0.8), the indifference 

curves are depicted in Figure 10. 

In accordance with Proposition 4, we compute )8.0,2.0(Aε by solving the equation  

“ εεψψ 8.0
2

0
1 ee)8.0(e)2.0( −− −=−− AA ,” which yields the solution )8.0,2.0(Aε = 1.404 > 0, 

evidencing an amount effect (for x2 > x1) for (p1, p2) = (0.2, 0.8) and for E > 0.8 × 1.404  (as stated 

in Proposition 4). More specifically, above the certainty line the attraction-aversion boundary for 

(p1, p2) = (0.2, 0.8) is the straight line 12 404.1 xx += , as illustrated in Figure 10, and an amount 

effect occurs if the fair-odds line hits the vertical axis above 404.12 =x  (this is the condition  E > 

0.8 × 1.404 ). 
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Similarly, and in accordance with Proposition 6, we compute )8.0,2.0(Bε by solving the 

equation  “ εεψψ 8.0
2

0
1 ee)8.0(e)2.0( −− −=−− BB ,” which yields the solution )8.0,2.0(Bε = 2.699 > 0. 

Thus, below the certainty line the attraction-aversion boundary for (p1, p2) = (0.2, 0.8) is the 

straight line 12 699.2 xx +−= , as illustrated in Figure 10.  

To check that )8.0,2.0()2.0,8.0( BA εε = , as stated in Proposition 6, we compute 

)2.0,8.0(Aε by solving the equation “ εεψψ 2.0
2

0
1 ee)2.0(e)8.0( −− −=−− AA ,” with solution 

)8.0,2.0(699.2)2.0,8.0( BA εε == . Similarly, by solving “ εεψψ 2.0
2

0
1 ee)2.0(e)8.0( −− −=−− BB ” we 

obtain )8.0,2.0(404.1)2.0,8.0( BB εε == . Because )2.0,8.0()8.0,2.0( AA εε ≠ , Proposition 5(i) 

guarantees a switch effect. In order to facilitate the visualization of the bands 

121
2

21 699.2404.1:),{( xxxxx +<<+ℜ∈ + } (above certainty line) and 

}699.2404.1:),{( 212
2

21 xxxxx +<<+ℜ∈ + }(below certainty line) for which a switch effect 

occurs, Figure 10 follows Figure 8 by showing as dashed lines the attraction-aversion boundaries 

for (p1, p2) = (0.8, 0.2), even though the indifference curves and the representative fair-odds line 

are drawn for (p1, p2) = (0.2, 0.8). The intuition is similar to that of Example 1 above. The bad 

outcome is x1 in the band 121
2

21 699.2404.1:),{( xxxxx +<<+ℜ∈ + }, whose points are above the 

attraction-aversion boundary for (p1, p2) = (0.2, 0.8) (risk aversion), but below it for (p1, p2) = (0.8, 

0.2) (risk attraction), i.e., increasing the probability of the bad outcome from 0.2 to 0.8 induces the 

switch from risk aversion to risk attraction. 

If we maintain (p1, p2) = (0.2, 0.8), as in the indifference curves and the fair-odds line of 

Figure 10, then risk attraction occurs in the band 

},404.1699.2:),{( 21121
2

21 xxxxxxx ≠+<<−ℜ∈ + . All the points in the line going through A, B, 

C belong to the same fair-odds line, and points A, B and C are also on the same indifference curve.  

The analysis of risk attitudes along this fair-odds line is essentially that of Figure 8 above. 

 Summarizing, Example 3 exhibits the following features, which can be compared with 

those of Example 1. 

 Amount effect. For sufficiently large levels of certain outcomes E, and both for low (0.2) 

and for high (0.8) probability of the bad outcome, the individual displays risk attraction for small 

deviations from certainty and risk aversion for larger deviations.  
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 Switch effect. For sufficiently large levels of certain outcomes E, there are some pairs of 

outcomes with expected value E for which the individual displays risk aversion when the 

probability of the bad outcome is low yet risk attraction when the probability of the bad outcome is 

high. 

