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Introduction 
The optimal structure and concentration of corporate ownership is a hotly debated issue 
of corporate finance and political economics even today, seventy years after the 
publication of the influential Berle and Means (1932) book. The last two decades 
witnessed a significant progress in the modeling of the behavior of “large shareholders”, 
i.e., shareholders with a stake large enough to have the ability and motivation to monitor 
and improve company performance.1 Until recently, however, theoretical literature 
typically downplayed two important aspects of strategic agents’ behavior: the agents’ 
motivation to trade, as well as the strategic interactions between multiple large 
shareholders. Empirically, Mikkelson et al. (1997) (for the U.S.) and Franks et al. (2002) 
(for the U.K) document a significant and steady decrease in the aggregate insider 
ownership stake both before and after the Initial Public Offering (IPO). Urošević (2002) 
confirms (for the U.S.) that the average aggregate insider ownership stake gradually 
declines after the IPO. In addition, he finds that the majority of companies have several 
insiders with large stakes, and that the speed of the aggregate insider stake adjustment 
depends upon the composition of the insider stake: the decline tends to be higher for 
companies that have multiple insiders with large stakes than for companies that have only 
one such insider, even though this effect is not always significant.  

The aim of this paper is to model the dynamics of corporate ownership for companies 
with multiple large shareholders. In doing so, I build upon the dynamic moral hazard 
model of DeMarzo and Urošević (2001) which explicitly demonstrates gradual 
adjustment towards the competitive equilibrium in the case of one strategic agent.2 
Extending their model to incorporate the strategic behavior of multiple large shareholders 
allows me to explore how the make up of the aggregate insider stake influences the 
nature and the speed of its adjustment. Importantly, my model leads to predictions 
broadly consistent with the available empirical evidence. 

                                                 
1 See Shleifer and Vishny (1997) for a review of the corporate governance literature, and La Porta et al 
(1999) for a survey of corporate ownership concentration around the world.  
2 Most of the related literature incorporates only one strategic agent. Basak (1996), for example, considers a 
commitment strategy for an agent who recognizes that his portfolio choices influence state prices including, 
e.g., the risk-free rate in the economy, but who cannot influence the dividends process. The paper notices 
but does not address the lack of time consistency of such solution. Kihlstrom (1998) considers a three-
period model similar to Basak’s but solves, in addition, for the time-consistent strategy of the large 
shareholder and shows that the problem exhibits Coasian dynamics (see Coase (1972); DeMarzo and Bizer 
(1993) establish the connection between the durable goods monopolist problem and securities markets). 
Stoughton and Zechner (1998) solve a one-agent  two-period model in the special case of linear moral 
hazard (see Section 2). Those models build, in turn, on the influential one-period models of Admati et al 
(1994) and Lindenberg (1979). Other important one-period models include Bolton and von Thadden 
(1998), Burkart et al (1997) and (1998), Demsetz and Lehn (1985), Demsetz (1986), Grinblatt and Ross 
(1985), Kahn and Winton (1998), Leland and Pyle (1977), and Maug (1998), among the others. There are 
also papers in which price process is exogenous (i.e. markets do not necessarily clear) such as Cuoco and 
Cvitanic  (1997), El Karui et al (1997), and Jarrow (1992), among others. 
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In an economy consisting of one risky firm and a risk-less bond, there are N equally risk-
averse agents that I refer to as insiders,3 and a continuum of small outside investors, all 
with CARA preferences. There are two competing forces driving the results of the model. 
On one hand, insiders are facing a moral hazard problem so that the expected firm cash 
flows and, therefore, the company value increases with insider holdings, ceteris paribus. 
On the other hand, high company stakes imply a significant risk exposure to insiders 
who, as a result, have the incentive to decrease their stakes over time. Importantly, the 
ownership policy of each insider influences the share price, and, therefore, every other 
agent’s future ownership decisions. The equilibrium in the economy simultaneously 
specifies the optimal ownership policies of each insider, as well as the corresponding 
share price process.  

I consider the case in which each insider can commit to an optimal ownership policy, and 
the case in which such commitment is impossible. Note that the commitment policy is 
time-inconsistent since after the initial sale, as long as their marginal valuation is below 
that of the outside investors, each insider will be tempted to trade again since she will no 
longer internalize the capital loss on the shares just sold. Put in another way, insiders’ 
risk-aversion creates a wedge between their valuation of company shares and the value 
placed on the company shares by the outside investors (the market). The optimal time-
consistent policy, therefore, is for insiders to gradually adjust their stakes in the company 
until the perfect risk sharing allocation is achieved. The intuition for that result is quite 
similar to the one agent model (see DeMarzo and Urošević (2001)).  

When investors are risk-averse there is an additional strategic reason for a dynamic stake 
adjustment in this model vis-à-vis the one-agent case. Namely, a decrease in the 
aggregate insider stake raises the market risk premium and thus lowers the company 
valuation.  Therefore, by selling more today, each insider hopes to decrease the incentive 
for others to sell in the future (since they will receive a lower share price).  This creates 
among the insiders a “race to diversify”. As a result, in the unique subgame-perfect 
equilibrium, the speed of adjustment toward the perfect risk sharing allocation increases 
with the number of company insiders N. Intuitively, as N increases, the asset price more 
quickly becomes competitive, though the adjustment towards the long-run equilibrium is 
gradual.  

When investors are risk-neutral, the speed of adjustment of the aggregate insider stake 
loses its dependence on N. In that case, the multi-agent setting formally coincides with 
the one-agent results of DeMarzo and Urošević (2001). As in the one-agent case, the 
speed of adjustment of the aggregate stake increases with cash flow volatility and 
decreases in marginal monitoring incentives, ceteris paribus.  

Independently of this work, Pritsker (2002) develops a related model. He also constructs 
a model of multiple “large traders” in a CARA/normal setting and borrows, like this 
paper, some modeling techniques from DeMarzo and Urošević (2001). In many 
important ways, however, our models are quite different. The key difference is in the 
economic environment that the two papers portray. This paper aims to explain the 
evolution of the aggregate corporate insider stake in a given company. In contrast, 

                                                 
3 Here, and in the rest of the paper, I use the word “insider” to denote anyone who files SEC insider forms 
and not necessarily someone who “trades on information” as in the Kyle (1985) model, for example. 
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Pritsker (2002) models the trading behavior of large institutional traders. Consequently, 
while both of our papers incorporate diversification as a motivation to trade, Pritsker 
(2002) studies market liquidity, shock transmission and market manipulation in an 
economy with no moral hazard, whereas I focus on the moral hazard problem, instead.4 
Moral hazard is likely to play a significant role in the ownership decisions of corporate 
insiders.5 DeMarzo and Urošević (2001) show that the moral hazard provides a natural 
explanation for the gradual adjustment of a large shareholder stake.  This paper confirms 
that intuition in a more realistic setting that incorporates multiple strategic agents. In 
addition, this paper offers a simple explanation of the fact that the speed of adjustment 
tends to (weakly) increase with the number of large shareholders in a company. Another 
difference between Pritsker (2002) and this paper is that the former considers an 
economy with multiple risky assets whereas I consider only one risky asset. Such choices 
are sensible, given the environments that the papers aim to describe: large institutional 
traders can impact the prices of multiple assets; on the other hand, the majority of 
executives, at any given time, are insiders in only one company. 

