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1 Introduction

Access pricing rules constitute the core of the policy issues regarding interconnected net-

works. More precisely, studying how access prices affect competition between networks

and determining the optimal access prices form the central questions of the seminal papers

on two-way network interconnection in Telecommunication Industry (Armstrong 1998,

Laffont-Rey-Tirole (LRT, hereafter), 1998a,b) and the papers that followed.1 Although

the papers vary in terms of the retail prices they consider (linear versus non-linear prices,

with or without network based price discrimination), the degree of customer heterogeneity

and whether or not they explicitly consider receivers etc., all the papers have a common

trait in that they consider a Þxed access price. This approach may not be restrictive

when networks compete in two-part tariffs as long as we neglect call externality2 since

LRT (1998a,b) show that in this case, by choosing an access price equal to the termination

cost, one can achieve the Ramsey outcome. In contrast, when networks compete in linear

prices, the results obtained with this approach are not satisfactory. More precisely, LRT

(1998a) Þnd that when networks compete in linear prices without network-based price

discrimination3 (i) the Ramsey access price must be lower than the termination cost but

the equilibrium does not exist if the access price is different from the termination cost and

the services provided by different networks are substitutable enough (ii) if access prices

are determined through private negotiations, networks can achieve the monopoly outcome

by coordinating on a certain level of access price. Furthermore, their Ramsey access price

is informationally demanding since it requires the regulator to possess precise information

regarding both the cost and the demand structure.

In this paper, I consider a general and informationally efficient approach to determine

the optimal access pricing rule and show that there exists a simple rule that achieves

the Ramsey outcome as the unique equilibrium when networks compete in linear prices

without network-based price discrimination. My approach is informationally efficient in

the sense that the regulator is required to know only the marginal cost structure, i.e. the

marginal cost of realizing and terminating a call. The approach is general in that access

1See, for instances, Carter and Wright (1999, 2003), Dessein (2003), Gans and King (2000, 2001),
Hahn (2004), Hermalin and Katz (2001, 2004), Laffont-Marcus-Rey-Tirole, (2003), Jeon-Laffont-Tirole
(2004), Valletti and Cambini (forthcoming), Wright (2002).

2See the conclusion for the discussion of the case of competition with two-part tariffs in the presence
of call externality.

3The results under linear pricing with network-based price discrimination have a similar ßavor: see
LRT (1998b).
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prices can depend not only on the marginal costs but also on the retail prices which can

be observed by consumers and therefore by the regulator as well. In particular, I consider

the set of linear access pricing rules in which the access price mark-up with respect to the

termination cost is a linear function of the retail prices and the marginal cost of a call.

The set includes any Þxed access price and the Efficient Component Pricing Rule (ECPR)

as special cases. I show that in this set, there is a unique access rule that implements the

Ramsey outcome as the unique equilibrium, independently of the underlying demand con-

ditions, as long as there exists at least a mild degree of substitutability between networks�

services.

Making access prices depend on retail prices is an old idea in the case of one-way

access. The well-known ECPR4 achieves the efficient entry by equalizing the access price

that an entrant should pay to the incumbent with the sum of the cost of providing the

access and the latter�s opportunity cost (i.e. the incumbent�s retail price mark-up) when

the incumbent�s retail price is regulated. However, the ECPR is not good at promoting

competition in retail prices when the retail prices are not regulated since the access price

that the incumbent receives increases with its retail price. This motivated Sibley et al.

(2004) to consider the Generalized Efficient Component Pricing Rule (GECPR) in which

the access price that an entrant pays is, roughly speaking, equal to the sum of the cost

of providing the access and the entrant�s opportunity cost (i.e. the entrant�s retail price

mark-up). Sibley et al. (2004) Þnd that since the entrant can reduce its access charge

payment by lowering its retail price, the GECPR is good at intensifying retail competition.

In the case of two-way access, LRT (1998a) examine various interpretations of the

ECPR and show that when networks can privately negotiate on a Þxed level of access

price, the ECPR allows them to achieve the monopoly outcome. More importantly, Mi-

alon (2004) studies the ModiÞed Efficient Component Pricing Rule (MECPR) in LRT�s

framework.5 Her MECPR is essentially the same as the GECPR considered by Sibley

et al. (2004) and therefore the mark-up of the access price that network i pays to other

network(s) is equal to the former�s retail price mark-up. She Þnds that there always exists

4See Baumol (1983), Baumol and Sidak (1994) and Willig (1979). For an introduction to the ECPR,
see Armstrong (2002) and Laffont and Tirole (2000).

5Doganoglu and Tauman (2002) also consider a linear access pricing rule which depends on retail
price. More precisely, in their paper, the access price that network i receives from network j is a (positive
and) constant fraction of the linear retail price that network i charges. This rule is included as a special
case in the set of the access pricing rules that I consider. As is explained in section 3.4, this kind of rule
cannot be optimal since network i has an incentive to increase (instead of reducing) its retail price in
order to receive a higher access payment.
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a unique equilibrium and that the equilibrium retail price is lower than any equilibrium

price obtained with a Þxed access price larger than the termination cost. Although the

MECPR has some desirable properties, its conceptual foundation is weak as long as retail

competition is the main issue: there is no rationale for making the mark-up of the access

price that network i pays to other network(s) exactly equal to the former�s retail price

mark-up except for the intuition that this reduces each network�s incentive to choose a

high retail price. Since this intuition does not involve the opportunity cost reasoning that

underlies the ECPR and since, a priori, any access pricing rule that makes the access price

that network i pays to other network(s) increase with the network i�s retail price has the

same effect of promoting retail competition, there is no particular reason to choose the

MECPR. In fact, I show that there exists a unique rule achieving the Ramsey outcome

in the set of linear access pricing rules which includes the MECPR as a special case, and

the optimal rule is different from the MECPR, which implies that the MECPR does not

achieve the Ramsey outcome.6 A remarkable feature of the unique optimal access pricing

rule is that it does not depend on the demand structure under the full coverage assump-

tion, which is assumed by LRT; the regulator does not need to know anything about

the demand side. Furthermore, both LRT and Mialon consider duopoly in the Hotelling

model with constant elasticity demand function while I consider a general model of hor-

izontal differentiation in which both the Hotelling model and the circular city model are

special cases and show that the key insight of the main result obtained in the duopoly

case extends to the case of n-network competition.

