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Abstract 

 
 

An important problem in descriptive and prescriptive research in decision 

making is to identify “regions of rationality,” i.e., the areas for which heuristics are 

and are not effective. To map the contours of such regions, we derive probabilities 

that heuristics identify the best of m alternatives (m > 2) characterized by k attributes 

or cues (k > 1). The heuristics include a single variable (lexicographic), variations of 

elimination-by-aspects, equal weighting, hybrids of the preceding, and models 

exploiting dominance. We use twenty simulated and four empirical datasets for 

illustration. We further provide an overview by regressing heuristic performance on 

factors characterizing environments.  Overall, “sensible” heuristics generally yield 

similar choices in many environments.  However, selection of the appropriate 

heuristic can be important in some regions (e.g., if there is low inter-correlation 

among attributes/cues). Since our work assumes a “hit or miss” decision criterion, we 

conclude by outlining extensions for exploring the effects of different loss functions.   

 

Keywords:  Decision making, Bounded rationality, Lexicographic rules, Choice 

theory. 

 

JEL classification: D81, M10. 
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In his autobiography, Herbert Simon (1991) used the metaphor of a maze to 

characterize a person’s life.  In this metaphor, people continually face choices 

involving two or more alternatives, the outcomes of which cannot be perfectly 

predicted from the information available.1  Extending this metaphor, the maze of 

choices a person faces can be thought of as a journey that crosses different regions 

that vary in the types of questions posed.  

If endowed with unbounded rationality, one could simply calculate the optimal 

responses for all decisions. However, following Simon’s insights, the bounded nature 

of human cognitive capacities implies satisficing mechanisms. Fortunately, this need 

not result in unsatisfactory outcomes if responses match the demands of the regions. 

However, it also raises the issue of facing the consequences of inappropriate choices. 

 In this paper, we characterize the maze of choices that people face as involving 

different “regions of rationality” where success depends on identifying decision rules 

that are appropriate to each region. In some regions, for example, the simplest 

heuristic might be sufficient (e.g., when choosing a lottery ticket).  In other regions, 

returns to computationally demanding algorithms are potentially important (e.g., 

planning production in an oil refinery).  What people need therefore is knowledge – or 

maps – that indicate the demand for rationality in different regions.  In particular, 

since attention is the scarce resource (Simon, 1978), it is critical to know what and 

how much information should be sought to make decisions in different regions. 

 The purpose of this paper is to contribute to defining maps that characterize 

regions of rationality for common decisions problems.  This topic is important for 

both descriptive and prescriptive reasons.  For the former, there is a need to 

understand the conditions under which simple, boundedly rational decision rules – or 

                                                 
1 As Simon (1991) points out, this metaphor also underlies his classic (1956) paper on what an 
organism needs to be able to choose effectively in given environments. 
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heuristics – are and are not effective.  At the same time, this knowledge is critical for 

prescribing when people should use such rules, i.e., as decision aids.  Specifically, we 

consider decisions between two or more alternatives based on information that is 

probabilistically related to the criterion of choice. The structure of these tasks can be 

conceptualized as involving either multiple-cue prediction or multi-attribute choice 

and, as such, is common. In all cases, we construct theoretical models that predict the 

effectiveness in different regions of several heuristics – thereby mapping the contours 

for which they are and are not suited. 

The interest in describing implications of simple models of decision making 

has grown exponentially over the last five decades (see, e.g., Conlisk, 1996; Goldstein 

& Hogarth, 1997; Kahneman, 2003; Koehler & Harvey, 2004).  Much controversy has 

centered on whether the heuristics that people use are effective.  In particular, great 

interest was stimulated by research on “heuristics and biases” (Kahneman, Slovic, & 

Tversky, 1982) that demonstrated how simple processes can produce outcomes that 

deviate from normative prescriptions.  Similarly, much work demonstrated that 

simple, statistical decision rules have greater predictive validity than unaided human 

judgment in a wide range of tasks (see, e.g., Dawes, Faust, & Meehl, 1989; 

Kleinmuntz, 1990).      

An alternative view is that people possess a repertoire of boundedly rational 

decision rules that they apply in specific circumstances (Gigerenzer & Selten, 2001).  

Thus, heuristics can also produce appropriate responses. Specifically, Gigerenzer and 

his colleagues have demonstrated how “fast and frugal” rules can rival the predictive 

ability of complex algorithms (Gigerenzer, Todd, & the ABC Research Group, 1999).  

In their terms, such heuristics produce “ecologically rational” behavior, i.e., behavior 

that is appropriate in its “niche” but does not assume an underlying optimization 
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model.  What is unclear, however, is where these niches are located in the regions of 

rationality.    

Reviewing the empirical evidence, there are clearly occasions when heuristics 

violate normative prescriptions as well as situations where they lead to surprisingly 

successful outcomes.  The role of theory is to specify when both kinds of results occur 

or, to use the metaphor of this paper, to map the regions of rationality. 

Our goal, therefore, is to develop such theory. It involves specifying analytical 

models for heuristics that can be used for either multi-attribute choice or multiple-cue 

prediction.  Specifically, we derive probabilities that these models will correctly select 

the best of m alternatives (m > 2) based on k attributes or cues (k > 1).  We also 

compare their effectiveness with optimizing and naïve benchmarks. The theoretical 

development specifies the importance of different environmental factors on heuristic 

performance. These include the effects of differential cue validities, inter-correlations 

of attributes, whether attributes/cues are measured by continuous or binary variables, 

levels of error in data, and the interactions between these factors. 

 This paper is organized as follows.  In section I, we briefly review relevant 

literature. Next, in section II we specify the heuristics we examine.  Section III is 

technical. We start by specifying the statistical theory for a heuristic based on a single 

continuous variable.  This basic logic is then applied successively to other heuristics: 

first, to heuristics that make use of more than one continuous variable; and then 

models based on binary (0/1) variables. To facilitate presentation of key ideas, many 

formulas are presented in appendices. Section IV is empirical. We provide predictive 

tests of our models on twenty simulated and four empirical datasets. Heuristic 

performance is further illuminated by a regression analysis involving environmental 

characteristics. Our results demonstrate that no one heuristic is always best. At the 
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same time, “sensible” heuristics yield similar results in many environments (e.g., in 

the presence of moderate to high inter-correlation between attributes/cues). 

Nonetheless, there are distinct regions where particular heuristics should be favored or 

avoided. The terrain, however, is complex, and our work demonstrates why theory is 

needed to map the regions of rationality. Finally, section V provides concluding 

comments as well as suggestions for further research.          

 

I. Evidence on the predictive effectiveness of simple models    

 Interest in the efficacy of simple models for decision making has existed for 

some time with, in particular, numerous empirical demonstrations of how models 

based on equal (or unit) weighting schemes perform well in comparison with more 

complex algorithms such as multiple regression (see, e.g., Dawes & Corrigan, 1974; 

Dawes, 1979). Gigerenzer and Goldstein (1996) have further shown how a simple, 

non-compensatory lexicographic model that uses binary cues (“take the best” or TTB) 

is surprisingly accurate in predicting the better of two alternatives across several 

empirical datasets and often outperforms equal weighting (EW) (Gigerenzer, Todd et 

al., 1999).   

 Other studies have used simulation. Payne, Bettman and Johnson (1993), for 

example, explored tradeoffs between effort and accuracy. Using continuous variables 

and a weighted additive model as the criterion, they demonstrated the effects of two 

important environmental variables, dispersion in the weighting of variables and the 

extent to which choices involved dominance. (See also Thorngate, 1980). Shanteau 

and Thomas (2000) further defined environments as “friendly” or “unfriendly” to 

different models and also demonstrated similar effects through simulations. 
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 Recently, Fasolo, McClelland, and Todd (in press) examined multi-attribute 

choice in a simulation using continuous variables. Their goal was to assess how well 

choices by models with differing numbers of attributes could match total utility and, 

in doing so, they varied levels of average inter-correlations among the attributes and 

types of weighting functions.  Results showed important effects for both. With 

differential weighting, one attribute was sufficient to capture at least 90% of total 

utility. With positive inter-correlation among attributes, there was little difference 

between equal and differential weighting.  With negative inter-correlation, however, 

equal weighting was sensitive to the number of attributes used (the more, the better).  

Despite these demonstrations involving simulated and real data, research has 

lacked theoretical models for understanding how characteristics of heuristics interact 

with those of environments. Some work, however, has considered specific cases. 

Einhorn and Hogarth (1975), for example, provided a theoretical rationale for the 

effectiveness of equal weighting relative to multiple regression. Martignon and 

Hoffrage (1999; 2002) and Katsikopoulos and Martignon (in press) explored the 

conditions under which TTB or equal weighting should be preferred in binary choice. 