This paper is organized as follows. In Section 1, I describe the model. In Section 2, I 
perform some preliminary analysis and find the benchmark commitment and price-taking 
allocations. In Section 3, I formulate the time-consistent equilibrium problem and obtain 
the solution in terms of a coupled set of recursive relations. In Section 4, I obtain the 
numerical solution to these equations and find important comparative statics in the case 
when investors are risk-averse. In addition, I solve the problem exactly when the outside 
investors are risk-neutral. In Section 5, I discuss the results. Section 6 contains my 
conclusions and suggestions for future research. Section 7 contains the list of references. 
Proofs are relegated to the Appendix. 

1. The Model  
I consider a going-concern publicly traded firm with a supply of shares that is normalized 
to one, and with a cumulative free cash flow process described by the following diffusion 
process 

                 dD =  ˆ ˆdt dZµ σ+ , 

where Z is standard Brownian motion. Consequently, the cash flows in each period are 
normally distributed and independent across periods. Normality is important for the 
tractability of the model and while unlimited liability is not desirable, it does not play an 
important role in the forces driving my results. Inter-temporal independence of cash 
flows means that there is no learning from the past. Shares of the firm trade in the market 
at the price V that needs to be determined in equilibrium.  In addition to this firm there 

                                                 
4 Another interesting recent addition to the literature on the trading behavior of multiple strategic traders is 
Brunnermeier and Pedersen (2002). They focus on the issue of predatory trading and market liquidity in a 
continuous time setting. Thus, their paper is closer in spirit to Pritsker (2002) than to my paper. 
5 Brav and Gompers (2001) provide an empirical evidence on the link between the moral hazard problem 
and insider ownership dynamics by studying the role of lock-up mechanisms in IPOs. They show that the 
primary reason for introducing a lockup, i.e. a mechanism that prevents insider trading in a company stock 
for a period of time after the IPO, is to alleviate the moral hazard problem. 
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exists a risk-less investment that pays a continuously compounded return of r, with a 
perfectly elastic supply. 

The firm pays out all of its cash flows as dividends. This assumption is made for 
convenience only since if the firm can re-invest any retained cash flows only in marketed 
securities, i.e. in the risk-free asset and the company stock, the optimal ownership policy 
does not depend on the payout ratio. The expression for the share price, on the other 
hand, does depend on the dividend policy. In particular, full payout implies that the share 
price is a deterministic function of time. On the other hand, for less than a full payout, the 
expression for the share price would become stochastic. (For more details, see the 
discussion in DeMarzo and Urošević (2001)). 

There are N>1 agents in the model with the ability to monitor the firm and affect 
decisions within the firm. I refer to them as insiders. This extends the single “large 
shareholder” model of DeMarzo and Urošević (2001) by incorporating strategic 
interactions between corporate insiders. For simplicity I assume that the insiders may 
have different initial company stakes but are otherwise identical. In addition to these 
insiders, there exists a continuum of competitive outside investors, with measure F.6 All 
individuals in the economy have standard CARA utility so that on date t, they optimize 

              ( )( )r t i
t t

E e u c dτ
τ τ

∞ − −∫ , 

where ( )
ii cu c e−γ= −  and γι is the individual’s coefficient of absolute risk aversion. 

DeMarzo and Urošević (2001) show that restricting the rate of time preference to the 
risk-free rate r is without loss of generality.   Without risking confusion, hopefully, I 
denote by γ the risk aversion of the insiders, and by γi the risk aversion of the outside 
investor i.   

All trades occur in a competitive market.7 That means that the insiders in the economy 
trade with competitive outside investors. Let αl(t) ∈ [0,1] ( l=1:N),  be the fraction of the 
firm held by the insider l at time t and let the vector of insiders’ holdings be ≡ (α1,.., αN).  
I restrict each component αl(t) to be right-continuous, and interpret ( ) lim ( )l l

t
t

τ↑
α − ≡ α τ  as 

the shares held at the “start” of period t by insider l; thus, αl (t) − αl (t−) is the discrete 
number of shares purchased by the insider l in period t or, since the two are 
interchangeable in this model, the change in the insider’s l ownership stake at time t. The 
insider l has an initial endowment αl (0−) = αl −.  By market clearing, in equilibrium the 
investors’ holdings at time t are given by the expression 1 − A(t),  where 
Α(t ) ≡ ( )l

l

tα∑  is the aggregate insiders’ stake at time t.  Τhe initial aggregate stake is 

                                                 
6 The insiders’ trading opportunities depend, in principal, on the liquidity of the market  that is, in turn, 
endogenous to their trading behavior due to the microstructure effects (adverse selection, inventory cost 
etc). In order to simplify the analysis I ignore these effects.  In addition, I assume that infinitesimal 
shareholders cannot form coalitions or in any other way behave strategically (see Zwiebel (1995) on a 
sufficient condition for preventing small investors from forming coalitions). 
7 In contrast, Vayanos (1999) considers a model with N strategic traders in the absence of competitive 
investors. 
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given, therefore, by the following expression: A− ≡ l

l
α −∑ . (An important note: 

Whenever confusion would not occur, I drop the superscript l writing, instead, an insider 
stake simply as α and the corresponding initial stake as α − ). I assume that the initial 
stakes are exogenous to the model and above the perfect risk sharing allocation level. 
Endogenous treatment of the initial stakes can be found, for example, in Stoughton and 
Zechner (1998) and DeMarzo and Urošević (2001) in a one-agent moral hazard setting. 