In practice, there are cases in which access prices (or termination charges) depend

on retail tariffs. In the context of termination charges for mobile phone service, the

Australian competition and consumer commission (2001) adopted what they call �retail

benchmarking approach� which means that �access prices for GSM termination will fall

at the same rate as retail prices for mobile services provided by a mobile carrier (p.89).�

This paper provides a theoretical support for the retail benchmarking approach although

it does not apply the framework to mobile phone communications.7

Section 2 presents the general model, deÞnes the set of linear access pricing rules and

characterizes the Ramsey outcome. Section 3 establishes the main result and compares

different access pricing rules. Section 4 discusses the robustness of the result to introducing

6In fact, the equilibrium price under the MECPR is higher than the Ramsey price.
7Another example of pegging access price to retail tariffs can be found in the international postal

service. For instance, access prices (i.e. what they call �termination dues�) among European countries
should be set at 80% of domestic tariffs (Ghosal, 2002).
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receivers� surplus, to relaxing the full coverage assumption and to introducing network-

based price discrimination. Section 5 concludes.

2 Framework

2.1 The model

I present the general model of n-network competition which includes the duopoly model

of LRT (1998a) as a special case. There is a mass one of consumers. There are n ≥ 2

number of networks having the same cost structure that is speciÞed below. They compete

in linear prices and each network can cover all the consumers. Let p ≡ (p1, ..., pn) ∈ <n+
represent the vector of retail prices and let p−i ≡ (p1, .., pi−1, pi+1, ..., pn).

� Firm�s demand (or market share):
The networks (i.e. Þrms) provide horizontally differentiated services and we assume

that the measure of consumers subscribing to network i, denoted by αi(pi;p−i), satisÞes
the following properties:

Property 1 (symmetry): for any i, j = 1, ..., n and i 6= j and for any p and pi,

αi(pi; p, ..., p) = αj(pj ; p, ..., p) if pi = pj.

Property 2 (monotonicity): for any i, j = 1, ..., n and i 6= j, αi(pi;p−i) is differ-
entiable with respect to each retail price and decreases with pi and increases with pj; it

strictly decreases with pi and strictly increases with pj for αi ∈ (0, 1).8

Property 3 (full coverage):
Pn
i=1 αi(pi;p−i) = 1 for all relevant p ∈ <n+.

The three properties are satisÞed by the Hotelling model of LRT (1998a) and the circu-

lar city model with n = 2 or 3 (Salop, 1979).9 The symmetry and the full coverage imply
8Property 2 can be more rigorously deÞned as follows. Given p−i, let pi be the maximum pi ∈ <+

making αi(pi;p−i) = 1 and let pi be the minimum pi ∈ <+ making αi(pi;p−i) = 0. If the maximum
does not exist, we take p

i
= 0 and if the minimum does not exist, we take pi = ∞. Then, αi strictly

decreases with pi for pi ∈
h
p
i
, pi

i
. Similarly, given p−j with j 6= i, let p

j
be the maximum pj ∈ <+

making αi(pi;p−i) = 0 and let pi be the minimum pj ∈ <+ making αi(pi;p−i) = 1. If the maximum does
not exist, we take p

j
= 0 and if the minimum does not exist, we take pj =∞. Then, αi strictly increases

with pj for pj ∈
h
p
j
, pj

i
.

9For n > 3, our model is more natural than the circular city model since in the latter, a minor price
change of network i affects only the demands of its direct neighbors (network i − 1 and network i + 1)
but does not affect the demands of other neighbors.
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αi =
1
n
for all i = 1, ..., n if pi = p for all i = 1, ..., n. Regarding the full coverage property,

LRT (1998a) assume that each consumer derives a constant utility from subscribing to

one of the networks, which is large enough to ensure that all consumers always choose to

join one of the networks. Since the total mass of consumers is equal to one, under the full

coverage, the mass of consumers subscribing to network i (i.e. αi) is equal to network i�s

market share.

� Cost :
Concerning the cost side, I use the same technology that is used in LRT (1998a).

Serving a customer involves a Þxed cost f > 0, say of connecting the customer�s home to

the network and of billing and serving her. A network also incurs a marginal cost c0 per

call at the originating and terminating ends of the call and marginal cost c1 in between.

Therefore, the total marginal cost of a call is

c ≡ 2c0 + c1.

� Individual demand :
Let u(q) be the utility that a consumer derives from placing q volume of calls. The

utility function u(·) is twice continuously differentiable, with u0 > 0, u00 < 0, which implies
that demand function is differentiable. Let q(.) denote the demand function, given by

u0(q(p)) = p: the volume of calls placed by a customer of network i is given by q(pi). Let
v(p) be the indirect utility function, i.e.,

v(p) = max
q
{u(q)− pq)}.

Let R(p) ≡ (p − c)q(p) represent the revenue per consumer. We assume that R(p) is
strictly concave with R(∞) = 0 and has a unique maximum at p = pm with c < pm <∞;
therefore, pm denotes the monopoly price. Let Rm denote the monopoly revenue per

consumer (i.e. Rm = R(pm)). We assume Rm > f .

2.2 Access pricing rules

I consider simple access pricing rules which are not informationally demanding. More

precisely, the informational constraint that the regulator faces is deÞned as follows.