Hogarth and Karelaia (2004; 2005a) and Baucells, Carrasco, and Hogarth (2006) have 

examined why TTB and other simple heuristics perform well with binary attributes in 

error-free environments. And, Hogarth and Karelaia (2005b) provided a theoretical 

analysis for the special case of binary choice with continuous attributes. 

 

II. Heuristics considered   

Whereas fully rational models combine all relevant information in an optimal 

manner, heuristics use limited subsets of the same information and/or simplifying 

combination rules. The heuristics we examine (see Table 1) reflect these 
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considerations and fall into three classes: (A) heuristics based on single variables or 

subsets of the available information; (B) equal weighting models; and (C) hybrids that 

combine characteristics of the two preceding classes. In addition, we consider lower 

and upper benchmarks: (D) heuristics that simply exploit dominance; and (E) multiple 

regression.  

------------------------------------------------ 
Insert Table 1 about here 

------------------------------------------------ 

  We further examine how the type of data affects performance by including, 

where possible, versions based on both continuous and binary attributes/cues.2    We 

indicate the use of the two kinds of data by suffixes: –c for “continuous,” and –b for 

“binary”.    

Since most of the heuristics we examine have been considered in the literature,   

we limit discussion to making a few links. First, DEBA (number 3) is a deterministic 

version of Tversky’s (1972) elimination-by-aspects (EBA) heuristic.  For binary 

choice, this is identical to TTB of Gigerenzer and Goldstein (1996). Variables used as 

attributes/cues for DEBA are binary in nature and, although the amount of 

information consulted for each choice varies according to the characteristics of  the 

alternatives, many decisions are based on a single attribute.  In the continuous case, 

this is best matched by the single variable heuristic (SVc, number 1) which is 

equivalent to the lexicographic model investigated by Payne et al. (1993).  

Second, with binary variables as cues/attributes, the EWb model predicts 

frequent ties.  However, rather then resolving such choices at random, we use hybrid 

models that exploit partial knowledge. Specifically, EW/DEBA and EW/SVb are 

                                                 
2 In our simulations and empirical work, we generate binary variables by median splits of the 
continuous variables and in this manner make direct comparisons between results based on binary and 
continuous variables. 
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models that, first, attempt to choose according to EWb. If this results in a tie, DEBA 

or SVb is used as a tie-breaker (see also Hogarth & Karelaia, 2005a).   

Third, it is illuminating to compare performance with benchmarks. For lower 

or “naïve” benchmarks, we include two heuristics that simply exploit dominance, 

Domran (DR), numbers 8 and 9. (Simply stated, choose an alternative if it dominates 

the other(s). If not, choose at random.)  As an upper or “normative/sophisticated” 

benchmark, we use multiple regression (models 10 and 11).3 

It is important to emphasize that the heuristics differ in the demands they make 

on cognitive resources, specifically on prior knowledge and the amount of 

information to be processed. We therefore indicate, on the right of Table 1, 

differential requirements in terms of prior information, information to consult, 

calculations, and numbers of comparisons to be made (minimum to maximum).  For 

example, Table 1 shows that the EW and DR models require no prior information 

other than the signs of the zero-order correlations between the cues and the criterion 

(a minimum). On the other hand, the lexicographic, DEBA, and hybrid models need 

to know which cue(s) is (are) most important.  Against this, the lexicographic and 

DEBA heuristics do not necessarily use all cues and require no calculations.  The cost 

of DR lies mainly in the number of comparisons that have to be made. 

 Our goal is to develop theoretical models that predict heuristic performance. A 

priori, two hypotheses can be suggested.  First, we would expect models based on 

continuous variables to outperform their binary counterparts.  Second, models that 

resolve ties of other models would be expected to be more accurate than the latter. 

Hence DEBA should be more accurate than SVb, and EW/DEBA and EW/SVb more 

                                                 
3 We are fully aware that multiple regression is not necessarily “the” optimal model for all tasks.   
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accurate than EWb.  However, whether DEBA is more accurate than SVc will depend 

on environmental characteristics.    

 Three types of environmental variables can be expected to affect absolute and 

relative model performance.  These are, first, the distribution of “true” cue validities4 

(i.e., how the environment weights different variables, cf., Payne et al., 1993); second, 

the level of redundancy or inter-correlation among the cues; and third, the level of 

“noise” in the environment (i.e., its inherent predictability).  Of these factors, 

increasing noise will undoubtedly decrease performance of all heuristics and, by 

extension, differences between the heuristics.  Similarly, cue redundancy should 

decrease differences between heuristics. However, apart from these main effects, it is 

difficult to intuit how the different factors will combine to determine absolute and 

relative performance. To achieve this, we need to develop specific theory for each of 

the heuristics. 

 The next section is technical and provides the necessary theory. To facilitate 

exposition, we first develop the theory for one heuristic, SVc.  This allows us to 

explain the basic theoretical logic that is subsequently applied, first, to heuristics 

involving more than one continuous variable, and next, to heuristics based on binary 

variables.  In these developments, we concentrate on where the theory differs for the 

different heuristics. We also make use of appendices and an online supplement 

(Hogarth & Karelaia, 2006) to provide details of formulas and derivations. 

  

III. Models with continuous variables 

The single continuous variable heuristic (SVc). Imagine choosing from a 

distribution characterized by two correlated random variables, one of which is a 

                                                 
4 The cue validity for a particular cue/attribute is defined by its correlation with the criterion. 
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criterion, Y, and the other an attribute, X.  Furthermore, assume that alternative A is 

preferred over alternatives B and C  if ya > yb and  ya > yc.5   Now, imagine that the 

only information about A, B, and C are the values that they exhibit on the attribute, X. 

Denote these specific values by xa, xb, and  xc, respectively. Without loss of generality, 

assume that xa > xb and xa > xc and that the decision rule is to choose the alternative 

with the largest value of X, i.e., in this case A. The probability that A is in fact the 

correct choice can therefore be characterized by the joint  probability  that     Ya > Yb 

given that xa > xb and Ya > Yc conditioned on xa > xc, in other words,   

( ) ( ){ }ccaacabbaaba xXxXYYxXxXYYP =>=>∩=>=> .  

To determine this probability, assume that Y and X are both standardized 

normal variables, i.e., both are N(0,1).  Moreover, the two variables are positively 

correlated (if they are negatively correlated, simply multiply one by -1). Denote the 

correlation by the parameter yxρ , ( yxρ > 0).  Given these facts, it is possible to 

represent Yi (i=a, b, c) by the equation: 

iiyxi XY ερ +=          (1) 

where the εi (i=a, b, c) are normally distributed error terms, with means of 0 and 

variances of ( )21 yxρ− , independent of  each other and of all Xi’s.     

 Using equation (1), the differences between all pairs Yi and Yj, j≠i, can be 

written as 

( ) ( )jijiyxji XXYY εερ −+−=− .     (2) 

Thus, Yi >Yj  for all j≠i if  

( )jiyxij XX −<− ρεε   for all j≠i.    (3) 

                                                 
5 We denote random variables by upper case letters, e.g., Y and X, and specific values or realizations by 
lower case letters, e.g., y and x. As an exception, we use lower case Greek letters to denote random 
error variables, e.g., ε. 
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 The probability of correct choice can now be restated as   

( )( ) ( )( ){ }cayxacbayxab xxxxP −<−∩−<− ρεερεε .  (4) 

To determine this probability, we make use of the facts that the differences 

between the error terms, (εb - εa) and (εc - εa), are both normally distributed with 

means of 0 and variances of ( )212 yxρ− .  Standardizing (εb - εa) and (εc - εa), we can re-

express equation (4) as 

( ) ( ){ }acab lzlzP <∩< 21 ,      (5) 

where z1 and z2 are standardized bivariate normal variables with variance / covariance 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

2
1

2
1

zV , and means of 0, and 
( )
( )212 yx

bayx
ab
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l

ρ

ρ

−

−
= , 

( )
( )212 yx
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xx
l

ρ

ρ

−

−
= .6   

Therefore, the probability of correctly selecting A over B and C is  

∫ ∫
∞− ∞−

ab acl l

zz dzdzVz 21),( µϕ       (6) 

where the probability density function (pdf) 
( )

zVz

m
z

zz
ze

V
Vz

1

2
1

2/)1(

2/1

2
),(

−′−

−=
π

µϕ , 

),( 21 zzz =′ , with m (the number of alternatives) equal to 3.  