Insiders are facing a moral hazard problem: insider l’s costly monitoring effort 
, 1,..,le l N=  affects the expected free cash flow in a linear fashion, namely, 

1
1ˆ ( ),..,

N

l
l

Ne e eµ µ
=

0= + ∑ .  One way to interpret this expression is to think of each insider as 

working on a separate task within the firm without interacting with other insiders. Such 
interactions would be represented, for example, by the terms of the type i je e , i j≠  in the 
expression for 1ˆ ( ),.., Ne eµ . Quantity 0µ represents the expected cash flow that the firm 
receives each period based purely on the existing capital in place (and not on the insiders’ 
effort). Since it impacts only, in a straightforward fashion, the expression for the share 
price but does not have an impact on the determination of the optimal ownership policies, 
I normalize it to zero. I assume further that the variance of the firm’s cash flows cannot 
be altered by the actions or holdings of the insiders. All of the parameters in the model 
are constant. Note that while insiders’ do not affect the efforts of other insiders directly, 
they do so indirectly through by recognizing their own, and other insiders’ impact on the 
process of share price formation (see below). 

Each insider’s problem is symmetric so, without loss of generality, I can pick an insider 
and denote her stake as α and her effort choice as e. The insider’s cost of effort is 
quadratic in e, i.e. 2

1( ) /(2 )f e e µ= , where parameter 1µ  is identical for each insider. 
Thus, the cost of an effort is independent of other agents’ effort choices. Since the effort 
in this economy cannot be contracted on, each insider’s effort choice must be incentive 
compatible. I refer to such a model as a linear hazard model.8 In addition, because of the 
CARA/normal setting, each insider’s problem can be expressed in terms of her certainty 
equivalent. Thus, in each instant, each insider chooses her effort in order to maximize the 
instantaneous certainty equivalent of her payoff,9 

 2 21
1 2ˆ ( )max ,.., ( )e Ne ez f e rµα α γ σ≡ − −                      (1) 

The expression (1) is quite intuitive. The instantaneous certainty equivalent is equal to the 
total expected dividends received by the insider, net of her cost of effort and adjusted for 
the insider’s risk aversion. Here, 2 2α σ  captures the variance of the dividends received, 
γ is the insider’s risk aversion, and the scaling by the interest rate r appears since the 
insider can smooth shocks over time. Given µ̂  and f, this is solved by 1e αµ=  for each 
                                                 
8 With only one agent in the economy, such a model gained prominence in Holmstrom and Milgrom (1987) 
and has been used extensively in the literature (see Admati et al (1994), Stoughton and Zechner (1998), and 
DeMarzo and Urošević (2000), among many others).  
9 Rigorous derivation in DeMarzo and Urošević (2000) goes through without change in the multiple agent 
case. 
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insider.  Thus, the certainty equivalent payoff “flow” to each insider can be re-written 
entirely in terms of her and other insiders’ holdings: 

 2 2
1 1( , ) ( ) / 2z rα β µ γ σ α µ αβ= − +                                (2) 

In the above, I introduce Aβ α≡ −  as the aggregate holdings of all but that particular 
insider, and explicitly note that the instantaneous certainty equivalent of an insider is a 
function of that insider’s holdings, given the aggregate holdings of all other insiders. 
Here, 1 0µ ≥ measures the expected free cash flow sensitivity with respect to the change in 
corporate ownership, and, thus, parameterizes the importance of the moral hazard 
problem in this model.  

Equation (2) determines the total risk-adjusted payoff to an insider from holding a 
fraction α of the firm. It is useful to restate this in terms of the marginal value of 
ownership to the insider: 

 2
1( , )  z A r= −α α β µ αγ σ                                  (3) 

 

That is, the marginal value of a share to the insider is simply the expected dividend per 
share, A1µ , adjusted by the insider’s “risk premium” given holdings α. In fact it is 

sufficient to know zα , since 
0

ˆ ˆ( , ) ( , )z d z
α

αα β α α β= ∫ . 

An analogous expression can be derived for outside investors.  Investors consume and 
trade shares of the firm and the risk-less security continuously and competitively. Given 
CARA utility, investors can be aggregated into a single representative investor with an 
aggregate risk aversion coefficient γI ≡ [ ∫i 1/γi dF(i) ]−1.  The marginal value of a share to 
this aggregate investor is then given by 

 2
1( ) (1 )  IA A A r= − −ν µ γ σ                          (4) 

Equations (3) and (4) summarize the primitives of the model.  Extending the results of 
DeMarzo and Urošević (2001) (their Section 3.3) to the multi-agent setting, one can 
prove that the transformation of the problem from the explicit moral hazard formulation 
expressed in terms of insiders’ efforts (1) into the reduced formulation expressed in terms 
of insiders’ holdings (4) is without loss of generality whenever both the expected cash 
flow and volatility can be represented as a sum of N single-agent functions. The linear 
moral hazard model is an obvious special case. The moral hazard of the insiders is, 
therefore, reflected in the dependence of the dividend on their aggregate holdings A, 
whereas the motivation for trading is provided by the difference in risk premiums across 
insiders. 

In the model, insiders live infinitely but trade and actively monitor the company only for 
a finite period of time. In particular, while insiders may consume, make effort choices, 
and trade in the risk-less security continuously, I assume that they are restricted to trade 
shares of the firm on a finite set of dates T  common to all insiders. Technically, a finite 
number of trading periods is necessary for the uniqueness of the sub-game perfect 
equilibrium. In practice, companies frequently impose “windows” within which company 
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insiders can trade say, every quarter (e.g., Urošević (2002) finds that the average interval 
between two successive trades by a corporate insider is 109 days, roughly corresponding 
to quarterly trading windows; see, also, Seyhun (1998)). Since trading windows are often 
narrow this justifies both the assumption of discreteness as well as the assumption of 
commonality of trading dates. Finally, in order to justify the finiteness of the trading 
horizon, note that some large shareholders such as venture capitalists have an obligation 
to divest within a certain period of time (say 10 years). After the partnership dissolves, 
partners may still be invested in the company, but do not usually monitor their investment 
closely (see Cumming and MacIntosh (2001) for modes of VC exists).  

The timing in the model is as follows: 

 
                      Figure 1: Timing in the model 

 

I assume that diversification is the primary motive for the reduction of insider stakes. A 
growing body of empirical evidence suggests that insiders are, indeed, increasingly 
influenced in their trading decisions by diversification and/or liquidity considerations and 
less by the desire to capitalize on inside information.10 Muelbroek (2000), in particular, 
finds that for highly volatile stocks like those in the high technology sector in the U.S., 
the desire to diversify is one of the key motivations for insider trading.  

