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Abstract

We derive an expression for the variance matrix of the vector of {uncen-
tered) sample second-order moments under multivariate linear relations and an
independence assumption. An application of the result is presented
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1 Introduction

In a wide class of models for multivariate analysis, it is assumed that a vector of
observable variables satisfies the following multivariate linear relation (e.g., Anderson,
1987):

(H z= 23 B,

where z is a p-dimensional vector of observable variables, the &i's are random vectors
and the Bj's are parameter matrices. The moment matrices ®jj := E§;di', i=1,2, .., L,
where "E" denotes mathematical expectation, are assumed to be finite.

An example of (1) is the following linear latent variable model:

z = An + ¢
@23 {n=Bn+€ ’

where 1 is an m-dimensional vector of (possibly) latent variables, € is an p-dimensional
centered random vector of measurement errors, and £ is an m-dimensional random vector
(usually composed of disturbance terms of structural equations and exogenous variables).
Without loss of generality, we assume that (I - B) is invertible and that the last component
of &, m and =z is a constant equal to 1 (with this we encompass models that restrict the
means of observable variables, and not only the variances and covariances). Typically,
A, B,¥Y =Eee and Z := EEE’ will be matrix-valued functions of a g-dimensional
parameter vector 6.

Model (2a) is, in effect, a specific case of (1), since we can write

k k*
(2b) z= A0-B)ylE +e= '21 AC-BYliiEi + Y T,
1=

i=1

where the &j's and €'s are k and k* subvectors of £ and &, respectively, and the Ji’s and
Tj's are 0-1 matrices such that
k*

k
E= ’21 Ji and e= ¥ Tig.
1=

1=

It should be mentioned that model (2a) encompasses a variety of structural equation
models like Factor Analysis and the so called LISREL models (Joreskog and S6rbom,
1989). The gradient vector and Hessian matrix associated with model (2a), for different
type of fitting functions, can be found in Neudecker and Satorra (1991).

A matrix that plays a fundamental role in assessing the asymptotic distribution of
estimators and test statistics, is the following variance matrix of the vector of cross-product
moments of z:

3 I' :=var (v zz"),

which, throughout the paper, is assumed to be finite. Here "var" denotes variance matrix,
and "v" is the operator that stacks the non-redundant elements of a symmetric matrix in a

column vector. Note that v zz' = D% vec zz', where "vec"” stacks the rows of a matrix as




a column vector, Dt = (D'D)‘ID and D is the 0-1 "duplication" matrix for which vec zz'
=Dvzz' (for further details on the matrices D and D*, see Magnus and Neudecker,
1988). Note that T is a p* x p* matrix with p* = p(p+1)/2.

In this paper we derive the expression for I' in terms of the matrices Bi 's and moment
matrices of the dj's, under the assumption that the &i’s of (1) are mutually independent.

We do this in Section 2 of the paper. The expression to be obtained does not follow
from known results on variances of quadratic forms, as (for example) the results of
Browne and Neudecker (1988), Neudecker and Wansbeek (1987) and Rao and Kleffe
(1988, Section 2.6), which do not consider a linear relation (1) with the di's possibly

non-normally distributed.

The expression obtained for I is used in Section 3 to simplify the derivation of results on
asymptotic robustness in moment structure analysis.

2 The expression for T under multivariate linear
relations

In relation with (1), consider

@) E 6 =0, fori=1,.., L-1,

5) oL, =1 (i.e., &1 is scalar constantto 1)
and the following independence assumption (1A):

(6) IA: The §i's are mutually independent.

Under the current setting, the following lemma applies (The proof of the lemma is
sketched in the Appendix)-

Lemma 1

When (4) to (6) hold, the variance matrix I" of (3) can be written as

(7 [= Q-2DHuueun)D* +
L-1
I [ 2D* Bi®u)(E 3i(v 5i5) )D(BIOB; ) D' +
1=

2D*(Bi®B; )D {E (v 8i8;) &' }(Bi® p)' D*" +
D*(Bi®B; )D{(var v(5;8;) - 2DVE(5;5j") ® E (5i8;)D* }D'(Bij®B; )D*' ],
where
3 Q:= 2Dt Ezz' ® Ezz' DV

and | := Ez.




Remarks

1. When z is normally distributed, (7) simplifies to what we will call the normal (N)
expression of T":

©) I'N:=2D*[Ezz' ®Ezz - pyp' ® pp' ] DY,

since for centered and normally distributed dj's it holds that (e.g., Neudecker and
Wansbeek, 1987)

(10a) E &i(v §i81) =0
and
(10b) var v(8;8;) = 2D*E(5;8;") ® E (5;8;)D*".

2. Given any random vector z, applying the Lemma to the following (trivial) two-terms
multivariate linear relation z = (z-jt) + |, we obtain

an I' =2D%Ezz' ® Ezz' - pup' ® pp' )D' +
2D* (1 ® W)(E@-p)(v(z-W)(z-1))) +
2 EV @wEzw)zw )A®p) DY +
((var v(z-p)(z-w)") - 2 D¥YE((z-u)(z-1)") ® E((z-p)(z-p))DF),

where I is an identity matrix of appropriate dimensions. This is in accordance with an
equivalent result of Rao and Kleffe (1988, Section 2.6).