� The regulator�s informational constraint:
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On the one hand, I assume that the regulator (or the competition authority) has

limited information about the market such that she is not informed about the individual

demand q(p), each Þrm�s demand (hence αi(p)) and the value of the Þxed cost f . On

the other hand, she knows the marginal costs (c, c0). Furthermore, she and consumers

observe retail prices (p1, p2).

The Þrms are assumed to know all the relevant information regarding both the demand

and the cost sides.

� The linear access pricing rules:
Let aij with i 6= j denote the access charge that network i receives from network j. In

order to consider simple rules, I limit my attention to the following linear access pricing

rule:

aij − c0 = h(pi, pj, c) = h1pi + h2pj + h3c+ h4 for any i, j = 1, ..., n and i 6= j, (1)

where (h1, h2, h3, h4) ∈ <4 is a vector of constants. Note that I consider a reciprocal access
pricing rule since the coefficients (h1, h2, h3, h4) do not depend on Þrms� identities. This is

without loss of generality given that I consider symmetric networks.10 Let ΛLn be the set

of linear access pricing rules satisfying the above form (1). Some special cases of linear

access pricing rules are:

� Marginal cost pricing rule: aij = c0.

� Efficient component pricing rule (ECPR): aij − c0 = pi − c.

� ModiÞed efficient component pricing rule (MECPR): aij − c0 = pj − c.

In the case of the ECPR, the access price that network j pays to network i is the sum

of the termination cost and network i�s opportunity cost (i.e. its retail price mark-up).

In contrast, in the case of the MECPR, the access price that network j pays to network

i is the sum of the termination cost and network j�s opportunity cost (Sibley et al. 2000,

Mialon 2004).

2.3 Ramsey benchmark

For future reference, we derive the social optimum in the ideal case in which the regulator

knows all the relevant information and can dictate the prices under the constraint that
10In the case of asymmetric networks, we need to consider non-reciprocal rules such that the coefficients

depend on the Þrms� identities. See Carter and Wright (2003) for the study of asymmetric networks.
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the industry breaks-even. Consumer variable welfare is

W (p) =
nX
i=1

αi(p)v(pi)− T [α1(p), ...,αn(p)] (2)

where T (α1, ...,αn) denotes the average consumer�s utility from not being able to consume

her preferred service. We assume that T (α) is minimized at equal market share αi = 1
n
.

The industry budget constraint is

nX
i=1

αi(p)R(pi) = f. (3)

Maximizing (2) subject to (3) yields a symmetric solution, pi = pR for all i = 1, ..., n,

where the Ramsey price pR is the lowest price that satisÞes the budget constraint:

R(pR) = f.

Since we assume Rm > f , we have pR < pm. Let q(pR) ≡ qR.

2.4 The main assumption and the timing

Since R(p) is strictly concave and continuous with R(∞) = 0, there exists a p such that
R(p) = f with p > pm. In what follows, we make the following assumption on the degree

of substitutability among the networks:

Assumption 1: The services provided by the networks are at least mildly substi-
tutable in the sense that αi(p;p−i) = 0 at p−i = (pR, ..., pR).

Assumption 1 says that there is a minimum degree of substitutability among the

networks such that if a network charges p(> pm) while all the other networks charge the

Ramsey price, then the former gets zero market share. Since p is much larger than pm,

the assumption implies that the services provided by the networks are at least mildly

substitutable.

The timing of the game I consider is the following:

1. The regulator (or the competition authority) chooses a linear access pricing rule in

ΛLn .

2. Each network simultaneously chooses its retail price.

3. Consumers make subscription and consumption decisions.
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3 The main result

I Þrst state the main result.

Proposition 1 Under assumption 1, for any demand structure satisfying Properties 1-3,
there is a unique linear access pricing rule in ΛLn deÞned by aij − c0 = n

n−1(pj − c) that
implements, independently of the underlying demand conditions,

(i) the Ramsey outcome (pi = pR for all i = 1, ..., n) as the unique symmetric equilib-

rium for n ≥ 2
(ii) the Ramsey outcome as the unique equilibrium for n = 2.

Note Þrst the remarkable result that the optimal rule implementing the Ramsey out-

come does not depend on the demand structure as long as it satisÞes Properties 1-3.

Proposition 1(ii) is stronger than Proposition 1(i) since in the former, I prove that no

asymmetric equilibrium exists: Although I did not prove that no asymmetric equilibrium

exists for n ≥ 3, I conjecture that it would hold.11 In what follows, I prove Proposition
1(i) step by step in the main texts and provide the intuition. The proof that no asymmet-

ric equilibrium exists for n = 2 is done in Appendix. At the end of the section, I compare

different access pricing rules in an intuitive way.

Given a linear access pricing rule belonging to ΛLn and under the assumption of bal-

anced calling patterns12, the proÞt of network i is given by:

πi(pi : p−i) = αi {(pi − c)q(pi)− f}+
X
j 6=i
αiαj {h(pi, pj , c)q(pj)− h(pj , pi, c)q(pi)} , (4)

where the Þrst term represents the retail proÞt and the second term represents the net

access revenue (or deÞcit).

3.1 Uniqueness of the candidate rule to achieve the Ramsey
outcome

I show that among all the access pricing rules belonging to ΛLn , there is a unique candidate

rule that satisÞes a necessary condition to implement the Ramsey outcome (pi = pR for

11To prove this, we need to deÞne Property 1 (Symmetry) with respect to any permutation of prices.
12The assumption is from LRT (1998a, b). It means that a consumer has an equal chance of calling

a given consumer belonging to his network and another given consumer belonging to any other rival
network.
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i = 1, ..., n). From (4), the Þrst-order derivative of πi with respect to pi is given by:

∂πi
∂pi

=
∂αi
∂pi

{(pi − c)q(pi)− f}+ αi
(
q(pi) + (pi − c)dq(pi)

dpi

)
(5)

+
X
j 6=i

"
∂αi
∂pi

αj +
∂αj
∂pi

αi

#
{h(pi, pj, c)q(pj)− h(pj, pi, c)q(pi)}

+αi
X
j 6=i
αj

(
h1q(pj)− h2q(pi)− h(pj , pi, c)dqi

dpi

)
.