As can be seen by observing the limits abl  and acl , the probability of correct 

choice increases when the correlation yxρ becomes larger as well as when the 

differences ( )ba xx −  and ( )ca xx −  are greater.7  

To generalize the above, assume that there are m (m > 3) alternatives from 

which to choose and that each has a specific X value, xi, i=1,…., m.  Without loss of 

generality, assume that x1 has the largest value and we wish to know the probability 

                                                 
6 The derivation that 2

1
, 21

=zzσ  can be found in the online supplement (Hogarth & Karelaia, 2006). 
7 This is illustrated graphically in the online supplement (Hogarth & Karelaia, 2006). 
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that the corresponding alternative has the largest value on the criterion.  Generalizing 

from the above, this probability can be calculated using properties of the multivariate 

normal distribution and written,  

∫ ∫
∞−

−
∞−

−
*
1

*
1

11....),(...
d

m

d

zz dzdzVz
m

µϕ             (7) 

where the pdf ),( zz Vz µϕ  is defined as above; ( )2

*

12 yx

tyx
t

d
d

ρ

ρ

−
=  for each between-

alternative comparison 1,1 −= mt ; the elements of ),...,,( 121 −=′ mzzzz  are jointly 

distributed standard normal variables, and 1−
zV is the inverse of the (m-1)x(m-1) 

variance-covariance matrix where each diagonal element is equal to 1 and all off-

diagonal elements equal ½. For binary choice, that is, when m = 2, analogous 

derivations lead to similar expressions to those shown above (see Hogarth & Karelaia, 

2005b).  

The probabilities given above are those associated with particular 

observations, i.e., that A is larger than B and C given that a specific value, xa, exceeds 

specific values xb and xc.  However, it is also instructive to consider the overall 

expected accuracy of SV, i.e., the overall probability that SV makes the correct choice 

when sampling at random from the population of alternatives.   

Overall, SV can make successful choices in three ways: selecting A when xa is 

bigger than xb and xc; selecting B when xb is bigger than xa and xc;                              

and selecting C when xc is bigger than xa and xb.  Since the three                              

cases are symmetric, the overall probability of correct choice is   

( ) ( )( ) ( ) ( )( ){ }cabacaba YYYYXXXXP >∩>∩>∩>3 . 

To derive analytically the overall probability of correct choice by SV when 

sampling at random from the underlying population of alternatives, the latter 
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expression should be integrated across all possible values that can be taken by                 

01 >−= ba XXD , and 02 >−= ca XXD . That is   

  
2121

00

*
1

*
2

),(),(3 dddddzdzVzVd
d d

zzdd
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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∞− ∞−

∞∞

µϕµϕ      (8) 

where pdfs ),( dd Vd µϕ  and ),( zz Vz µϕ  are defined for ),( 21 zzz =′ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

2
1

2
1

zV , 

),( 21 ddd =′ , ⎟⎟
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⎝

⎛
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12

dV , and ( )2

*

12 yx

tyx
t

d
d

ρ

ρ

−
=  for 2,1=t . In Appendix A, we 

generalize these formulas for choosing one of m alternatives.  

Equal weighting (EWc) and multiple regression (MRc). What are the 

predictive accuracies of models that make use of several, k, continuous cues or 

variables, k > 1?  We consider two models. One is equal weighting (EWc). The other 

is multiple regression (MRc).  To analyze these models, assume that the criterion 

variable, Y, can be expressed as a function of k predictor variables, Xj (j =1,..,k) each 

of which is N(0,1). For EWc, the predicted Y value associated with any vector of 

observed x’s is equal to ∑
=

k

j
jx

k 1

1 or x .  Similarly, the analogous prediction in MRc is 

given by ∑
=

k

j
jj xb

1

or ŷ where the bj’s are estimated regression coefficients. In using 

these models, therefore, the decision rules are to choose according to the largest x  for 

EWc and the largest ŷ value for MRc.   

How likely are EWc and MRc to make the correct choice?  The rationale to 

derive the probabilities of correct choice is the same as in the single variable (SVc) 

case. All formulas are shown in Appendix A (for choosing the best of m alternatives). 

In particular, we present there the elements that are specific to different models, such 

as the initial formulations (corresponding to equation 1), the error variances, the upper 
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limits of integration *
td  used to calculate probabilities when applying the analogues to 

equations (6) and (8), and finally the variance-covariance matrix dV .  

Models with binary variables. To discuss expected predictive performance of 

heuristics based on binary variables, assume that the dependent variable, Y, is 

generated by a linear model of the form     

  ∑
=

 ++=
k

j
jjWaY

1
ϖγ    (9) 

where Wj = 0, 1 are the binary variables (j = 1,…,k), the γj are weighting parameters   

and ϖ  is a normally distributed error term.    

To derive theoretical predictions, we adopt an approach similar to that used 

with continuous variables.  We therefore focus on issues that differ between the 

continuous and binary cases. 

The single binary variable heuristic (SVb). Assuming that wa > wb and          

wa > wc, the probability that SVb chooses correctly between three alternatives, A, B, 

and C is ( ) ( ){ }ccaacabbaaba wWwWYYwWwWYYP =>=>∩=>=> .    

 To determine this probability, recall that Y is a standardized normal variable 

N(0,1). The binary variable, W, however, only takes values of 0 and 1 and thus has a 

mean of 2
1  and standard deviation, wσ , of 2

1 .8 Denoting the correlation between Y 

and W by ρyw, we can express Y as being equal to ς
σ
ρ

++ Wa
w

yw
SVb ,  or,  simply, 

   ςρ ++= WaY ywSVb 2       (10) 

where ς  is a normally distributed error term N( 0, 21 ywρ− ).9         

                                                 
8 Recall that binary variables are created by median splits of continuous variables. 
9 Since E(Y) = 0, it follows that the intercept ywSVba ρ−= . 
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 Proceeding in similar fashion to the continuous case, we find that the 

probability of SVb predicting correctly is given by equation (6) but with different 

upper integration limits: ( )212

2

yw

yw
acab ll

ρ

ρ

−
== . (The two limits are the same since 

both ( )ba ww −  and ( )ca ww −  are equal to one).  

Since the only difference between the theoretical expressions for the 

continuous and binary cases lies in the formulas for the upper limits of integration, 

generalizing the above for choices between m (m > 3) alternatives is analogous to that 

for the continuous case.  

Following the same rationale, we can derive the formulas for the probabilities 

for EWb and MRb when choosing the best of three alternatives using binary variables. 

In Appendix B, we present the key formulas for the models using binary variables, 

analogous to those in Appendix A for the models using continuous variables.  

The DEBA heuristic.  Recall that this multi-stage model uses binary cues and 

works in the following way. At the first stage, alternatives with values of 0 for the 

most important cue are eliminated unless all alternatives exhibit 0. If only one 

alternative has a value of 1, it is selected and the process terminates. If, however, 

more than one alternative remains, the same procedure takes place with the remaining 

alternatives except that the second most important cue is used. The process continues 

in the same manner through subsequent stages, if necessary. It stops when either only 

one alternative remains (i.e., the chosen alternative) or, if there is more than one 

alternative but no more cues, choice is determined at random among the remaining 

alternatives.   

The probability that a given alternative was chosen correctly by DEBA is the 

probability that the sequence of decisions (or eliminations) made by the model at each 
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stage is correct.  Thus, since at each stage of the model decisions are made conditional 

on the preceding stages, the key parameters in estimating these probabilities are the 

partial correlations between Y and Wj, j = 1,…,k (i.e., controlling for previous stages). 

For the first stage, this is 
1ywρ , for the second 

12 .wywρ ,  for the third, 
213 . wwywρ , and so 

on.10  (Two examples of the calculations for DEBA are provided in Appendix C.)  

Overall, the probability of DEBA making the correct choice has to be 

calculated on a case-by-case basis taking into account, at each stage, the probability 

that the selected alternative should be chosen over the alternative(s) eliminated at that 

stage using the partial correlation of the cue appropriate to the stage.  Moreover, the 

probability for each case includes the probabilities of successful decisions at each 

stage. If at the final stage, there are two or more alternatives, the appropriate random 

probability is adjusted by the probability that correct decisions were taken at previous 

stages (see the examples in Appendix C).11  

The EW-SVb heuristic. The first stage of this heuristic uses EWb. If a single 

alternative is chosen, the probability of it being correct is found by applying the 

formula for EWb.  If two or more alternatives are tied, a second stage consists of 

selecting the alternative favored by the first cue.  To calculate the probability that this 

is correct, one needs to calculate the joint probability that the selected alternative (a) 

is larger than the alternatives eliminated at the first stage, and (b) larger than the other 

alternatives considered at the second stage. (To calculate these probabilities, use is 

made of the appropriate analogues to equation 6).  Any ties remaining after stage two 

                                                 
10 For example, 

( )( )
.

11 22.