Another important assumption is that insiders’ decisions are sequentially rational and that 
each agent is playing a multi-period simultaneous-move game with the other insiders in 
the company. In particular, each of the insiders knows her own, as well as the other 
insiders’, past trades. They also know that their trading decisions today affect the share 
price and, consequently, the future trading decisions of all insiders in the economy 
(including her own). Though the outside investors trade competitively as price-takers, 
they are aware of the strategic interaction among the insiders and the fact that the 
insiders’ current trading decisions have an impact on the insiders’ current and future 
trading decisions. Investors are rational, and make their demands for shares after they 
observe the insiders’ trading decisions for that time period. Note, in particular, that in this 
model there is no asymmetric information about the dividend process or about the 
insiders’ trading decisions. In other words, all information about the company and insider 

                                                 
10 It appears that informational motive mat be less important in the 1990’s (see Carpenter and Remmers 
(2001), Lakonishok and Lee (2001), Jeng et al. (2000), among others) than in the past (Lorie and 
Niederhoffer (1968), Jaffe (1974), and Seyhun (1986), among others). Having said that, trading on inside 
information may still be important (see Seyhun (1998) and references therein). 
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trades is revealed instantaneously to the investment community.11 Finally, I do not 
explicitly restrict investors to trade only on dates T  since, in equilibrium, investors 
would only trade when the insiders trade. 

2. Commitment and Price-Taking Strategies 
The setup in this model is similar to the one in DeMarzo and Urošević (2001) with some 
important differences: a) they consider only one strategic agent while I consider multiple 
agents and their strategic interactions; b) I restrict the analysis to the linear moral hazard 
problem where insiders cannot influence volatility and have no benefits of control; and c) 
the parameters in my model are assumed not to depend on time. As a result, I can adopt 
most of the results of their preliminary Sections 3.1 to 3.3 with some minor changes. For 
example, the equilibrium share price in this model is given by 

 ( ) ( ) ( )( ) ( )r t

t
V t e A d

∞ − τ−α = ν τ τ∫ . (5) 

The expression in (5) requires some discussion. In one sense, it is straightforward – the 
equilibrium share price is simply equal to the discounted risk-adjusted dividend flow to 
investors. Less trivially, future dividend flows depend upon the insiders’ anticipated 
trading strategies (through both the expected dividends and the future risk premium), 
which must be determined in equilibrium. Indeed, (5) states that the share price at time t 
is determined by the aggregate insider holdings at time t since, in a unique sub-game 
perfect equilibrium (see Section 3), an insider’s holdings today influence each insider’s 
trading strategy and, thus, their holdings in the future. Therefore, the share price is given 
by the discounted risk-adjusted dividends calculated at the equilibrium trading strategy 

( )α τ . (A formal proof of (5) can be obtained following the steps leading to Proposition 
5 in DeMarzo and Urošević (2001).) Due to the symmetry of the model, in the sub-game 
perfect equilibrium (Section 3), the share price V at time t is, in fact, a linear function of 
the aggregate insider holdings A(t). 

 In order to determine insiders’ trading strategies, I must formulate their optimization 
problems. Each insider’s (total) certainty equivalent is given by the following intuitive 
expression: 12 

 

 ( ) ( ) ( ) ( )
[ , ]

( ( ) ) ( ), ( ) ( ) ( )r t

t
k t e z d d V− τ−

∞
α = α τ β τ τ − α τ α τ  ∫          (6) 

 

                                                 
11 In contrast, Vayanos (2001) considers a model with one strategic trader, market makers, and noise traders 
in which the agent’s trading decisions are his private information; Vayanos (1999), on the other hand, 
considers a model with N strategic players with private endowments and no noise traders or market makers. 
While these models are very different from each other (and from my model), agents’ allocations converge 
in both models towards the competitive risk sharing allocation. 
12 I adopt set notation for the limits of integration to avoid ambiguity given discontinuities in α.  Thus, 

( , ]
( ) ( ) ( )l l l

t T
d T tα τ = α −α∫  and  

[ , )
( ) ( ) ( )l l l

t T
d T tα τ = α − −α −∫ , where ( ) lim ( )l l

t
t

τ↑
α − = α τ . I also define 

l −α to be the initial holdings of the agent l. 
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Note that due to the symmetry in the model the form of the expression in (6) is the same 
for each insider. The meaning of the right hand side in (6) is that each insider’s certainty 
equivalent consists of her capitalized risk adjusted aggregate benefits from holding shares 
(the first term) and her capitalized trading gains from selling shares over time (the second 
term). These expressions depend on the insider’s own future trading strategy as well as 
on the future strategies of all of the other insiders. These strategies need to be determined 
in equilibrium simultaneously with the share price process.  

In general, each insider would trade at least once. Indeed, since relatively under-
diversified insiders are typically more risk averse than the pool of outside investors, each 
insider would have an incentive to trade away from the initial allocation.  Let me denote 
by T = {t1 = 0, t2, ..., tN = T} the finite set of trading dates when each insider can trade.  In 
this case, α(t)= α (ti) for all t ∈ [ti, ti+1), where I define tN+1= ∞. The following 
proposition describes a commitment Nash equilibrium when each insider’s strategy can 
depend on time only; that means that, in particular, no insider is allowed to condition her 
trading decisions on the past insider trades. 

PROPOSITION 1.  Suppose that at time t, each agent announces a trading policy 
that depends only on time, αl(τ), τ ≥ t, and cannot be revised in the future. Then, 
each agent’s strategy is given by the following Nash equilibrium strategy: 

 ( ) ( ) ( ),
( )

( ) arg max ( ), ( ) ( ) ( ) ( ) ( )l
l c l l lz t−

α τ
α τ ≡ α τ β τ + α − α τ ν α τ + β τ  (7) 

where and the aggregate equilibrium holdings are given by the following 
expression: 

 
2 2

1
2 2

1

( )
( 1)

I I
c

I

r A N rA
N r r

−µ + γ σ + γ σ
=

µ + + γ σ + γ σ
 (8) 

Since the parameters of the model do not depend on time, the commitment equilibrium 
allocation does not depend on time either. In addition, from (7) one can easily check that 
the first order conditions for the problem read: 

 
2 2

1
2 2

1 1

(1 )
( 2 ) ( 2 )

I I
c

I I

r r
r r

γ σ µ γ σα β α
µ γ γ σ µ γ γ σ

−+
= − +

+ + + +
 (9) 

(Here I have omitted, for brevity, superscript l). Note that each insider’s commitment 
equilibrium stake increases with her initial holdings. That means that whenever insiders 
can commit to an optimal allocation, those who initially hold larger stakes would tend to 
optimally choose a higher level of ownership to which to commit to. In addition, an 
insider’s commitment holdings decrease with other insiders’ holdings when investors are 
risk averse. That means that by holding a smaller company stake each insider aims to 
raise the market risk premium, thus lowering the stock price, and consequently, the 
motivation of the other insiders to trade down in the future. This effect will play an 
important role in the time-consistent model (see below). When the market puts no risk 
premium on the stock, i.e. when 0Iγ =  in (9), this second effect disappears. 