Since πi is a continuous function of pi, a necessary condition to implement the Ramsey

outcome is that the Þrst-order derivative is zero at pi = pR when all the other networks

charge pj = pR for j 6= i and j = 1, ..., n. Since R(pR) = f and h(pi, pj , c)q(pj) =

h(pj , pi, c)q(pi) at the symmetric equilibrium candidate with the Ramsey price, the Þrst

and the third terms are zero in the above Þrst-order derivative. Since q(pi) = qR and

αi =
1
n
for i = 1, ..., n at the symmetric equilibrium candidate, the necessary condition

holds only if the following conditions are satisÞed by h(pi, pj, c):

1 +
n− 1
n

(h1 − h2) = 0

pR − c− n− 1
n

h
(h1 + h2) p

R + h3c+ h4
i
= 0.

Given the regulator�s informational constraint introduced in section 2.2, we Þnd from the

two conditions that h1 = 0, h2 = n
n−1 , h3c+ h4 = − n

n−1c. Therefore, we obtain the unique
candidate in the set of linear access pricing rules as follows:

aij − c0 = n

n− 1(pj − c).

3.2 Existence of the symmetric equilibrium

I now show that under the access pricing rule aij−c0 = n
n−1(pj−c) and under assumption

1, the symmetric equilibrium with pi = pR for i = 1, ..., n always exists. Given the access

pricing rule aij − c0 = n
n−1(pj − c), network i�s proÞt is given by:

πi(pi : p−i) = αi [R(pi)− f ] + n

n− 1αi
X
j 6=i
αj [R(pj)−R(pi)] (6)

Suppose that all the other networks except network 1 charge pR. Then, because of the

symmetry and the full coverage, we have α2 = ... = αn = 1−α1
n−1 and network 1�s proÞt is
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given by;

π1(p1 : pR, ..., pR) = α1 [R(p1)− f ] + n

n− 1α1(1− α1) [f −R(pi)]

= α1n(n− 1)
µ
α1 − 1

n

¶
[R(p1)− f ] .

Note Þrst that π1 = 0 when p1 = pR and π1 = 0 for p1 ≥ p under assumption 1. Consider
any p1 with p1 < pR. Then, we have α1 > 1

n
and R(p1) < f , implying π1 < 0. Consider

now p1 ∈
³
pR, p

´
. Then, we have α1 < 1

n
and R(p1) > f , implying π1 < 0 if α1 > 0.

Therefore, the symmetric equilibrium always exists.

To give the intuition, I consider the case of n = 2 and examine network 1�s price choice

given p2 = pR. Consider Þrst p1 ∈
³
pR, p

´
. In this case, network 1�s retail proÞt per

customer is R(p1)−f > 0. Its access revenue per customer is 2(1−α1)R(p2) = 2(1−α1)f
while its access payment per customer is 2(1−α1)R(p1), implying that it has a net access
deÞcit per customer equal to 2(1 − α1) [f −R(p1)]. Since α1 < 1

2
for p1 ∈

³
pR, p

´
, the

access deÞcit is larger than the retail proÞt and therefore the Þrmmakes a loss. In contrast,

in the case of p1 < pR, the Þrm has a retail deÞcit per customer equal to R(p1)− f < 0
while it has a net access proÞt per customer equal to 2(1−α1) [f −R(p1)]. Since α1 > 1

2
,

the access proÞt is not large enough to cover the retail deÞcit and the Þrm�s proÞt is still

negative. In other words, the coefficient in the optimal linear access pricing rule (2 when

n = 2) is such that (i) when p1 = pR, network 1�s proÞt is zero, (ii) when p1 ∈
³
pR, p

´
, its

retail proÞt per communication is equal to its net access deÞcit per communication but,

since its market share is smaller than a half, the total amount of on-net communications

is smaller than the total amount of off-net communications, implying that it makes a loss

(iii) when p1 < pR, its retail deÞcit per communication is equal to its net access revenue

per communication but, since its market share is larger than a half, the total amount

of on-net communications is larger than the total amount of off-net communications,

implying that it makes a loss.

Note that in LRT (1998a), the non-existence of equilibrium occurs since a network can

have an incentive to corner the market by deviating to a price lower than the price in the

equilibrium candidate. In our equilibrium achieving the Ramsey outcome, the cornering

strategy does not make any sense since it requires the deviating network to charge a price

lower than pR, implying that the Þrm makes a loss after cornering the market.
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3.3 Non-existence of other symmetric equilibrium

I now show that under the access pricing rule aij−c0 = n
n−1(pj−c) and under assumption

1, no other symmetric equilibrium exists except pi = pR for i = 1, ..., n. Let p be a

symmetric equilibrium candidate. First, it is obvious that neither p < pR nor p > p can

be an equilibrium since then each Þrm makes a negative proÞt. Therefore, I consider only

p ∈
³
pR, p

i
. Consider Þrst p = p. Then, each Þrm gets zero proÞt without deviation.

Suppose now that network 1 deviates to p1 = pm while all the other networks continue to

charge p. Then, network 1�s proÞt is given by:

π1(p
m; p, ..., p) = α1n(n− 1)

µ
α1 − 1

n

¶
[Rm − f ] > 0,

where α1 = α1(pm; p, ..., p) > 1
n
. Therefore, no symmetric equilibrium with p = p exists.