211

2112

12

wwyw

wwywyw
wyw

ρρ

ρρρ
ρ

−−

−
=  

11 In this section, we have only indicated the general strategy for calculating relevant probabilities for 
DEBA.  The details involve repeated applications of the same probability theory principles applied in 
many different situations (Karelaia & Hogarth, in preparation). 
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are resolved at random with a corresponding adjustment being made to the probability 

calculations. 

The EW-DEBA heuristic.  This  starts as EWb. If EWb chooses one alternative, 

the probability of correct choice of the model coincides with that for EWb. If two or 

more alternatives are tied, the DEBA model is used to choose between the remaining 

alternatives and probabilities are calculated accordingly (see above). 

  

IV. Empirical evidence 

 Our equations provide exact theoretical probabilities for assessing the 

performance of the different heuristics in specified conditions, i.e., to map the 

contours of the regions of rationality.  However, several factors affect absolute and 

relative performance levels of the models (e.g., cue validities, inter-correlation among 

variables, continuous vs. binary variables, error), and it is difficult to assess their 

importance simply by inspecting the formulas.  

 We therefore use both simulated and empirical data to illuminate model 

performance under different conditions. Real data have the advantage of testing the 

theory in specific, albeit limited environments. Simulated data, on the other hand, 

facilitate testing model predictions over a wide range of environments. We first 

consider the simulated data. 

Simulation design and method.  The simulation design used for choosing the 

best from two, three and four alternatives is presented in the upper panel of Table 2.  

Our goal was to vary environmental factors that we thought, a priori, would be 

important. These were the level of noise or error in the environment, redundancy 

between attributes/cues, the distribution of cue validities, and the number of cues. A 
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priori we would have liked to vary these factors orthogonally.  However, correlations 

between factors restrict implementing a fully systematic design.   

Overall, we specified 20 different populations that are subdivided into four 

sets or cases – A, B, C, and D – each of which contains five sub-cases (labeled 1, 2, 3, 

4, and 5).  We therefore varied some factors at the level of the cases (A, B, C, and D) 

and others across sub-cases (i.e., within A, B, C, and D).  

At the level of cases, A and B involved three cues or attributes whereas cases 

C and D involved five. Cases A and C had little or no inter-cue correlation; cases B 

and D had moderate to high intercorrelation.    

--------------------------------------------- 
Insert Table 2 about here 

--------------------------------------------- 

Across sub-cases (i.e., from 1 through 5 within each of A, B, C, and D), we 

varied: (1) the variability of cue validities (maximum less minimum); (2) the validity 

of the first (i.e., most important) cue; (3) average validity; and (4) the correlation 

between y and x . For all, values increase from the sub-cases 1 through 5.  As a 

consequence, the R2 on initial fit for MR also increases across sub-cases. This implies 

that the sub-cases 1 involve high levels of error whereas the sub-cases 5 are, in 

principle, quite predictable environments. Sub-cases 2, 3, and 4 fall between these 

extremes. 

To conduct the simulation, we defined 20 sets of standardized multivariate 

normal distributions with the parameters specified in Table 2 and generated samples 

of size 40 from each of these populations. The observations in each sample were split 

at random on a 50/50 basis into fitting and prediction sub-samples and model 
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parameters were estimated on the fitting sub-sample.12 Two, three or four alternatives 

(as appropriate) were then drawn at random from this sub-sample and, using the 

estimated model parameters, probabilities of correctly selecting the best of these 

specific alternatives were calculated. This was then compared to what actually 

happened, that is, on a fitting basis.  Next, alternatives were drawn at random from the 

prediction sub-sample, relevant probabilities calculated using the parameters from the 

fitting sub-sample, and predictions compared to realizations. This exercise was 

repeated 5,000 times (for each of the choices involving two, three, and four 

alternatives).13    

The above describes the procedure used for continuous data.  For models 

using binary data, we followed exactly the same procedures except that predictor 

variables only took values of 0 or 1. Specifically, since we were sampling continuous 

normalized variables, we created binary variables by median splits (i.e., binary 

variables were set to 0 for negative values of continuous variables and 1 for non-

negative values).   Thus, if one estimates the parameters of the 20 populations for the 

binary data, the estimates differ systematically from their continuous counterparts.   

Simulation results.  First of all, the models were successful on cross-

validation: the theoretical predictions (i.e., formula-based) matched the actual 

realizations (i.e., simulated) almost perfectly. The only exception was MR which 

manifested the well-known over-fitting effect. Although we used adjusted R2 in 

                                                 
12 It is of particular interest to examine the performance of heuristics in situations involving small 
samples. We therefore chose sample sizes of 40 to allow for fitting and holdout samples of size 20.   
13 A possible criticism of our predictive tests of the single variable models (SVc, SVb, and DEBA) is 
that we did not use the sampling process to determine the most important variable (for SVc and SVb) 
nor the rank orders of the cue validities (for DEBA). Instead, we endowed the models with the 
appropriate knowledge.  However, in subsequent simulations we have found that with sample sizes of 
20 (as here) the net effect of failing to identify the most important variable is quite small. Similarly, as 
long as DEBA correctly identifies the most important variable, net differences are also small (Hogarth 
& Karelaia, 2005a). 
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making predictions, the adjustment was insufficient.14 We therefore report here results 

based only on actual realizations in the holdout samples. These are presented in the 

lower panel of Table 2 for the choice of the best of three alternatives. The analogous 

results for choosing from two and four alternatives can be found in the online 

supplement (Hogarth & Karelaia, 2006).15 Qualitatively, the relative effectiveness of 

the models is similar whether one considers the best of three (Table 2) or two or four 

(Hogarth & Karelaia, 2006). What changes, of course, is the general level of 

performance which diminishes as the number of alternatives increases.   

To simplify reading the table, note that the best level of performance for each 

population (i.e., per column) is presented in bold (e.g., 52). In addition, when MRc is 

best, we also denote the second best in bold. We further show means for each column 

and row. The column means thus represent the average results of all models within 

specific populations whereas the row means characterize average model performance 

across populations.  

 There are several systematic effects in the results presented in Table 2.  First, 

across all environments, the mean levels of heuristic performance do not vary greatly, 

i.e., on the right-hand side column of Table 2 the means (excluding MRc) range only 

between 43% and 57%.   

Second, consider whether predictor variables are binary or continuous. The use 

of binary as opposed to continuous variables implies a loss of information. As such, 

we expected that models based on continuous variables would predict better than their 

binary counterparts. Indeed, this is always the case in three direct comparisons: SVc 

vs. SVb, EWc vs. EWb, and MRc vs. MRb.   Specifically, note that SVb and EWb are 
                                                 
14 One can also argue with some justification that the ratio of observations to predictor variables is too 
small to use multiple regression (particularly for cases C and D). However, we are particularly 
interested in observing how well the different models work in environments where there are not many 
observations. 
15 This also provides details of how well all models both fit and predicted the different cases. 
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both handicapped relative to SVc and EWc in that they necessarily predict many ties 

that are resolved at random.  Thus, so long as the knowledge in SVc and EWc implies 

better than random predictions, models based on continuous variables are favored.  

On the other hand, the performance of DRb dominates DRc. We comment on this 

result below.  

Third, models that resolve ties generally perform better than their counterparts 

that are unable to do so (e.g., DEBA vs. SVb, and EW/DEBA and EW/SVb vs. EW).  

However, in the presence of redundancy, these differences are quite small and can 

even reverse (i.e., see cases B and D).  

Fourth, an interesting comparison is that between SVc and DEBA. The former 

uses a single, continuous variable.  The latter relies heavily on one binary variable but 

can also use others depending on circumstances.  It is thus not clear which strategy 

actually uses more information. However, once again, characteristics of the 

environment determine which strategy is more successful. SVc dominates DEBA in 

case B as well as for much of cases A and D.   On the other hand, DEBA dominates 

SVc in case C.   

----------------------------------------------------------- 
Insert Figure 1 about here 

----------------------------------------------------------- 

Fifth, Figure 1 illustrates significant differences in some regions by depicting 

the performance of five heuristics across all the environments for the choice of the 

best of three (i.e., data from Table 2).  Two of these models, DRb and MRc, represent, 

respectively, naïve and “sophisticated” benchmarks.  The others, SVc, DEBA, and 

EWc are different types of heuristics (see Table 1). Both SVc and DEBA require prior 

knowledge of what is important (DEBA more so than SVc). However, they use little 

information and neither involves any computation. (DEBA, it should be recalled, also 
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operates on binary data.)  EWc, on the other hand, does not require knowledge of 

differential importance of variables but does use all information available and needs 

some computational ability. 