The expression (8) shows that the aggregate commitment allocation increases with the 
initial aggregate allocation A− . When investors are risk-averse the aggregate 
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commitment allocation, in addition, increases with the number of insiders N. In 
particular, when N → ∞ , the aggregate insiders stake would approach unity. On the other 
hand, when investors are risk-neutral, (8) does not depend on N and is always below 
unity.  
 

In the commitment equilibrium, each insider anticipates the impact that her trades will 
have, as well as those of other insiders, on the stock price. On the other hand, if insiders 
ignore such impact, i.e. if they take ν and, consequently, V as given, the following 
Proposition holds: 

PROPOSITION 2.  Define for each insider /( )p I INα = γ γ + γ . Then, if 2
1 rµ γσ< , 

a unique Walrasian equilibrium exists in which each insider is a price-taker, the 
equilibrium trading strategy for each insider is given by pα , and the aggregate 
price-taking equilibrium allocation is 

 /( / )p I IA N= γ γ + γ                                          (10) 

From Proposition 2 it follows that the price-taking equilibrium exists when the 
(beneficial) incentive effect is smaller than the insiders’ aversion towards risk. The 
aggregate perfect risk sharing allocation pA can be seen as the competitive allocation of 
one insider with N times higher risk tolerance.  Note, also, that when N=1, (8) and (10) 
coincide with the commitment and the competitive allocations in DeMarzo and Urošević 
(2001) respectively (see their Section 3.4). 

3. Optimal Trading Strategies Without Commitment  
In the previous section, I solved for the optimal trading strategies assuming that all 
insiders could commit ex-ante to future trades.  In that case, the current share price 
depends on all future trades that the insiders will make.  Here, I no longer allow the 
insiders to commit to future trades.  Thus, each insider’s trading strategy must be time 
consistent.  The previous results suggest that the commitment policy cα  is not time 
consistent. To see the intuition for this, note that from (9) it follows that cα is increasing 
with the initial insider shareholdings . Therefore, once shares are initially sold, the 
insiders’ decision-making process starts again, this time with smaller shareholdings but 
still above the competitive allocation. Thus, the insiders have an incentive to sell again.  
This second sale and the resulting change in effort impose a negative externality on the 
initial buyers of shares that the insiders do not consider when making a second sale. The 
same is true for each individual insider.  

To solve for the equilibrium without commitment, note that the value of the shares at any 
time t must depend on the investors’ expectations of the insiders’ future trading decisions.  
Thus, investors must anticipate the insiders’ ex-post incentives to trade.  In addition, at 
each point in time, each insider recognizes that her trading decision today impacts not 
only her future trading decisions, but also those of all of the other insiders.  

The problem shall be solved by backward induction. For that reason, consider, first, the 
insiders’ decision-making process at time T (the last trading date). Recall that the insiders 
have the opportunity to trade only on the discrete dates T = {t1=0, t2, ..., tN=T}.  
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Implicitly, the insiders commit not to trade during the intervals (ti, ti+1). For simplicity, I 
assume that time intervals ∆ between trades are constant and introduce the capitalization 
factor tδ  such that (1 ) /r

t e rδ δ − ∆≡ ≡ − , except in the case when tN+1=∞ , where I set 
δΤ = 1/r. At that time insiders, by assumption, commit not to trade again. At time t T= , 
one can, therefore, use the technique developed in Section 2. Denote an insider’s holdings 
at time t=T as Tα  and by Tβ the aggregate holdings of all of the other insiders. From (5) 
it follows that the share price at time T can be written as: 

 0 0

2 2
0 1

( , ) ( ),  

,  /
T T T T T T T T T T

I I
T T

V v v A v v

v v r

α β α β

γ σ µ γ σ

= + = + +

= − = +
                         (11) 

Note that the share price is an affine function of the aggregate insider holdings. Note, 
also, that moral hazard is explicit in this expression: an increase in 1µ , ceteris paribus, 
causes the terminal share price to rise.  

Once one knows the terminal share price, one can determine the optimal share holdings 
for each insider at time t=T as a function of her, as well as other insiders’, holdings at 
time t=T-1. Namely, each insider chooses her holdings at time T in such a way as to 
maximize the certainty equivalent TJ : 

 1max ( , ) ( , )( )
T

T T T T T T T T TJ z V
α

α β δ α β α α−≡ + −                             (12) 

From (12), the following first order conditions  (FOCs) are obtained:  

 1( ) 0T T
T T T

T

z V V
r
α α α

α −
∂

+ − − =
∂

 

Using the fact that ( , )T T TV α β is an affine function of and T Tα β  and that z is a quadratic 
function in Tα and linear in Tβ , the first order conditions can be re-written as: 

 1 2 3 1 4
2

1 1 2 1 3 4 0

0,  where 

/ 2 ,  / ,  ,  
T T T T T T T

T T T T T T T T

n n n n

n r v n r v n v n v

α β α

µ γσ µ
−+ + + =

= − − = − = = −
              (13) 

Summing up the equations (13) and solving for the aggregate allocation, one can show 
that the aggregate insider stake at time T is an affine function of the aggregate insider 
holdings in the previous period: 

 
3 1 4

5 5

5 1 2( 1)

T T T
T

T T

T T T

n A NnA
n n

n n N n

−= − −

≡ + −

 (14) 

Substituting (14) back into (13) leads to the following specification of Tα and Tβ in terms 
of the insiders’ holdings at time T-1: 

 , , ,0 , , ,0
1 1 1 1,   T T T T T T T T T T T Tl l l l l lα α α β α β α β β βα α β β α β− − − −= + + = + +  (15) 

where coefficients l are defined as:  
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, , ,03 2 1 2 3 4

1 2 5 1 2 5 5

, , , , ,0 ,03 3 4

5 5 5

[ (2 ) ] ,  ,  
( ) ( )

,  ,  

T T T T T T
T T T

T T T T T T T

T T T
T T T T T T

T T T

n n N n n n nl l l
n n n n n n n

n n nl l l l l N l
n n n

α α α β α

β α α α β β α β β α

− −
= = = −

− −

= − − = − − = − −
 

Therefore, the optimal holdings for each insider at time T depend on her own past 
holdings as well as on those of the other insiders. Importantly, this dependence is affine. 
In addition, each insider’s optimal holdings are positively correlated with her own 
holdings at the preceding time period, i.e. , 0Tl

α α > , and negatively correlated with all of 
the other insiders’ holdings at the preceding time period, i.e. , 0Tl

α β < .  