Result (7) will now be used to show that, under certain conditions, £ of (8) can
substitute T in the formulae for asymptotic standard errors and test statistics in moment
structure analysis. Since the matrix €2 involves only the second-order moments of the data,
which are easier to estimate than higher-order moments, this substitution is of high
practical relevance.

3 Asymptotic robustness in moment structure analysis

Consider the multivariate linear relation (1) under assumptions (4) to (6), and assume
additionally that the Bj's are continuously differentiable functions of a t-dimensional
parameter vector T and the djj's are unrestricted symmetric matrices. Denote X = Ezz',
then we obtain a moment structure = ¥(0) where

12) 0:=[7, v ®11), .... v ®iD)"s .., v PLL)T

is an (unrestricted) g-dimensional parameter vector (g 2t). This set up arises, for
example, in (2b) when A and B are matrix-valued functions of T and the &j's and &j's are
mutually independent random variables with unrestricted moment matrices ( a specific
model of this type is the factor analysis model).

Since (1) implies that




L
(13) Ev (zz) = 'El D*(Bi® Bj)D v(®jj ),
i=

the partition (12) of 8 implies that the (p* x q) derivative matrix A := (3/30") 6(8) can be
written as

(14) A = [ A7, D¥(B1®B1)D,...,, D¥(Bi®Bj{)D, ..., D¥(BL®BL)D],
where At := (8/01")0(0) is a p* X t matrix and o(0) := v Z(0).
Consider now a sample 7y, 72, ..., zz of nindependent observations of z, and let
s := v (8) be the reduced vector of sample moments, where
n
(15) S= Y (zuzg')/n
o=1

is the (uncentered) sample (second-order) moment matrix of z. Straightforward application
of the Central Limit theorem shows that

(16) nl/2(s -0 > N, ),

where "--->] " indicates convergence in distribution, o9 is the asymptotic limit of s and T’
is the p* x p* matrix defined in (3) above. Consider an estimate 6 of 8 with the
property of being nl/2_consistent (i.e., nl/2( 6 0) is bounded in distribution).
Typically, 6 will be the minimizer of

am F=(s-0o(0) \,?\V (s-0(9)),

A
where W is a weight matrix converging in probability to a positive definite matrix, say W.
It can also be the minimizer of the (pseudo) maximum likelihood function

(18) FML = InlZ®)t + tr {SZ®)-1} - InISI-p.

Instrumental variable estimators are also nl/2-consistent estimators of 0 (e.g., Jennrich,
1987). Computer programs that produce such estimators for the class of models described
in (2) are, for example, LISREL (Jéreskog and S6rbom, 1989), EQS (Bentler, 1989 ),
LISCOMP (Muthén, 1987) and LINCS (Schoenberg, 1989).

A A
Let us denote by 1t the (t X 1 ) subvector of 8 corresponging to T. By standard
A
asymptotic theory, the asymptotic variance matrix of T is

A
(19) avar (1) =n" 10707,
where ©1 is the t X p leading sub-matrix of (A'WA)‘IA'W, say [(A'WA)'IA'W]txp*

(e.g., Satorra, 1989). Note that in the case of (pseudo) maximum likelihood estimation,
then W = 32FML(0,0)/d00¢" and equals Q of (8) (e.g., Neudecker and Satorra, 1991).




A A A
Once the estimate 6 is known, the vector 6 := ¢( 0) of fitted moments can be computed.
To test the adequacy of the model, an asymptotic chi-square goodness-of-fit test statistic
can be defined as

A A A
(20) G=nG- 6)YAG- o)

A
where A is a consistent estimate of A] (A;'T'Aj)"A| and "-" denotes a g-inverse.

Under a sequence of local alternatives (Neyman, 1937; see McManus, 1991), namely
Q1) 00 i=c%, with vn(c®, -0)=3,

where d is a finite p*-dimensional vector, standard results of Moore (1977) show thatl
(22) G --->L X2K\),

where xzr()») is a non-central chi-square distribution with r =rank(A ' T'A|) degrees of
freedom and non-centrality parameter A =&'A | '(A)'T' A )"A | 6. Here A| means an

orthogonal complement of the derivative matrix A. The asymptotic distribution of G will,
of course, be central chi-square when the drift parameter 8 of (21) equals zero (i.e., when
the model is "exactly true”). In the particular case of covariance structure analysis (where

z is assumed to be of zero mean), the above goodness-of-fit statistic G was introduced by
Browne (1984).

Since &A and A | “A equal zero, the partition (14) of A implies

23) 0, D*Bi®B)D=0, i=1,.L,
and
24) A| 'D*(Bi®Bj)D =0, i=1,..L,

which, combined with the expression for I obtained in Lemma 1 (see (7)), yield the
following fundamental results:

(25) eIt = 61Q6,
and
(26) Ay TA) = A]"QA].