Let us consider now p ∈
³
pR, p

´
. Then, from (6), the Þrst-order derivative of πi with

respect to pi is given by:

∂πi(pi : p−i)
∂pi

= [R(pi)− f ] ∂αi
∂pi

+ αi
dR(pi)

dpi
− n

n− 1αi
X
j 6=i
αj
dR(pi)

dpi
(7)

+
n

n− 1
X
j 6=i

"
αj
∂αi
∂pi

+ αi
∂αj
∂pi

#
[R(pj)−R(pi)] .

At pi = p for i = 1, ..., n, since
P
j 6=i αj =

n−1
n
, the Þrst-order derivative is given by:

∂πi(p : p, ..., p)

∂pi
= [R(p)− f ] ∂αi

∂pi
< 0 for p ∈

³
pR, p

´
. (8)

Therefore, each Þrm has an incentive to undercut and no other symmetric equilibrium

exists.

The access price rule aij− c0 = n
n−1(pj− c) intensiÞes retail price competition since by

reducing pj network j can reduce the access price that it should pay to the rival networks.

In particular, at any symmetric price p that allows networks to realize a positive retail

proÞt (i.e. R(p) > f), each network has an incentive to choose a price lower than p. From

(7), when network i reduces its retail price, there are three effects on its proÞt. First,

given its retail price, its retail proÞt increases through its expansion of market share.

Second, given each network�s market share, its retail revenue per consumer decreases

while its access payment per consumer decreases as well. Third, given each network�s

retail price, the changes in the market shares affect its net access payment. In any

symmetric equilibrium candidate with pi = p ∈
³
pR, p

´
for i = 1, ..., n, the second and

the third effects are zero and the Þrst is positive. Therefore, each Þrm has an incentive

to deviate in order to increase its market share.

11



3.4 Comparison with other rules when n = 2

Suppose that the regulator should choose an access pricing rule without knowing the

demand structure while she only knows the marginal cost structure (c, c0). Consider

duopolistic competition13 and, for simplicity, let ai denote the access charge that network

i receives from the rival network. Then, from Proposition 1(ii), we have the following

corollary.

Corollary 1 Under assumption 1, the social welfare is strictly higher under the access
pricing rule ai− c0 = 2(pj−c) than under any other Þxed access price (including ai = c0),
under the ECPR (ai − c0 = pi − c) and under the MECPR (ai − c0 = pj − c).

In order to give the intuition, I examine the Þrst order derivative of network i�s proÞt

in each access pricing rule assuming that a symmetric equilibrium with p1 = p2 = p < pm

exists under each rule.

First, under a Þxed and reciprocal access price rule a1 = a2 = a, network i�s proÞt is

given by:

πi(pi; pj) = αi [R(pi)− f ] + αi(1− αi)(a− c0) [q(pj)− q (pi)] .
Therefore, the Þrst-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ] dαi
dpi

+
1

2

dRi
dpi

− (a− c0)
4

dq(pi)

dpi
. (9)

Consider Þrst the case of the marginal cost pricing (a = c0). In this case, for any market

share, each network has zero net access proÞt. Since dαi
dpi

< 0 < dRi
dpi
, the Þrst order

condition holds only for p > pR such that R(p) > f . Hence, the marginal cost pricing

cannot achieve the Ramsey outcome. From (9), it is clear that as the access price becomes

larger than the termination cost, network i has an extra incentive to raise pi since by

reducing the demand of its own customers, it can reduce its access payment. Since

an increase in the reciprocal access price results in an increase in the retail price, LRT

(1998a) Þnd that networks can achieve the monopoly outcome if they can choose access

price through private negotiation. In contrast, as the access price becomes smaller than

the termination cost, network i has an extra incentive to reduce pi in order to increase

its access revenue. This is why LRT (1998a) Þnd that the Ramsey access charge requires

13Although I restrict my attention to the case of n = 2 since non-existence of asymmetric equilibrium
is not proved for n > 2, the intuition obtained in this section applies to the case of n > 2 as well.
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an access charge lower than the termination cost. More precisely, they Þnd that Ramsey

access charge, denoted by aR, is given by:

aR − c0
2

= −(1− 1
η
)(pm − pR),

where η is the elasticity of demand and is assumed to be constant and larger than 1. Note

that in order to be able to compute the Ramsey access price, the regulator should have a

precise knowledge about the demand structure such that she should be able to compute

η, pm and pR. Furthermore, LRT (1998a) show that the equilibrium does not exist for

a 6= c0 if the degree of substitutability of the two networks is high enough.
Second, in the case of the ECPR, network i�s proÞt is given by:

πi(pi; pj) = αi [R(pi)− f ] + αi(1− αi) [q(pj)(pi − c)− q (pi) (pj − c)] .
Therefore, the Þrst-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ] dαi
dpi

+
1

2

dRi
dpi

+
1

4

"
q(p)− (p− c)dq(pi)

dpi

#
(10)

The Þrst two terms in (10) are what we found in the Þrst-order derivative under a = c0
and have to do with the retail proÞt. The last term in (10) has to do with the access

revenue and since p > c and dq(pi)
dpi

< 0, it induces network i to increase its retail price.

Since under the ECPR a network can increase its revenue by increasing its retail price,

the ECPR induces each network to choose a price higher than the one under a = c0.

Last, consider the following rule ai − c0 = κ(pj − c) where κ(≥ 0) is a constant. For
instances, if κ = 1, we have the MECPR and if κ = 0, we have the marginal cost pricing.

Then, network i�s proÞt is given by:

πi(pi : pj) = αi [R(pi)− f ] + καi(1− αi) [R(pj)−R(pi)] .
Therefore, the Þrst-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ] dαi
dpi

+
1

2

dRi
dpi

− κ
4

dRi
dpi
. (11)

The Þrst two terms in (11) are what we found in the Þrst-order derivative under a = c0
and have to do with the retail proÞt. The last term in (11) has to do with the access

revenue and, since dRi
dpi
> 0, an increase in κ induces network i to reduce its retail price.

This implies that the retail price under the marginal cost pricing is higher than the retail

price under the MECPR, which is higher than the retail price under when κ = 2 (i.e. the

Ramsey price). Note that from (11), when κ = 2, the only price satisfying the Þrst-order

condition is the Ramsey price.
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4 Robustness

In this section, we discuss the robustness of our results to relaxing some of our assump-

tions.