 The attraction-aversion boundaries are straight lines of slope one. This is an implication of 

weak homotheticity, see Proposition 4. Given a probability pair, the individual displays risk 

attraction if the difference between the good and bad outcomes is lower than a certain number, and 

risk aversion if it is higher.  

 

5.11. Example 4. Weak homotheticity with Type-II ψψψψ function 

Now we combine the function xexu −−=)( with the ψ functions given by (7) for a = b.  

As in Example 2, an amount effect is present only if the probability of the bad outcome is high, 

whereas, as in Example 3, the attraction-aversion boundaries, one of which is the certainty line, 

have a slope of one.  Figure 11 illustrates the case where (p1, p2) = (0.8 , 02) as in Example 2. The 

vertical intercept of the higher attraction-aversion boundary is 497.1)2.0,8.0( =Aε , computed by 

solving the equation “ εεψψ 2.0
2

0
1 ee)2.0(e)8.0( −− −=−− AA .” Now we have the following features. 

Amount effect. For sufficiently large levels of certain outcomes E, and for high (0.8) 

probability of the bad outcome, the individual displays risk attraction for small deviations from 

certainty and risk aversion for larger deviations. But if the probability of the bad outcome is low, 

then she displays risk aversion. 

 Switch effect. For sufficiently large levels of certain outcomes E, switching from a low to a 

high probability of the bad outcome leads from risk aversion to risk attraction as long as the 

deviation from certainty is small. 

 The attraction-aversion boundaries are straight lines of slope one. For a high probability of 

the bad outcome, the individual displays risk attraction if the difference between the good and bad 

outcomes is lower than a certain number, and risk aversion if it is higher. But for a low probability 

of the bad outcome she displays risk aversion and, hence, the certainty line is an attraction-

aversion boundary.  
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Remark 3. In Examples 1-4, it is easy to compute instances of the reflection effect based on 

the switch effect, rather than on a translation effect (see the discussions in Sections 4.1 and 5.1, 

and Remark 1 above). 

 

6. Single self vs. expected utility  

Our examples in Section 5 imply that the amount and switch effects, as well as some forms 

of reflection effect, are compatible with single-self preferences. But, as we show in our 2004 

paper, the amount, switch and translation effects violate single-self expected utility. First, we note 

that single-self, expected utility preferences require the vNM utility function u(x) to be locally 

convex (u”(x) > 0) on the interval where the individual is attracted to small risks, and thus u(x) 

must be convex on that interval. This contradicts the aversion to large risks involving quantities 

within this interval. Thus, the amount effect is incompatible with single-self, expected utility 

preferences. Second, it is not difficult to show that if the switch effect changes the risk attitude 

over a range of wealth levels, then single-self, expected utility (continuous) preferences must be 

ruled out.11 Last, as seen in 5.1 above, the translation effect violates single-self preferences and, 

hence, a fortiori single-self, expected-utility preferences. 

On the other hand, our 2004 paper also illustrates the consistency of the amount, switch and 

translation effects with multiple-selves, expected utility preferences by the uw(z) function 

reproduced here as Figure 12. First, because the curve is convex close to z = 0, and concave away 

from zero, it entails an amount effect. In addition, there is risk aversion for gains at low probability 

of the bad state, because uw(80) > 0.8 uw(100). If we switch the probabilities, then we get risk 

attraction, because uw(20) < 0.2 uw(100). Thus, there is a switch effect for gains. But if we translate 

gains into losses, at the low probability of the bad state, we get uw(-20) < 0.2 uw(-100), i.e., risk 

attraction. Thus, there is a translation effect when the probability of the bad state is 0.2.  