In interpreting Figure 1, it is instructive to recall that cases A and C (on the 

left) represent environments with low redundancy whereas cases B and D (on the 

right) have higher levels of redundancy.  Also within each case, the amount of noise 

in the environment decreases as one moves from sub-case 1 (on the left) to sub-case 5 

(on the right).  

As expected, in the noisier environments (sub-cases 1), the performances of all 

models are degraded such that differences are small.  However, as error decreases 

(i.e., moving right toward sub-cases 5), model performances vary by environmental 

conditions.  With low redundancy (cases A and C), there appear to be large 

differences in model performance. However, in the presence of redundancy (cases B 

and D), there are two distinct classes of models:  SVc and MRc have similar 

performance levels and are superior to the others. We further note that SVc is most 

effective in case B and also does well as environmental predictability increases in 

cases A and D.  DEBA is never the best model but performs quite adequately in case 

C where EWc has the best performance. Of the benchmark models, DRb generally 

lags behind the other models (as would be expected). Finally, although MRc is 

typically one of the better models, it does not dominate in all environments. 

Discussion of simulation. We consider three issues: first, the fact that the 

overall performance of the heuristics was more similar than might have been expected 

a priori; second, the intriguing result that the DOMRAN heuristic performed better 

using binary as opposed to continuous variables; and third, factors that explain the 

differential performance of the heuristics. 
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One way of examining similarity in performance between heuristics is to 

examine the percentage of cases for which they make the same predictions (whether 

correct or incorrect).  Limiting ourselves only to those heuristics illustrated in Figure 

2, we find that the average across all pairs of heuristics and datasets is 63% – in other 

words, these heuristics made the same predictions in some two-thirds of cases.16  This 

average is, of course, higher when cues/attributes are more inter-correlated (means of 

66% for cases B and D but 62% for A and 57% for C – data not shown in tables). At 

one level, this result might seem surprising. On the other hand, our heuristics are 

“sensible” in the sense that they all use valid variables. Where they differ is in how 

many they use and how these are weighted.    

Second, the surprising result that DRb outperforms DRc can be resolved by 

noting that the former exploits more cases of “apparent” dominance than the latter. 

Specifically, in choosing the best of three, DRb was only forced to make random 

choices in, on average, 51% of all cases whereas the same figure was 81% for DRc 

(these data are not shown in our tables).  Thus, to the extent that the “additional” 

dominance cases detected by DRb had more than a random chance of being correct, 

DRb outpredicted DRc. This finding is important because it demonstrates how a 

simple strategy can exploit the structure of the environment such that more 

information (in the form of continuous as opposed to binary variables) does not 

improve performance (a so-called “less is more” effect, Goldstein & Gigerenzer, 

2002; Hertwig & Todd, 2003).  

Third, a way of summarizing factors that affect the performance of the 

different models is to consider the regression of model performance on statistics that 

                                                 
16 To calibrate this result, note that if all models chose at random, the probability of any two models 
agreeing when selecting one of three alternatives would be 1/3.  
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characterize the 20 simulated environments. In other words, consider regressions for 

each of our eleven models of the form  

iii ZP τδ +=        (11) 

where iP  is the performance realization of model i (i = 1, …, 11); Z is the (20 x 3) x s 

matrix of independent variables (statistics characterizing the datasets where there are 

three choice situations, i.e., best of two, three, or four alternatives); iδ  is the s x 1 

vector of regression coefficients; and iτ  is a normally distributed error term with 

constant variance, independent of Z. 

--------------------------------------------------- 
Insert Table 3 about here 

--------------------------------------------------- 

 To characterize the environments or datasets (the Z matrices), we chose the 

following variables: variability of cue validities (maximum less minimum), the 

validity of the most important cue (
1yxr ), the validity of the average of the cues ( xyr ), 

average inter-correlation of the cues, average validity of the cues, number of cues, and 

R2 for MRc and MRb.17  We also used dummy variables to model the effects of 

choosing between different numbers of alternatives. Dummy1 captures the effect of 

choosing from three as opposed to two alternatives, and Dummy2 the additional effect 

of choosing from four alternatives.  Results of the regression analyses are summarized 

in Table 3. 

We used a step-wise procedure with entry (exit) thresholds for the variables of 

<.05 (>.10) for the probability of the F statistic.  All coefficients for the models shown 

                                                 
17  We only used R2 as an independent variable for MRc and MRb because we thought it would be 
appropriate for these models. For the other models, however, it was deemed more illuminating to 
characterize performance by the other measures (R2 and these other measures are correlated in different 
ways). It should also be noted that we used the same statistics (based on continuous variables) to 
characterize the environments for models using both continuous and binary variables on the grounds 
that the underlying environments were based on continuous variables.  
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in Table 3 are statistically significant (most with p < .001) and all regressions fit the 

data well (see R2 and estimated standard errors at the foot of Table 3).  The constant 

terms measure the level of performance expected of the models in binary choice 

absent information about the environment (approximately 45, i.e., from 39 to 50).  

Dummy1 indicates how much performance would fall when choosing between three 

alternatives (between 11 and 15), and Dummy2 shows the additional drop 

experienced when choosing among four alternatives (between 6 and 9).  

For SVc and SVb, only one other variable is significant, the correlation 

between the single variable and the criterion. This makes intuitive sense as does the 

fact that the regression coefficient is larger with continuous as opposed to binary 

variables (50 vs. 29).  The DEBA and EW heuristics are all heavily influenced by the 

correlation between the criterion and x . Recall, however, that this correlation is itself 

an increasing function of average cue validity and the number of cues but decreasing 

in the inter-correlation between cues (see footnote 1 in Appendix A).  Thus, ceteris 

paribus, increasing inter-correlation between the cues reduces the absolute 

performance levels of these heuristics. DEBA differs from the EW heuristics in that 

the correlation of the most valid cue is a significant predictor. This matches 

expectations in that DEBA relies heavily on the validity of the most important cue 

whereas EW weights all cues equally.  (We also note that the SV heuristics weight the 

most valid cue more heavily than DEBA.) As to Domran, the interpretation of the 

signs of all coefficients is not obvious. Finally, for MRc it comes as little surprise that 

R2 should be so important although this is less salient for MRb. 

A possible surprise is that variability in cue validities (maximum less 

minimum) was not a significant factor for most models.  One might have thought, a 

priori, that such dispersion would have been important for DEBA (cf., Payne et al.,   
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1993).  This is not the case; but it is consistent with theoretical analyses of DEBA that 

demonstrate its robustness relative to different “weighting functions” (Hogarth & 

Karelaia, 2005a; Baucells, Carrasco, & Hogarth, 2006).  

Finally, whereas the regression statistics paint an interesting picture of model 

performance in the particular environments observed, we caution against 

overgeneralization.  We only observed restricted ranges of the environmental statistics 

(i.e., characteristics) and thus cannot comment on what might happen beyond these 

ranges. Our approach, however, does suggest how to illuminate model x environment 

interactions. 

To summarize, across all 20 environments that, inter alia, are subject to 

different levels of error, the relative performances of the different models were not 

seen to vary greatly when faced with the same tasks (e.g., choose best of three 

alternatives).  However, there were systematic differences due to interactions between 

characteristics of models and environments. Thus, whereas the additional information 

contained in continuous as opposed to binary variables benefits some models, e.g., SV 

and EW, it can be detrimental to others, e.g., DR.  Second, models varied in the extent 

to which they were affected by specific environmental characteristics.  SV models, for 

example, depend heavily on the validity of the most valid cue whereas this only 

affects EW models through its impact on average cue validity.  Interestingly, the 

validity of the average of the cues was seen to have more impact on the performance 

of DEBA than the validity of the most valid cue. Average inter-correlation of 

predictors or redundancy tends to reduce performance of all models (except SV). 

Overall, results do match some general trends noted in previous simulations 

(Payne et al., 1993; Fasolo et al., in press); however, patterns are not simple to 

describe.  The value of our work, therefore, is that we now possess the means to make 
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precise theoretical predictions for various heuristics in different environments. That is, 

given specified environments, we can predict absolute and relative model 

performance a priori.     

Empirical data.   We used datasets from three different areas of activity. The 

first involved performance data of the 60 leading golfers in 2003 classified by the 

Professional Golf Association (PGA) in the USA.18  From these data (N = 60), we 

examined two dependent variables: “all-round ranking” and “total earnings.” The first 

is a measure based on eight performance statistics.  For our models, we chose three 

predictor variables that account for 67% of the variance in the criterion. These were 

mean numbers – across rounds played – of birdies, total scores, and putts. Since the 

first variable was negatively related to the criterion, it was rescaled (multiplying               

by -1).  