First, introducing receiver�s surplus as in Jeon-Laffont-Tirole (2004) does not affect

our result as long as the receivers are not charged for the reception. Note Þrst that

introducing receiver�s surplus does not affect the Ramsey price which is the lowest price

allowing networks to recover their Þxed cost (i.e. R(pR) = f). Second in the proofs of

Proposition 1, I only use the three properties regarding market share αi introduced in

Section 2 and these properties remain intact even though receiver surplus is introduced.

In what follows, I examine the robustness of the result to relaxing the full coverage

assumption and introducing the network-based price discrimination.

4.1 Relaxing full coverage

I here assume away the full coverage assumption and assume that
Pn
i=1 αi(p : p, ..., p)

strictly decreases with p. We continue to normalize the mass of potential consumers at

one. Since
Pn
i=1 αi(p : p, ..., p) represents the total mass of consumers who subscribe to

one of the networks, it cannot be larger than one. In this setting, the Ramsey price is

still characterized by R(pR) = f . Let αi(pR : pR, ..., pR) = αR > 0. Then, we have the

following result:

Proposition 2 Suppose that
Pn
i=1 αi(p : p, ..., p) strictly decreases with p. Under assump-

tion 1, for any demand structure satisfying Properties 1 and 2,

(i) there is a unique linear access pricing rule in ΛLn deÞned by aij−c0 = 1
αR(n−1)(pj−c) that

satisÞes a necessary condition to achieve the Ramsey outcome (pi = pR for i = 1, ..., n)

as an equilibrium

(ii) under the rule, pi = pR for i = 1, ..., n is an equilibrium.

Note that the access pricing rule in Proposition 2 generalizes the one in Proposition 1

since under the full coverage, αR = 1
n
.

Proof. (i) The Þrst-order derivative of πi with respect to pi is given by (5). A necessary
condition to implement the Ramsey outcome is that the Þrst-order derivative is zero at

pi = pR for i = 1, ..., n. Since R(pR) = f and h(pi, pj, c)q(pj) = h(pj , pi, c)q(pi) at the

symmetric equilibrium candidate, the Þrst and the third terms are zero in (5) at pi = pR

for i = 1, ..., n. Since q(pi) = qR and αi = αR for i = 1, ..., n at the symmetric equilibrium

14



candidate, the necessary condition holds only if the following conditions are satisÞed by

h(pi, pj, c):

1 + (n− 1)αR (h1 − h2) = 0

pR − c− (n− 1)αR
h
(h1 + h2) p

R + h3c+ h4
i
= 0.

From the two conditions, we Þnd that h1 = 0, h2 = 1
αR(n−1) , h3c+ h4 = − c

αR(n−1) . There-
fore, we obtain the unique candidate in the set of linear access pricing rules as follows:

aij − c0 = 1

αR(n− 1)(pj − c).

(ii) Given the access pricing rule, network i�s proÞt is given by:

πi(pi : pj) = αi [R(pi)− f ] + 1

αR(n− 1)αi
X
j 6=i
αj [R(pj)−R(pi)]

Suppose that all the other networks except network 1 charge pR. Then, because of the

symmetry, we have α2 = ... = αn and network 1�s proÞt is given by;

π1(p1; p
R, ..., pR) = α1 [R(p1)− f ] + 1

αR
α1α2 [f −R(p1)]

= α1

h
αR − α2

i
αR

[R(p1)− f ] ,

where α2 = α2(p
R; p1, p

R, ..., pR). Note Þrst that π1 = 0 when p1 = pR and π1 = 0 for

p1 ≥ p under assumption 1. Consider any p1 with p1 < pR. Then, from the monotonicity,
we have αR > α2 and R(p1) < f , implying π1 < 0. Consider now p1 ∈

³
pR, p

´
. Then, we

have αR < α2 and R(p1) > f , implying π1 < 0 if α1 > 0.

Remark 1: Even though we relax the full coverage assumption, the rule presented
in Proposition 1 implements the Ramsey outcome if the market is mature in that the

total mass of consumers choosing to join one among the networks is equal to one at the

Ramsey price.14 Otherwise, the regulator needs to know αR and in this sense the optimal

14However, there might be multiple symmetric equilibria. Under the access rule described in Proposition
2, the Þrst-order derivative of πi with respect to pi when all networks charge p with p ∈

¡
pR, pm

¢
is given

by:

[R(pi)− f ] ∂αi
∂pi

+
αi
αR

£
αR − αi

¤ dR(pi)
dpi

where αi = αi(p; p, ..., p) < αR. The Þrst term is negative and the second term is positive. Therefore,
the Þrst-order condition may be satisÞed for p ∈ ¡pR, pm¢.
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access pricing rule is informationally demanding. However, even when it is difficult for

the regulator to know αR, this does not imply that she should adopt one of the alternative

access pricing rules presented in Section 2.2. As the comparison of different rules in Section

3.4 has shown, the intuition that one can intensify the retail competition by making the

access price that network i pays to other networks increase with its retail price holds

generally. More precisely, since αR ≤ 1/n holds, we have 1
αR(n−1) ≥ n/(n− 1). Therefore,

one can use the access pricing rule presented in Proposition 1, aij − c0 = n
n−1(pj − c):

although the equilibrium price under the rule is higher than the Ramsey price, it is

lower than the equilibrium price under any Þxed access price (larger than the termination

cost), or under the ECPR or under the MECPR. Furthermore, the previous rule is not

informationally demanding.