Un fact, noting that
A ‘ A
Vn(s- o) =Vn(s - 69) + Vn(a© - 6p) + Vn(Gp - G) =

Vn(s - 09) + Vn(a© - 6g) - VnA( 6 - 9),

under the sequence of local alternatives (17), we can write

Vn A (s- 8) = VnA) (s-69+VnA (69 -60) -->LN(A 8, A TA.




Result (25) and (26) have very interesting practical implications. In effect, (25) allows us
A
to estimate the variance matrix of T as

avar(%) = n'1®[ §A) O =
A N Fal A A AN A A A A A
7 =[(A'W AYIA"WQW A @AW Al

where [ ]; x ¢ denotes the leading t X t submatrix of the matrix enclosed. Further, (26)
allow us to construct an asymptotic chi-square goodness-of-fit statistic G* as

* A A A A A A A
(28) G =n(- 6)AJ(A;'"QA)A ' (s- ©).

A
Here means evaluated at 0 or simply a consistent estimate. It should be noted that a
consistent estimate of € is easily obtained by replacing S for Ezz' in (7b).

Limited to the context of covariance structure analysis, the asymptotic chi-squaredness of
G* of (28), as well as the validity of the result (27), under the current assumptions was
proven in Satorra and Bentler (1990, 1991). It should be noted that when FMI, is used,

A
then G* of (28) and the statistic nFpMI_(S, Z( 8 )) have the same asymptotic distribution
and, hence, both will be asymptotically chi-square under the current assumptions.
Results (25) and (26) encompass asymptotic robustness results of Amemiya and Anderson
(1990), Anderson (1987), Satorra and Bentler (1990), Browne and Shapiro (1988) and
Satorra (1991). The present approach for proving results of asymptotic robustness has
also been exploited in Satorra (1991).

Clearly, the possibility of using a consistent estimate of € instead of I' simplifies
computations considerably. In fact, when computing the variance matrix (27) of estimates
of 1, as well as to computing G* of (28), only the second-order moments of the data are
involved. In contrast, under nonnormality of z, usual consistent estimates of I involve
higher-order moments of the data.

Slight modifications of the arguments above will also show the validity of (25) and (26)
when some of the matrices ®jj's are restricted to be continuously differentiable functions
of 1, provided that condition (10) is verified for the 6i's with restricted ®jj's (as is the
case when 9 is normally distributed).




Appendix

This appendix sketches the proof of the Lemma

Resultssuchas K(A®B)K= (B®A), K(A®b)= b® A, and

vecbb =b®Db, where A is a matrix, b is a vector and K is the commutation matrix of
appropriate dimension, and other standard results of matrix calculus (e.g., Magnus &
Neudecker, 1988), will be used extensively in the proof of the lemma.

First note that under (1):

E zz=E(Y Bj$j)( ¥ Bidi)= 3 BiE(§3;)Bj
J I I

since E 6;0j= 0 when i#j. Hence,
(A1) (+K) Ezz' ® Ezz' =

2 (I+K) (Bi®B;j )(E (3i6{) ® E(8i)) (Bi®Bj) +

1

2 (I+K) (Bi®Bj) (E (8i3;) ® E (8;3j) ) (Bi®B;j )"
17
and

var(veczz' ) =

PIEDY £ (Bj®B; )[E(5i®5)(8,®8))"- E (5;®5i) E(5®3k)'] (Bi®Bk )' =
1]

22 E Y (Bj®Bj) Xijkt (B®Bk)',

1 ] t

where
Xijkt = E (§j@&)(&®8K) - E (5j®8) EG@8) .
Now, computing Xijjkt under different combinations of subscripts, we deduce
(A2) Var(veczz') =
% (Bj®Bj ) [ E(3;8;) ® E(8;8i) | (Bj®B;)' (I +K).
1
> (4K) (Bi®BL ) [ E(8;®3L)(3i®%i)' ] (Bi®B;j )’ +
izl
EL (Bi®Bj )[E(§i®d)(BL®8)) | (Bi®BL ) (I+K)+
1

Y (Bi®Bj) [ varvec §ij'1 (Bi®Bj)'.
1




Consequently, we can write
(A3) Dt ({+K) Ezz ® Ezz DY = 2DVt Ezz' ® Ezz D*'=

2 2D*(Bi®Bi) [E@id) ® E(%8)] (Bi®Bj)D* +
1

XY 2D* (Bi®Bj) [E(%i%i) ® E(§;3j)] (Bi®Bj)D*" ;
14

(A4) Dt Var(veczz )D* =

Y 2D* (Bj®B;) [E(j3] YO E@idi) ] (Bj®B;) D*".
ii:? 2D* (Bi®BL )[E(5®SL)(5i®3;) ] (Bi®B; ) D*' +

i¢EL 2D*(Bi®B; )[E(Gi®&)(3L®8))' | (Bi®BL )’ D*' +
% D* (Bi®B;j ) [ var vec 8idi'] (Bi®Bj )YD*".

The proof concludes by combining results (A3) and (A4). Q.E.D.
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