Eighty-two percent of the variance in the second golf criterion, total earnings, 

could be explained by three variables, “number of top 10 finishes,” “all-round 

ranking” (the previous dependent variable), and “number of consecutive cuts.”  Of 

these, all-round ranking was negatively correlated with the criterion and so rescaled 

(multiplying by -1). 

The second dataset consisted of rankings of PhD economics programs in the 

USA on the basis of a 1993 study by the National Research Council (N = 107).19  

Three variables accounted for 80% of the variance in the rankings: number of PhD’s 

produced by programs for the academic years 1987-88 through 1991-1992, total 

number of program citations in the period 1988-1992 divided by number of program 

faculty, and percentage of faculty with research support. 

                                                 
18 These data were obtained from the webpage http://www.pgatour.com/stats/leaders/r/2003/120 
(accessed in June 2004). They are performance statistics of golfers in the main PGA Tour for 2003.   
19   For more details, see the webpage http://www.phds.org (accessed in June 2004). 
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The third dataset was taken from the UK consumer organization Which?’s 

assessments of digital cameras in 2004 (N = 49).20  Three variables were found to 

explain 72% of the variance in total test scores: image quality, picture downloading 

time, and focusing. 

--------------------------------------------------- 
Insert Table 4 and Figure 2 about here 

--------------------------------------------------- 

Table 4 (upper panel) summarizes statistical characteristics of these datasets. 

As can be seen, there is little to moderate variability in cue validities (compare 

Economics PhD programs with the other datasets); all datasets have at least one 

highly valid cue; average inter-correlation varies from moderate to low (Consumer 

reports: Digital cameras); and there are high correlations between the criteria and the 

means of the predictor variables.   

The testing procedure was similar to the simulation methodology. We divided 

each sample at random on a 50/50 basis into fitting and testing sub-samples. Model 

parameters were then estimated on the fitting sub-sample and these parameters used to 

calculate the probabilities that the models would correctly choose the best of two, 

three, and four alternatives that had also been randomly drawn from the same sub-

sample. This was the fitting exercise. To test the models’ predictive abilities, two, 

three, and four alternatives were drawn at random from the second or testing sub-

sample and, using the parameters estimated from the data in the first or fitting sub-

sample, model probabilities were calculated for the specific cases and subsequently 

compared to realizations. This exercise was repeated 5,000 times such that the data 

reported in Table 4 (lower panel) shows the aggregation of all these cases. Also 

                                                 
20 For further details, see the webpage http://sub.which.net (accessed in June 2004). 
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similar to the simulation methodology, we created binary datasets by using median 

splits of the continuous variables. 

Once again, there is an excellent fit between predictions and realizations 

(except for MR). For this reason, in Table 4 (lower panel), we only report the results 

of realizations for choosing the best out of two, three, and four alternatives for each 

dataset.21  Overall, the models have high levels of performance which, naturally, 

diminish as the number of alternatives increases (however, perhaps, not as much as 

might have been thought a priori. See, in particular, Economics PhD programs).   

As with the simulated datasets, there is much agreement between the 

predictions of the different heuristics. 22  Moreover, the SV, EW, and MR models with 

continuous variables outperform their binary counterparts (with one exception in 36 

comparisons) but DRb dominates DRc. (Once again, DRb identifies “dominance” 

more often than DRc, 59% versus 45% for choosing the best of three). As to the SVc 

versus DEBA comparison, SVc outperforms DEBA by some margin on the Golf 

rankings and Golf earnings datasets but DEBA dominates SVc on the other two 

datasets. From a statistical viewpoint, these two datasets differ from the others in that 

the Economics PhD programs has low variability of cue validities and Consumer 

reports: Digital Cameras has low average cue inter-correlation. 

Figure 2 shows the performances of SVc, DEBA, EWc, DRb, and MRc.  

Whereas the datasets have some similarities (e.g., the validities of the first cue and the 

correlations between the criteria and the means of the predictor variables are almost 

the same), other differences (notably variability in cue validities and levels of cue 

inter-correlations) are sufficient to change relative predictive performance.  SVc is 
                                                 
21 Details of model fits and predictions are included in the online supplement (Hogarth & Karelaia, 
2006). 
22 For example, for choosing the best of three, the average of the pairwise agreements between the 
heuristics in Figure 2 is 74% (data not shown here). 
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effective for Golf rankings and Golf earnings, EWc predicts the Economics PhD 

programs well and DEBA is best for Consumer reports: Digital cameras.  As to the 

benchmark models, DRb generally has the lowest performance, with the exception of 

choosing one of two in the Consumer reports: Digital cameras and Economics PhD 

programs datasets where it outperforms SVc. For all datasets, MRc is always one of 

the better models but it does not dominate the other models.  Taken as a whole, our 

theoretical models account for complex patterns of data. 

 

V. Discussion 

We have mapped regions of rationality by studying a class of decisions that 

involve choosing the best of m (m > 2) alternatives on the basis of k (k > 1) cues or 

attributes.  As such, this is a common task in inference and also has applications to 

preference (cf., Hogarth & Karelaia, 2005a).  We have shown – through theory, 

simulation, and empirical demonstration – that certain simple, heuristics can have 

effective performance relative to more complex, sophisticated benchmarks and, 

indeed, when data are scarce can, on occasion, perform better than the latter.  More 

importantly, our theoretical analysis predicted differential model performance in a 

wide range of environments.  Thus, for example, for our empirical datasets we 

predicted – and later verified – that EWc would be the best of the simple models for 

Economics PhD programs but SVc the best for Golf rankings.    

General trends concerning relative heuristic performance have, of course, been 

known for some time (e.g., effects of inter-correlations between cues or attributes).  

However, the advantage of our approach is that we can specify a priori the combined 

effects of different environmental characteristics such as variability in cue validities, 

inter-correlations, level of error, and so on.  Moreover, we observed that the effects of 



 32

tradeoffs between such factors are complex and often defy simple description.  The 

terrain that we have mapped has many dimensions.  

One factor we did not consider was the effect of sampling alternatives from 

the underlying populations in biased or non-random ways.  Clearly, results would be 

different if sampling excluded certain profiles of alternatives such as those likely to 

dominate others or be dominated.23 On the other hand, our theoretical method allows 

us to make case-by-case predictions such that – through suitable aggregation – we 

could make predictions for samples drawn in specific, non-random ways provided the 

same sampling procedures are used in both fitting and holdout samples. Showing the 

effects of such non-random sampling is thus straightforward and can be addressed in 

future research. 

This paper is also limited by the criterion used to measure model effectiveness, 

i.e., the emphasis on probability of correct choices.  This might seem restrictive in that 

it assumes a “hit or miss” criterion with no consideration as to how “good” the other 

alternatives are.  We accept this limitation but emphasize that our methodology can be 

easily extended to other loss functions. 

 First, for simplicity, consider an example of binary choice using a single 

variable (SV) where our methodology is used to determine the probability that 

alternative A is better than alternative B. In addition to determining the probability 

that Ya is greater than Yb (or equivalently 0>− ba YY ), we can also consider the 

probability that cYY ba >−  where c > 0. To find this value, we need to modify the 

inequalities involving error differences. For example, the inequality (3), that for A and 

B is written as  ( )bayxab XX −<− ρεε , becomes:  

                                                 
23 Note that we would not be able to apply our “overall formulas” (e.g., equation 8) to these populations 
because they assume unbiased, random sampling. 
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( ) cXX bayxab −−<− ρεε      (3´) 

and we proceed as before with the calculations. Moreover, by repeating this 

calculation for different values of c, one can investigate how much better  Ya is likely 

to be compared to Yb. As an example, one can calculate the value of c for which 

{ } 5.0>>− cYYP ba  or other meaningful levels of probability. 

Second, our theoretical models can be used to specify not just the probability 

that one alternative will be correctly selected but also the probabilities for all 

alternatives.    For example, imagine choosing between three alternatives A, B, and C 

using the SV model and having observed cba xxx >> . Above, we calculated the 

probability ( ) ( ){ }ccaacabbaaba xXxXYYxXxXYYP =>=>∩=>=> . However, 

we could also have calculated the probability that B is the largest, that is 

( ) ( ){ }ccbbcbbbaaab xXxXYYxXxXYYP =>=>∩=>=>  and so on.  In other 

words, we can specify the probabilities associated with all possibilities. Given such 

distributions over possible outcomes, it is straightforward to consider the effects of 

different loss functions, a topic we also leave for further research. 