In order to proceed to t=T-1, note the two very important properties of the model. First, 
the share price at time t=T-1 is, again, an affine function of the aggregate holdings. 
Indeed, from (5) it follows that 1 1 1 1( ) ( ) ( ( ))r

T T T T T TV A e V− ∆
− − − −= +α δν α α . Using the 

definition of ν, and utilizing (11) and (14), one can again express V as a function of the 
aggregate holdings: 

 
1 1 1 0 1 1 1 0 1 1 1 1

2
0 1 0 4 5

2
1 1 3 5

( , ) ( )

[ / ],  

( ) ( / )

T T T T T T T T T T

I r
T T T T T

I r
T T T T

V v v A v v

v r e v Nv n n

v r e n v n

α β α β

δγ σ

δ µ γ σ

− − − − − − − − − −

− ∆
−

− ∆
−

= + = + +

= − + −

= + −

 (16) 

This property generalizes for an arbitrary t T≤  and allows one to obtain a relatively 
simple recursive solution for the dynamic programming problem (see Proposition 3). 
Such specification of the equilibrium share price can be traced back to the choice of the 
moral hazard model (i.e. the linear symmetric moral hazard problem). The second 
important property of the model, which also generalizes for an arbitrary t T≤  (see 
Proposition 3), is that the value function TJ , obtained upon the substitution of the 
expressions for optimal holdings (15) into the objective function (12), is a quadratic form 
in 1 1( , )T Tα β− − : 

 , , , ,0 ,0 0
1 1 1 1 1 1 1 1T T T T T T T T T T T T T T TJ J J J J J Jα α α β β β α βα α α β β β α β− − − − − − − −= + + + + +  (17) 

Here, with some abuse of notation, I introduced on the right hand side coefficients Js 
while on the right hand side J is the value function. In order to establish (17), it is 
sufficient to note that affine transformations map a quadratic form into another quadratic 
form. Then, (17) follows immediately from (11), (12) and (15).  

So far, I have determined the optimal insiders’ holdings at time T given their holdings as 
well as the holdings of all of the other insiders at time T-1. Clearly, at time t=T-1, 
insiders are facing a very similar problem, namely: 

  

 
2

1 1 1 1 1 1 2 1max ( , ) ( , )( )
T

r
T T T T T T T T TJ z V e J

α
α β δ α β α α

−

− ∆
− − − − − − − −≡ + − +  (18) 

Note that the last term in (18) is a quadratic form in 1 1( , )T Tα β− − (see (17)). Proceeding by 
backward induction one can obtain, eventually, the insiders’ optimal holdings at time t=1 
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as a function of their initial holdings. Given a vector of the initial insiders’ holdings, then, 
the recursive solution is completely specified. Furthermore, under the assumptions of the 
model this recursive equilibrium is a unique sub-game perfect equilibrium. It is 
characterized by the following proposition: 

PROPOSITION 3.  For each t T≤ , the value function of the dynamic programming 
problem above is a quadratic form in variables ( , )t tα β : 

 , , , ,0 ,0 0
1 1 1 1 1 1 1t t t t t t t t t t t t t t tJ J J J J J Jα α α β β β α βα α α β β β α β+ + + + + + += + + + + +  (19) 

while the share price is an affine function in t t tA α β= +  

 0 0t t t t t t tV v v A v v A= + = +  (20) 

The optimal holdings of each insider at time t are determined as an affine 
transformation of her own and other insiders’ holdings at time t-1: 

 , , ,0 , , ,0
1 1 1 1,   t t t t t t t t t t t tl l l l l lα α α β α β α β β βα α β β α β− − − −= + + = + +  (21) 

A complete set of recursive relations and the appropriate boundary conditions that 
determine the coefficients in (19)-(21) are given in the Appendix. Under the 
assumptions of the model (namely 1 0µ ≥ and a constant volatility), this 
equilibrium is the unique sub-game perfect equilibrium in the economy. 

Note that Assumptions A-C in DeMarzo and Urošević (2000) under which they establish 
the existence and uniqueness of a sub-game perfect equilibrium for N=1 coincide with 

1 0µ ≥ and the constant volatility assumptions under which unique sub-game perfection 
exists for N>1 in this model (see Proposition 3). A straightforward but tedious 
calculation shows that, when 1N → , the solution given by the Proposition 3 coincides 
with the solution in DeMarzo and Urošević (2001) in such a limit. Therefore, the 
equilibrium of the Proposition 3 generalizes to the multi-agent setting the time-
consistent equilibrium in DeMarzo and Urošević (2001). 

 

4. The Solution and Comparative Statics 
Proposition 3 specifies the procedure for determining the optimal aggregate insider 
ownership policy when commitment is not possible. The solution is obtained in terms of 
a system of coupled recursive relations. In general, that system of equations does not 
simplify any further, so there is no explicit analytical solution for this problem except in 
special cases. The limiting case when N=1 was briefly discussed above. Another special 
case is obtained when the outside investors are risk-neutral. In that case the problem 
effectively decouples into N single-agent problems, each of them equivalent to a problem 
discussed in DeMarzo and Urošević (2001) (this case shall be discussed later in this 
section). When outside investors are risk-averse, the solution can be analyzed 
numerically. This is what I do next. In particular, I demonstrate two important properties 
of the model: 
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Property 1: The aggregate stake gradually declines towards the perfect risk 
sharing allocation (the long-term equilibrium). 

Property 2: When outside investors are risk-averse, both the long-term 
equilibrium allocation level and the speed of adjustment of the aggregate insider 
stake towards such a level increase with the number of insiders N, ceteris paribus 

Property 1 follows from the fact that insiders cannot credibly commit to a level of 
ownership above the competitive allocation. The first part of the second property follows 
(see (8)) intuitively from the fact that with an increase in a number of insiders N, each 
insider’s risk exposure diminishes. This allows them to absorb more risk in aggregate. In 
order to explain the second part of Property 2, note that a decrease in the aggregate 
insider stake raises the market risk premium and thus lowers the company valuation.  
Therefore, by selling more today, each insider hopes to decrease the incentive for others 
to sell in the future (since they will receive a lower share price).  This creates among 
insiders a “race to diversify”. As a result, in the unique sub-game perfect equilibrium, the 
speed of adjustment toward the perfect risk sharing allocation increases with the number 
of insiders in the company. Intuitively, as there are more strategic agents in the economy, 
prices more quickly become competitive, though the adjustment towards the long-run 
equilibrium is gradual.  