4.2 Network-based price discrimination

I now introduce network-based price discrimination. Following LRT (1998b), let pi be

network i�s on-net price and bpi network i�s off-net price. For simplicity, I consider the case
of n = 2. Note Þrst that the Ramsey outcome is not affected by the network-based price

discrimination. Since the Ramsey outcome can be achieved by the access pricing rule

ai − c0 = 2(pj − c) without network-based price discrimination, the price discrimination
has no social value in our framework. Consider the following linear access price rule:

ai − c0 = h(pi, bpi, pj, bpj, c)
= h1pi + bh1bpi + h2pj + bh2bpj + h3c+ h4,

where each of (h1, bh1, h2, bh2, h3, h4) is a constant. Let bΛL denote the set of the linear
access pricing rules taking the above form. Since I assume that the regulator chooses

(h1, bh1, h2, bh2, h3, h4) without knowing the demand structure, none of (h1, bh1, h2, bh2, h3, k)
can depend on the demand-side information. I have a negative result:

Proposition 3 In the presence of network-based price discrimination, there is no rule to
achieve the Ramsey outcome as an equilibrium among the linear access pricing rules inbΛL,
Proof. Network i�s proÞt is given by:

πi = αi [αiR(pi) + (1− αi)R(bpi)− f ]
+αi(1− αi) [q(bpj)h(pi, bpi, pj, bpj , c)− q(bpi)h(pj, bpj , pi, bpi, c)] .
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A necessary condition to implement the Ramsey outcome is that the Þrst-order derivative

is zero at p1 = p2 = bp1 = bp2 = pR. The Þrst-order condition with respect to pi at

p1 = p2 = bp1 = bp2 = pR is given by:
∂πi
∂pi

=
1

4

dR(pi)

dpi

¯̄̄̄
¯
p1=pR

+
1

4
qR(h1 − h3)

=
1

4
qR(1 + h1 − h3) + 1

4
(pR − c) dq(pi)

dpi

¯̄̄̄
¯
p1=pR

Therefore, (h1, h3) must depend on the information such as qR, pR and
dR(pi)
dpi

¯̄̄
p1=pR

that

are not available to the regulator. This proves the result.

In the presence of network-based price discrimination, as long as access prices are not

related to on-net prices, each network has an incentive to increase its on-net price above

the Ramsey price because of its market power. However, in order to induce each network

to charge its on-net price equal to the Ramsey price by making the access prices depend

on the on-net prices, the government must possess precise information about the demand

function as a necessary condition. Therefore, there is no linear access pricing rule that

achieves the Ramsey outcome under the informational constraint described in Section 2.2.

5 Conclusion

I showed that when networks compete in linear prices without network-based price dis-

crimination, there is a simple access pricing rule that achieves the Ramsey outcome as

the unique equilibrium independently of the underlying demand conditions. The rule

is simple and is not informationally demanding: the regulator only needs to know the

marginal costs. The rule intensiÞes retail competition by making the access price that

network i pays to other networks increase with its retail price. Our result implies that

although networks sell differentiated products, they end up having an equilibrium with

zero proÞt.15

I showed that the key insight is valid in a general framework of competition among

n-networks. Although the optimal rule achieving the Ramsey outcome can be information-

ally demanding if the full coverage assumption does not hold, I explained intuitively that

the optimal access pricing rule conditional on full coverage, which is not informationally

15This can reduce each network�s incentive to invest in infrastructure. If this incentive is a central issue,
one can study the optimal access pricing rule focusing on the trade-off between investment incentive and
retail competition. See Valletti and Cambini (forthcoming) for the study of investment incentive.
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demanding, performs better in terms of retail price competition than any Þxed access price

(larger than the termination cost) or the ECPR or the MECPR. I also found that there is

no simple rule achieving the Ramsey outcome when networks can use network-based price

discrimination since preventing each network from exercising its market power in terms of

its on-net price requires the regulator to have very precise information about the demand

structure as a necessary condition. Therefore, banning network price discrimination in-

creases social welfare in our case. The result that network-based price discrimination can

reduce social welfare is reminiscent of the Þnding in Jeon-Laffont-Tirole (2004) in which

they show that network-based price discrimination can generate connectivity breakdown.

Finally, it would be interesting to apply my approach to the case of network competi-

tion with two-part tariffs. The question is to know whether pegging access prices to retail

prices can help internalize call externalities even in the absence of reception charges since

reception charges are not used in many countries.16

Appendix

In the appendix, I prove four lemmas and this establishes that there is no asymmetric

equilibrium when n = 2.

Lemma 1 There exists no �cornered-market� equilibrium.

Proof. Suppose that network 1 corners the market with π1 > 0. Then, network 2

can charge p2 = p1 and make a proÞt π1/2 > 0 and therefore we get a contradiction.

Suppose that network 1 corners the market with π1 = 0. This implies that p1 = pR or

p1 = p. The proof of Proposition 1 in Section 3.3 has shown that if p1 = p, network 2

can realize a strictly positive proÞt by charging p2 = pm. Suppose p1 = pR. From the

proof of Proposition 1 in Section 3.2, we know that any price p2 different from pR and p

and satisfying α2(p2; pR) > 0 makes π2 < 0. However, (p1 = pR, p2 = p) cannot be an

equilibrium since p1 has an incentive to deviate to pm. The only remaining possibility is

p1 = p2 = p
R but then α1 = α2 = 1/2, which is not a cornered-market equilibrium.

Lemma 2 If (p1, p2) is an asymmetric equilibrium with p1 < p2, then p2 > pm.

16Jeon-Laffont-Tirole (2004) show that when receivers derive surplus from communications and net-
works can charge call receptions, there is a unique access price implementing the Ramsey outcome.
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Proof. Given an asymmetric equilibrium (p1, p2), network i�s equilibrium proÞt is

πi(pi : pj) = αi [R(pi)− f ] + 2αi(1− αi) [R(pj)−R(pi)] .

This must be higher than the proÞt that network i obtains by deviating to pj: the following

inequalities must hold

π1(p1 : p2) ≥ 1

2
[R(p2)− f ] ; (12)

π2(p2 : p1) ≥ 1

2
[R(p1)− f ] . (13)

Adding (12) and (13) yields,

(αi − 1
2
) [R(p1)−R(p2)] ≥ 0.