 Future work could also build on our theoretical approach to consider variations 

of the models we have examined here.  One might analyze, for example, models that 

are less "frugal" than SV in that they use more than one cue and yet still do not use all 

available information (e.g., Lee & Cummins, 2004; Karelaia, in press). As another 

example, models might involve mixtures of categorical and continuous variables or 

the effects of different types of error. How, for instance, would heuristics perform 

when there are errors in the variables (perhaps due to measurement problems) or 

missing values? In addition, it will be important to investigate effects due to 
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deviations from assumptions of normal distributions examined in this paper. Clearly 

many further elaborations can be undertaken. 

Our work has particular implications for decision making when attention is a 

scarce resource. As stated by Simon (1978):   

In a world in which information is relatively scarce, and where problems for 
decision are few and simple, information is almost always a positive good. In a 
world where attention is a major scarce resource, information may be an 
expensive luxury, for it may turn our attention from what is important to what 
is unimportant. We cannot afford to attend to information simply because it is 
there (Simon, 1978, p. 13). 
 
By way of illustration, Simon described executives whose management 

information systems provide excessive, detailed information.  Our work also 

identified regions where more information does not necessarily lead to better 

decisions and, if we assume that more complex models require more cognitive effort 

(or computational cost), there are many areas where there is no tradeoff between 

accuracy and effort.  For example, in cases B and D illustrated in Figure 2, the simple 

SVc model is more accurate than the other models indicated across almost the whole 

range of conditions and, yet, it uses less information. On the other hand, EWc is 

generally best in case C where SVc lags behind the other models. However, EWc uses 

more information than both SVc and DEBA such that one can ask whether the 

additional predictive ability is worth its cost. 

The models we examined might also be used in applied areas such as 

consumer research (cf., Bettman, Luce, & Payne, 1998). That is, instead of assuming 

that consumers make tradeoffs across many attributes, simpler SV or EW models can 

be constructed after eliciting a few simple questions concerning, say, relative 

importance of attributes.  For example, we have shown elsewhere that if people have 

loose preferences characterized by binary attributes, the outputs of DEBA are 

remarkably consistent with more complex, linear tradeoff models (Hogarth & 



 35

Karelaia, 2005a). However, it would be a mistake to assume that consumer 

preferences can always be modeled by one simple model (e.g., EW). Indeed, our 

theoretical analysis provides the basis for deciding which models are suited to 

different environments.   

As suggested, our models clearly have many implications for prescriptive 

work.  In addition to determining when heuristic models are appropriate for specific, 

applied problems in, for example, forecasting, personnel assessment and recruitment, 

medical decision making, etc, heuristics are useful supports for more complicated, 

decision analytical modeling. When, for instance, does one need to assess tradeoffs 

precisely, or can heuristic-based simplifications suffice?  Here theory such as 

developed in this paper has great practical use for determining which heuristic to use, 

and when.   

Finally, in a world where attention is the scarce resource, we note that 

“rational behavior” consists of finding the appropriate match between a decision rule 

and the task with which it is confronted – a principle that is valid for both descriptive 

and prescriptive approaches to decision making.  On considering both dimensions, 

therefore, we do not need to assume unlimited computational capacity.  However, by 

relaxing this assumption, we incur two costs. The first, analyzed in this paper, is to 

identify the task conditions under which specific heuristics are and are not effective, 

i.e., to develop maps of the regions of rationality. The second, that awaits further 

research, is to elucidate the conditions under which people do or do not acquire such 

knowledge. In other words, how do people build maps of their decision making 

terrain? To be effective, people do not need much computational ability to make 

choices in the mazes that define their environments. However, they do need task-

specific knowledge or maps. 
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Table 1 -- Models tested 
Number of comparisons   

(A). Single Variable (SV) models 
 

Prior 
information* 

Information 
to consult  Calculations  

min  max  
1 Lexicographic 

 -- SVc 
Choice depends solely on cue with the greatest validity (see, e.g., Payne et 
al., 1993). 

2 Lexicographic  
-- SVb 

Model 1 above but based on binary variables. 
The most 

important cue 
( )

2
1−mm

  

3 DEBA Deterministic version of Tversky's (1972) elimination-by-aspects model 
(EBA). For binary choice, this is the same as the take-the-best model of 
Gigerenzer and Goldstein (1996). 

Rank-order 
of 

importance 
of cues 

Variable 

None  ( )1−m  

( )
2

1−mmk  

 
(B). Equal weight (EW) models      

4 EWc All cues are accorded equal weight (see, e.g., Einhorn & Hogarth, 1975). 

5 EWb All cues are accorded equal weight (see, e.g., Dawes, 1979),   
None  All  m sums   ( )1−m  

( )
2

1−mm
 

 
(C). Hybrid models 

  
6 EW/DEBA Choose according to equal weights. If this results in a tie, use DEBA to 

resolve the choice (Hogarth & Karelaia, 2005a). 

7 EW/SVb Choose according to equal weights. If this results in a tie, resolve conflict 
by the single most important variable  

Rank-order 
of 

importance 
of cues  

All  m sums   ( )1−m  
 

( )
2

1−mm
 

 
(D). Domran (DR) models 

8 DRc If an alternative dominates, choose it. Otherwise, choose at random 
between non-dominated alternatives. 

9 DRb Same as DRc except based on binary variables. 
None  All  None  ( )1−mk  

( )
2

1−mmk  

 
(E). Multiple regression (MR) 

  
10 MRc Well-known statistical model. 

11 MRb Same as MRc except based on binary variables. 
Importance 

of cues All km products,  
m sums   ( )1−m  

( )
2

1−mm
 

 
* For all models, the decision maker is assumed to know the sign of the zero order correlation between cues and the criterion. 
NOTE:  m = number of alternatives,   k = number of attributes, cues 
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subcases 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Experimental design 
1 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.1 0.3 0.3 0.3 0.4 0.0 0.1 0.3 0.4 0.5
2 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.5 0.6 0.3 0.4 0.6 0.7 0.8
3 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.4 0.4
4 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6
5 0.5 0.5 0.6 0.6 0.7 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.4 0.4 0.5 0.5 0.5
6 R2 (MR) -- fit 0.4 0.4 0.5 0.6 0.8 0.3 0.4 0.5 0.6 0.8 0.4 0.5 0.6 0.7 0.9 0.3 0.4 0.5 0.6 0.8
7 (n-1)/(n-k) 1.1 1.1 1.1 1.1 1.1  1.1 1.1 1.1 1.1 1.1 1.3 1.3 1.3 1.3 1.3  1.3 1.3 1.3 1.3 1.3

Results 

Single Variable models Mean
1 Lexicographic -- SVc 50 54 58 64 71 51 53 58 64 70 47 52 53 55 62 46 49 58 64 70 57
2 Lexicographic -- SVb 44 47 50 53 57 44 47 50 52 56 43 44 47 48 52 41 44 51 54 57 49
3 DEBA 50 54 56 59 63 46 48 50 53 55 48 53 57 61 66 45 49 53 55 57 54

Equal Weight models
4 EWc 52 55 57 61 64 45 48 51 51 52 52 57 62 66 74 47 50 51 52 53 55
5 EWb 47 49 51 54 55 44 45 47 47 50 48 51 56 58 65 46 47 52 51 54 51

Hybrid models
6 EW/DEBA 50 53 54 58 62 46 47 49 52 53 50 54 58 61 68 47 49 50 51 54 53
7 EW/SVb 49 52 53 57 61 45 47 48 51 52 50 54 57 60 66 47 49 50 51 54 53

Domran models
8 DRc 41 42 43 44 45 42 44 46 47 48 37 37 38 39 39 43 44 45 46 48 43
9 DRb 47 47 49 51 53 43 46 47 48 50 43 46 48 51 53 45 47 48 49 52 48

Multiple regression
10 MRc 50 55 59 66 74 46 51 58 66 75 47 52 61 67 79 41 45 54 61 71 59
11 MRb 42 45 48 52 55 42 46 48 52 58 40 43 44 47 51 39 40 46 50 55 47

Mean 47 50 53 56 60 45 48 50 53 56 46 49 53 56 61 44 47 51 53 57

Note: Bold figures denote largest realization in each column or second largest if MRc is largest.

Case A Case B Case C Case D

1y xρ

xyρ
ji xxρ

iy xρ

)m in()m ax(
ii yxyx ρρ −

Table 2 -- Simulation data: parameters and overall predictive accuracy of models (% correct), choosing best of three  
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Models: SVc SVb DEBA EWc EWb EW/ EW/ DRc DRb MRc MRb
DEBA SVb

Regression coefficients* for:

Constant 42 47 44 42 44 42 43 50 48 39 49
Dummy1 -12 -14 -13 -13 -14 -14 -13 -15 -14 -11 -13
Dummy2 -7 -9 -8 -7 -8 -8 -8 -8 -8 -6 -9

Number of cues 1 -1*  -5 -5 -2*
50 29 11     28  

32 50 37 47 33 -16 -16
-21  10*

19 34 46   
4 5  -4  

R2 ¨¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨¨ 61 29

Regression statistics:

R2 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99

Estimated standard error 1.30 0.71 1.13 1.43 1.04 1.13 1.23 0.64 0.73 1.93 0.92

* Significance level: p < .05. All other regression coefficients are statistically significant with p < .001.