The model confirms that intuition. In Figure 2, I present the dynamics of the aggregate 
insider stakes when the number of insiders varies from N=1 to N=5. 
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Figure 2: Aggregate Insider Ownership Policy Varies With the Number Of Insiders (Risk Averse 
Investors). Here, γΙσ2r=5, γ=15γΙ, µ1=100, r=4%, and the number of insiders varies from N=1 to N=5. 
Notice that the speed of adjustment increases as the number of insiders in the company increases. At the 
same time, the long-term aggregate equilibrium allocation also increases. As a result, as the number of 
insiders increases, the aggregate insider stake adjusts relatively quickly to a relatively high long-term 
equilibrium level. Trading is quarterly. 

 



 15

While an increase in the number of insiders, ceteris paribus, raises the speed of 
adjustment towards the competitive allocation (8), it raises that level as well. This leads 
to an interesting empirical prediction. Namely, if outside investors are risk averse one 
would expect that companies with a relatively large number of (identical) insiders, ceteris 
paribus, should have a relatively short period of steep insider ownership adjustment 
towards a relatively high aggregate insider ownership level thereafter. In contrast, when 
the number of insiders in a company is relatively small, ceteris paribus, one would expect 
to observe slower adjustment towards a relatively low level of the aggregate insider 
ownership stake. Thus, if outside investors are risk-averse, the dynamics of the aggregate 
insider stake depends on the number of corporate insiders in the company.  

When investors are risk-neutral, the competitive allocation level vanishes (see (8)), and, 
thus, does not depend on the number of insiders. One would expect that, similarly, the 
speed of adjustment toward the long-term equilibrium does not depend on the number of 
insiders either. The reason for that is simple: since in this model the source of strategic 
interactions is the insiders’ impact on the investors’ risk premium, if the risk premium 
vanishes the problem effectively decouples into N single-insider problems which can be 
solved as in DeMarzo and Urošević (2001).13 Instead of Property 2 stated above, when 
investors are risk neutral the following is true: 

Property 3: When investors are risk-neutral, neither the long-term equilibrium 
allocation of the aggregate insider stake, nor the speed of adjustment towards such 
an allocation depends on the number of insiders N. In addition, the long-term 
equilibrium allocation vanishes. 

More formally, the following Proposition holds: 

 

PROPOSITION 4.  If investors are risk-neutral, the time-consistent equilibrium 
given by Proposition 3 is described, for all  t T≤ , by the following system of 
recursive relations:  

 
( )

, , ,0 ,0
2 4 0

0

2
1
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1

, , 2

0
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/( ),

t t t t t t t

t t t
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n n v l l l l
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l l v v r

α β β α β α

α β

α α β β

δµ
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δγ σ

+

+

= = = = = = =

= =

= + − ∆
+

= = +

  

while the long-term equilibrium allocation is given by 0pA = . 

From Proposition 4 it follows that the aggregate insider stake evolves over time 
according to: 

                                                 
13 Implicit in such reasoning is the assumption of additive separability, namely that both the  mean and 
volatility can be represented in terms of a sum of single-agent terms, without any cross terms. Allowing 
interactions in the mean or volatility would lead to strategic interactions between the agents even in the 
absence of investors’ risk aversion. 
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+
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 (22) 

Note that (22) does not depend on N. In addition, it depends on the initial aggregate 
insider allocation but not on the precise make up of that allocation (i.e. it does not depend 
on how the initial allocation is distributed among the insiders). When outside investors 
are risk neutral, the dynamics of the problem decouples into N independent problems. As 
a result, one can use the one-agent solution method of DeMarzo and Urošević (2001). 
(Note that their method is not applicable when investors are risk-averse or, more 
generally, whenever there are strategic interactions between the agents.) In particular, 
Proposition 9 of DeMarzo and Urošević (2001) formally coincides with Proposition 4 if 
one sets 0Iγ =  and substitutes Aα ↔ . This implies that all of the empirical predictions 
of the one-insider model are also in the multi-insider case when investors are risk-neutral.  

When the trading horizon grows without bound, and in the limit of continuous trading, 
the optimal aggregate insider allocation is given by the following explicit expressions:14 

 2 2
1( ) ,    =( ) /( / )tA t A e r rλ λ γσ µ γσ− −= −  (23) 

From (23) it is clear that the speed of adjustment of the aggregate insider stake is 
positively correlated with cash flow volatility as well as the insiders’ risk aversion 
coefficient, and negatively correlated with the insiders’ monitoring incentives 1µ . That 
result, in particular, implies that one would expect steeper speeds of adjustment towards 
the equilibrium for companies and industries that are more volatile (such as high tech 
stocks, for example), ceteris paribus. I check numerically that the same comparative 
statics are obtained when investors are risk averse. 
 

5. Discussion of the Results 
In this paper I model the evolution of the aggregate insider ownership stake in a company 
with multiple risk-averse insiders facing a moral hazard problem. Here, I summarize the 
most relevant insights and briefly discuss their empirical significance.  

The first important finding is that the aggregate insider stake gradually adjusts toward the 
competitive risk-sharing allocation. This generalizes the one-agent result in DeMarzo and 
Urošević (2001) to the more realistic setting with multiple strategic agents: if, initially, 
the ownership of a company is concentrated in the hands of insiders, as a result of the 
interplay between the moral hazard problem and the insiders’ risk aversion, the aggregate 
insider stake would gradually decline over time until the competitive allocation is 
reached. Several empirical studies document a significant, but gradual, decline of the 
aggregate insider stake in corporations as they evolve through time (see the Introduction).  
                                                 
14 Recall that we assume that the incentive effect overpowers the risk aversion effect, i.e. that 2

1 / rµ γσ> . 
In that case, the adjustment towards the competitive allocation is gradual even in the continuous time (see 
Section 5.1. of DeMarzo and Urošević (2001) for more details). 
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Another important question that I address is whether (and, if so, how) changing the 
number of company insiders impacts the speed of adjustment and the corresponding 
equilibrium share price. Given the symmetries of the model, the pivotal role in answering 
that question is played by the aggregate risk aversion of the outside investors: If investors 
are risk-averse, the speed of adjustment increases with the number of corporate insiders 
N; otherwise, it does not depend on it. If the aggregate risk aversion of the outside 
investors is small but positive, the speed of adjustment of the aggregate stake would be 
positively (but weakly) correlated with the number of insiders in the company. This is 
exactly what U.S. insider trading data seems to indicate (see Urošević (2002), Chapter 2).  