Since αi > 1
2
, a necessary condition to have R(p1) ≥ R(p2) and p1 < p2 is p2 > pm.

Lemma 3 If (p1, p2) is an equilibrium, then pi cannot be lower than the Ramsey price
and cannot be higher than p: pR ≤ pi ≤ p for i = 1 and 2.

Proof. Step 1: If (p1, p2) is an equilibrium, then pi cannot be lower than pR.
We cannot have an equilibrium in which pi < pR for i = 1 and 2 since then at least

one Þrm has a strictly negative proÞt. Suppose p1 < pR ≤ p2. First, α2 > 0 requires

p2 < p, which implies R(p2) ≥ f . If (p1, p2) is an equilibrium, network 1 must not have
an incentive to deviate to p2. In other words, the following inequality should hold;

α1 [R(p1)− f ] + 2α1(1− α1) [R(p2)−R(p1)] ≥ 1

2
[R(p2)− f ] ,

which is equivalent to

2α1(α1 − 1
2
) [R(p1)− f ] + 2

·
α1(1− α1)− 1

4

¸
[R(p2)− f ] ≥ 0.

Since we have α1 > 1
2
, R(p1) < f ≤ R(p2), the left hand side is strictly negative and

therefore we have a contradiction.

Step 2: If (p1, p2) is an equilibrium, then pi cannot be higher than p.
We cannot have an equilibrium in which pi > p for i = 1 and 2 since then at least

one Þrm has a strictly negative proÞt. Suppose p1 ≤ p < p2. We distinguish two cases:
p1 ∈ (pm, p] and p1 ∈

³
pR, pm

i
. Note that

³
p1 = p

R, p2 > p
´
cannot be an equilibrium

since then network 1 corners the market but no cornered-equilibrium exists from Lemma

1.
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Case 1: p1 ∈ (pm, p] and p < p2.
Given p1 ∈ (pm, p], there must be a p01 ∈

h
pR, pm

´
such that R(p1) = R(p01) ≥ f . In

order to have (p1, p2) as an equilibrium, network 1 should not have an incentive to deviate

to p01. Therefore, the following inequality should hold:

α1 [R(p1)− f ]+2α1(1−α1) [R(p2)−R(p1)] ≥ α01 [R(p01)− f ]+2α01(1−α01) [R(p2)−R(p01)] ,

where α01 = α1(p
0
1; p2) > α1 = α1(p1; p2) >

1
2
. Since R(p1) ≥ f > R(p2), the left hand

side is strictly smaller than the right hand side and therefore we have a contradiction.

Case 2: p1 ∈
³
pR, pm

i
and p < p2.

We have R(p1) > f > R(p2). Network 1�s proÞt is given by:

π1(p1 : p2) = α1 [R(p1)− f ] + 2α1(1− α1) [R(p2)−R(p1)]
= α1 {(2α1 − 1) [R(p1)− f ] + 2(1− α1) [R(p2)− f ]} .

π1(p1 : p2) ≥ 0 is equivalent to
R(p1)− f
f −R(p2) ≥

2(1− α1)
2α1 − 1 .

Network 2 should have no incentive to deviate to p1:

π2(p2 : p1) = α2 [R(p2)− f ] + 2α2(1− α2) [R(p1)−R(p2)] ≥ 1

2
[R(p1)− f ]

which is equivalent to

R(p1)− f
f −R(p2) ≤

(1− α1)(2α1 − 1)
1
2
− 2α1(1− α1) (=

2(1− α1)
2α1 − 1 ).

Therefore, we must have π1(p1 : p2) = 0 and π2(p2 : p1) = 1
2
[R(p1)− f ] . Then, there is

a proÞtable deviation for network 1: since p < p2, from assumption 1, there must be a

p01 ∈
³
pR, pm

i
that allows it to corner the market and to realize the proÞt of R(p01)−f > 0.

Therefore, we have a contradiction.

Lemma 4 There is no asymmetric equilibrium with pi ∈ (pm, p] for i = 1 or 2.

Proof. Case 1: pi ∈ (pm, p] for i = 1 and 2
Suppose p1 < p2. Therefore, we have R(p1) > R(p2) ≥ f . There must be a p01 ∈³

pR, pm
´
such that R(p1) = R(p01) > f . Network 1 should not have any incentive to

deviate to p01:

α1 [R(p1)− f ]+2α1(1−α1) [R(p2)−R(p1)] ≥ α01 [R(p01)− f ]+2α01(1−α01) [R(p2)−R(p01)]
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where α01 = α1(p
0
1; p2) > α1 = α1(p1; p2) >

1
2
. Since R(p1) > R(p2) ≥ f , the left hand side

is strictly smaller than the right hand side and therefore we have a contradiction.

Case 2: p1 ∈
h
pR, pm

i
and p2 ∈ (pm, p].

If α2 = 0, network 1 corners the market and we have a contradiction from Lemma 1.

Therefore, we consider α2 > 0, which implies that one cannot have
³
p1 = p

R, p2 = p
´
as

an equilibrium. This in turn implies that one of the two following inequalities R(p1) ≥ f
or R(p2) ≥ f must hold strictly. Network 2 should have no incentive to deviate to p1:

α2 [R(p2)− f ] + 2α2(1− α2) [R(p1)−R(p2)] ≥ 1

2
[R(p1)− f ] ,

which is equivalent to

2α2

µ
α2 − 1

2

¶
[R(p2)− f ] + 2

·
α2(1− α2)− 1

4

¸
[R(p1)− f ] ≥ 0.

Since α2 < 1
2
,α2(1−α2) < 1

4
and either (R(p1) ≥ f and R(p2) > f) or (R(p1) > f and R(p2) ≥ f),

the left hand side is strictly negative. Therefore, we have a contradiction.
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