                                                 
11 Assume that, for any w ∈ [1000, 1100] and any z ∈ [0, 100], (a) the individual prefers the uncertain gain of z with 
probability 0.2 to the certain gain of 0.2z; but (b) she prefers the certain gain of 0.8z to the uncertain gain of z with 
probability 0.8. Under the expected utility hypothesis we can set u(1000) = 0, and u(1100) = 100. Then (a) implies that 
u(1020) < 20, and (b) that  u(1080) > 80, which, as long as u is continuous,  imply that there is a  z’ in (20, 80) and a z” 
in (80, 100] such that (i) u(1000 +  z’) = z’ , (ii)  u(1000 +  z”) = z”, and (iii)  u(1000 + z) > z, ∀ z ∈ (z’,  z”). Consider 
w ≡ 1000 + z’ and z = z” -  z’. By (a), the individual prefers the uncertain gain of z with probability 0.2 to the certain 
gain of 0.2 z, i.e., 0.8 u(1000 + z’) + 0.2 u(1000 + z’+ z” - z’) > u(1000 + z’ + 0.2(z” - z’)), or, using (i)-(ii), 0.8 z’ + 0.2 
z” > u(1000 + 0.8 z’ + 0.2 z”), contradicting (iii), because 0.8 z’ + 0.2 z” ∈ (z’, z”).  
 Thus, (a) and (b) are incompatible with the expected utility hypothesis with single-self, continuous 
preferences. 
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 To sum up, all three effects contradict single-self, expected utility theory, and none 

contradicts multiple-selves, expected utility theory. But the translation effect negates the existence 

of single-self preferences. Table 2 summarizes these results.  

 

 Single-Self  
Expected Utility 
(Canonical Eu) 

Single-Self 
Nonexpected Utility 

Multiple-Selves  
“Expected Utility” 

 
Amount Effect 
 

 
Contradiction 
 

 

          OK 

 

          OK 

Switch Effect  
(or reflection  
due to switch) 

 
Contradiction 
 

 

          OK 

 

          OK 

Translation Effect  
(or reflection  
due to translation) 

 
Contradiction 
 

 
Contradiction 
 

 

          OK 

 

Table 2. The amount, switch and translation effects vs. single self and expected utility 

 

7. Concluding comments 

The core of this paper has focused on single-self, nonexpected utility, convex  preferences, 

that is to say, ex ante preferences defined on contingent final money balances (rather than on their 

changes), representable by a function which is concave in those contingent balances, but which 

cannot be linear in the probabilities.  

First, we have analyzed two classes of single-self, nonexpected utility preferences that 

display amount and switch effects, and, therefore, some forms of reflection effects, while allowing 

for various forms of dependence of risk attitudes on the wealth of the decision maker. We label the 

two classes homothetic and weakly homothetic: They parallel, respectively, the expected utility 

cases of Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk Aversion (CARA). 

It should be emphasized that the preferences discussed in this paper allow for risk attraction, with 

the individual bearing some amount of fair risk, whereas an individual with expected-utility CRRA 

or CARA preferences does not take any fair risks, choosing an uncertain prospect only when it is 

actuarially favorable.  
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A necessary condition for risk attraction within the preferences described in the paper is 

that the deviations from certainty be small. Accordingly, when risk attraction is present, two 

regions appear in the plane of contingent money balances: an attraction region, close to the 

certainty line, and an aversion region, further away. When preferences are homothetic, the 

boundary between the attraction and aversion regions is a ray through the origin, and, hence, the 

maximal fair risk that the individual is willing to accept is proportional to her wealth. But when 

preferences are weakly homothetic, the boundary is a straight line of unit slope: in other words, 

past a wealth threshold below which there is only risk aversion, the maximal fair risk that the 

individual is willing to accept is independent from her wealth.12  

In addition, both for homothetic and weakly homothetic preferences, we have characterized 

the presence or absence of a switch effect, understood as a change from aversion to attraction (or 

vice-versa) when the probabilities of the best and worst outcomes are switched. 

Second, we have considered preferences representable by utility functions of a particular 

form, reminiscent of expected utility but with distorted probabilities, and discussed in detail two 

types of distortion functions. Type I always distorts the probability of the worst outcome 

downwards, yielding attraction to small risks for all probabilities. Type II, on the contrary, distorts 

low probabilities upwards, and high probabilities downwards, implying risk aversion when the 

probability of the worst outcome is low.  Four explicit examples, combining homothetic or weak 

homothetic preferences with Type I or Type II distortion functions, have been presented: all four 

display an amount effect and a switch effect. It has also been argued that these switch effects 

generate a form of reflection effect which is unrelated to any translation of the probabilities.   

                                                 
12 In principle, both kinds of preferences are possible. In fact, the experimental results in our In Press paper hint at a 
variety of individual relationships between wealth and the maximal fair risk borne.  
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