1yxρ

xyρ

ji xxρ
iy xρ

)min()max(
ii yxyx ρρ −

Table 3-- Regressions of model performance on environmental characteristics 
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Golf rankings Golf earnings PhD programs Digital cameras

Experimental design 

1 0.2 0.3 0.1 0.4

2 0.8 0.9 0.8 0.8

3 0.6 0.7 0.8 0.5

4 0.5 0.5 0.6 0.2

5 0.8 0.8 0.9 0.8

6 R2 (MR) -- fit    0.7 0.8 0.8 0.7

7 (n-1)/(n-k) 1.07 1.07 1.04 1.09

Results 
Two Three Four Two Three Four Two Three Four Two Three Four Mean

Single Variable models
1 Lexicographic -- SVc 79 72 67 81 76 73 78 75 74 72 66 59 73
2 Lexicographic -- SVb 69 56 46 73 61 53 71 63 57 69 64 58 62
3 DEBA 73 60 49 77 71 65 80 76 74 79 73 67 70

Equal Weight models
4 EWc 77 68 62 77 72 68 86 83 81 76 72 65 74
5 EWb 71 58 48 75 67 63 79 75 73 77 69 63 68

Hybrid models
6 EW/DEBA 73 59 49 77 71 65 79 77 74 79 71 66 70
7 EW/SVb 72 58 49 78 71 65 79 76 74 79 71 66 70

Domran models
8 DRc 69 56 47 69 61 57 77 69 66 73 62 55 63
9 DRb 69 57 48 74 65 59 78 75 72 75 64 56 66

Multiple regression
10 MRc 80 71 65 82 78 75 86 83 81 78 72 66 76
11 MRb 67 54 47 71 62 54 77 73 69 69 66 59 64

Mean 73 61 53 76 69 63 79 75 72 75 68 62

Note: Bold figures denote largest realization in each column or second largest if MRc is largest.

Best of Best of Best of Best of

1yxρ

xyρ
ji xxρ

iy xρ

)min()max(
ii yxyx ρρ −

Table 4-- Empirical datasets: parameters and overall predictive accuracy of models (% correct)  
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Figure 1 
Percentage correct predictions by different models for conditions specified in Table 2 (cases A, B, C, and D): choosing one of three.  
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Figure 2 
 Percentage correct predictions by different models for real data sets specified in Table 4. 
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Appendix A – Key formulas for different models using continuous variables  
(for choosing best of m)  

 
Model 

(for alternative i) 
Error 

variance  
Upper limits of 

integration 
*
td , for  1,1 −= mt  

 
td  

 
dV  

Single variable (SVc) 
iiyxi XY ερ +=  

 

 
2( 21 yxρ− ) ( )212 yx

tyxd

ρ

ρ

−
 

 
ji xx −  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2...1
.........
1...2

 

Equal weights (EWc) 

ii
x

xy
i vXY +=

σ
ρ

 

 
2( 21 xyρ− ) ( )212 xyx

txy d

ρσ

ρ

−
 

 

 
ji xx −  

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

xx

xx

σσ

σσ

2...
.........

...2

2

2

 

Multiple regression  
(MRc)  

iii uYY += ˆ  
 

 
2 )1( 2

adjR−  )1(2 2
adj

t

R
d
−

 
 

ji yy ˆˆ −
 ⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

adjadj

adjadj

RR

RR

2...
.........

...2

2

2

 
Notes:  
1. Predictive accuracy of a single choice between m alternatives is given by   

∫ ∫
∞−

−
∞−

−
*
1

*
1

11....),(...
d

m

d

zz dzdzVz
m

µϕ ,                                                                                                                      

where the pdf ),( zz Vz µϕ  is defined for ),...,,( 121 −=′ mzzzz  and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1...
.........

...1

2
1

2
1

zV , 

*
td and td  ( 1,1 −= mt )  being specific for different choice strategies. 

 
2. Overall predictive accuracy of choice (between m alternatives) in a given population  

is given by 

1111
00

......),(....),(....
*
1

*
1

−
∞−

−
∞−

∞∞

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫ ∫∫∫

−

m

d

m

d

zzdd dddddzdzVzVdm
m

µϕµϕ ,

 

where the pdf ),( dd Vd µϕ  is defined for ),...,,( 121 −=′ mdddd , dV  being specific for 
different choice strategies. 

3.  
ji xx

yxxy k
k

ρ
ρρ

)1(1 −+
= , where k = number of x variables, yxρ = average correlation 

between y and the x’s, and
ji xxρ = average inter-correlations amongst the x’s.  

4.   ( )
ji xxx k

k
ρσ )1(11

−+=     

5.    ( ) ( )
( )kn
nRRadj −

−
−−=

111 22 , where n = number of observations. 
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Appendix B – Key formulas for different models using binary variables  
(for choosing best of m) 

 
Model 

(for alternative i) 
Error 

variance  
Upper limits of 

integration 
*
td , for  1,1 −= mt  

 
td  

dV  

Single variable (SVb) 
 

iiywSVbi WaY ςρ ++= 2  
 

 
2( 21 ywρ− ) ( )212

2

yw

tywd

ρ

ρ

−
 

 
ji ww −

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2
1

4
1

4
1

2
1

...
.........

...
 

Equal weights (EWb)  

ii
w

wy
EWbi WaY ξ

σ
ρ

++=  

 

 
2( 21 wyρ− ) ( )212 wyw

twy d

ρσ

ρ

−
 

 

 
ji ww −

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ww

ww

σσ

σσ

2...
.........

...2

2

2

 

Multiple regression  
(MRb)  

iii YY ζ+= ˆ  
 

 
2 )1( 2

adjR− )1(2 2
adj

t

R
d
−

 
 

ji yy ˆˆ −  
 ⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

adjadj

adjadj

RR

RR

2...
.........

...2

2

2

 
Notes: 
1. Ŷ  and 2

adjR  are based on binary variables W’s. 
2. Since the error terms have means of zero, the intercepts SVba  and EWba  are equal   

to ywρ−  and  
w

wy

σ
ρ
2

− , respectively. 

3. General formulas for predictive accuracy of a single choice and overall  predictive  
      accuracy are as specified in Notes 1 and 2 to Appendix A.  

4. 
jiww

ywwy k
k

ρ
ρρ

)1(1 −+
= ,  where k = number of x variables,  ywρ = average  

         correlation between y and the w’s, and 
jiwwρ = average inter-correlations amongst  

      the w’s.  

5. ( )
jiwww k

k
ρσ )1(11

−+=   
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Appendix C – DEBA model: Two examples of probability calculations  

Example 1. Assume that there are three alternatives A, B, and C and that A has 

been chosen by a process whereby C was eliminated at the first stage and B at the 

third stage. Starting backwards, consider the decisions the model makes at each stage. 

That is, the probability that DEBA correctly selected A over B at the third stage, 

controlling for the elimination of C at the first stage, is 

( ) ( ){ }11113333 ccbbcbbbaaba wWwWYYwWwWYYP =>=>∩=>=> . This probability 

can be calculated by making use of the appropriate partial correlations – in this case, 

213 . wwywρ  and 
1ywρ – and adapting the single variable equations (e.g., the general 

equation 6 24).  At the second stage, the model makes no decision.  At the first stage, it 

eliminates  C  so  we   need to calculate additionally the probability that A could have 

been correctly selected only with information available at this stage: 

( ) ( ){ }11111111 ccbbbcccaaca wWwWYYwWwWYYP =>=>∩=>=> .  This can be also 

found through an adapted expression (6), using
1ywρ . Importantly, the events 

represented by the probability expressions for the first and third stages are disjunctive.  

Therefore, the probability that DEBA makes the correct decision in this case is equal 

to the sum of the two expressions.  

Example 2. Assume that with 3 other alternatives A, B, and C, DEBA 

eliminates C at the first stage and at the third stage picks either A or B at random (this 

will happen if A and B are identical). Thus, the 0.5 probability that DEBA makes the 

correct decision at the third stage should be “discounted” by the probability that C, 

eliminated at the first stage, is not better than A and B. That is 

( ) ( ){ }( )1111111115.0 bbccbcaaccac wWwWYYwWwWYYP =>=>∩=>=>− .  

                                                 
24 The terms that need to be adapted in the expression (6) are the upper limits of integration and 

21,zzσ .  