Finally, it is important to know the level to which the aggregate insider ownership stake 
would converge. That depends, again, on Iγ : the higher the outside investors risk 
aversion, the higher the eventual aggregate insider stake. In addition, when 0Iγ > , the 
steady-state level is positively correlated with the number of insiders. On the other hand, 
in the limit 0Iγ → , the long-run aggregate equilibrium allocation is zero. That means 
that insiders would in that case sell off their entire company stake. In a recent study of the 
long-term evolution of corporate ownership in British companies over the past 100 years, 
Franks et al (2002) show that the aggregate insider ownership stakes steadily decline, 
decade after decade, but remains positive. For example, the median aggregate stake of 
corporate directors in their sample falls from 51% at the time of the IPO to only 5.3% 
thirty years after the IPO. This is consistent with the my predictions if outside investors 
are not very risk-averse (i.e. Iγ  is a small, but positive, number). 

In summary, this model is broadly consistent with the available empirical evidence if the 
aggregate outside investor coefficient of risk aversion is small but positive. That is a 
reasonable assumption if one recalls that the aggregate risk aversion is typically smaller 
than the risk aversion of individual investors. 

 

6. Conclusions and Future Work 
This paper develops a model of optimal ownership dynamics of risk-averse corporate 
insiders facing a moral hazard problem. In doing so, it expands both the literature on the 
optimal ownership structure and the literature on asset pricing under moral hazard 
problem. Extending the related one-agent model by DeMarzo and Urošević (2001) to the 
situation with multiple strategic insiders, a solution for the equilibrium share price and 
the dynamics of the aggregate insider ownership stake is derived in two cases: when 
insiders can credibly pre-commit not to deviate from their optimal ownership policies, 
and in the more realistic case when such a commitment is not credible (i.e., the time-
consistent case). In the latter case, when outside investors are risk-averse there is an 
additional strategic reason for a dynamic aggregate stake adjustment. Namely, a decrease 
in the aggregate insider stake raises the market risk premium and thus lowers the 
company valuation.  Therefore, by selling more today, each insider hopes to decrease the 
incentive for others to sell in the future (since they will receive a lower share price).  This 
creates a “race to diversify” and in equilibrium, the speed of adjustment toward the 
perfect risk sharing allocation increases with the number of insiders in the company. This 
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strategic component of the game disappears when investors are risk-neutral. In that case, 
my results for the aggregate insider stake formally coincide with the results of the on-
agent model of DeMarzo and Urošević (2001). In particular, the speed of adjustment is 
higher for more volatile companies, ceteris paribus.  

The existing stylized empirical facts are broadly consistent with the main predictions of 
the model. That said, there are, of course, other plausible explanations for the same 
empirical results. For example, Franks (2002) finds that the very long-term changes that 
have taken place in the ownership structure in Great Britain are, primarily, the result of 
corporate acquisitions. Thus, the ownership of companies gets diluted at the same time as 
the number of insiders increases. This is at variance with one of the key assumptions of 
my model, namely that the number of insiders N is fixed. In the future, it would be 
interesting to relax this assumption by making N endogenous, for example. 

The model rests on a number of other simplifying assumptions. For tractability, I 
assumed that the only strategic interaction between insiders occurs through their market 
risk premium impact. Including other types of interactions would make the model less 
tractable but, nevertheless, interesting to pursue.15 DeMarzo and Urošević (2001)) 
demonstrated that the private benefits of control may have a significant impact on the 
insider’s dynamic trading policy. Incorporating private benefits of control would allow 
one to gain insight into the dynamics of the strategic corporate control issues.16 Also, the 
model is mute on the issue of the initial insider stake creation. These stakes appear 
naturally in an IPO mechanism (see Stoughton and Zechner (1998) and DeMarzo and 
Urošević (2001)). It would be interesting to develop a similar approach in the case of, 
say, two insiders: a venture capitalist and a company manager. In order to model such 
situations more realistically, one would need to extend the present model to include   
heterogeneous insiders.  Indeed, a CEO and a venture capitalist may differ both in their 
incentives and their risk aversion. A model with heterogeneous insiders who face a moral 
hazard problem should be tractable, even if technically involved. Following Pritsker 
(2002) it would be, then, interesting to explore the dynamics of the individual insider 
stakes and not just the aggregate stake. In particular, it would be instructive to study the 
possible effects of front-running and/or predatory trading among such insiders. These and 
many other interesting issues shall await further research. 

 

References 
Admati, A., Pfeiderer, P. and Zechner, J. (1994), “Large Shareholder Activism, Risk 

Sharing, and Financial Market Equilibrium”, The Journal of Political Economy 
102, 1097-1130. 

Basak, S. (1996), “Consumption choice and asset pricing with a non-price-taking agent”, 
Economic Theory, 10, 437-462. 

                                                 
15 For example, one could include in the expression for the expected dividends an interaction term 
proportional to 1 2e e . In that case, even when investors are risk-neutral, one would expect for the model to 
exibit a non-trivial strategic interaction between the agents. 
16 Classic papers on takeovers are Grossman and Hart (1980) and Shleifer and Vishny (1986). Stultz (1988) 
and, more recently, Gomes and Novaes (2001) study control mechanisms, among others.  



 19

Basak, S. and Pavlova, A. (2001), “Monopoly Power and the Firm Valuation: A Dynamic 
Analysis of Short versus Long-Term Policies” (Mimeo, London Business 
School). 

Berle, A. and Means, G. (1932), The Modern Corporation and Private Property (New 
York: Macmillan). 

Bolton, P. and von Thadden, E.-L. (1998), “Blocks, Liquidity, and Corporate Control”, 
The Journal of Finance, 53, 1-25. 

Brav, A. and Gompers, P. (2001), “The Role of Lock-ups in Initial Public Offerings”, 
Review of Financial Studies (Forthcoming). 

Brunnermeier, M. and Pedersen, L. (2002) “Predatory Trading” (Mimeo, Princeton 
University). 

Burkart, M., Gromb, D. and Panunzi, F. (1997), “Large Shareholders, Monitors, and the 
Value of the Firm”, The Quarterly Journal of Economics, August, 693-728. 

Burkart, M., Gromb, D. and Panunzi, F. (1998), “Why Higher Takeover Premia Protect 
Minority Shareholders”, Journal of Political Economy, 106, 172-204. 

Coase, R. (1972), “Durability and Monopoly”, Journal of Law and Economics, 15, 143-
149. 

Cumming, D. and MacIntosh, J. (2001), “A Cross-Country Comparison of Full and 
Partial Venture Capital Exit Strategies”, (Mimeo, University of Alberta). 

Cuoco, D. and Cvitanic, J. (1998), “Optimal consumption choices for a ‘large’ investor”, 
Journal of Economic Dynamics and Control, 22, 401-436. 

DeMarzo, P. and Bizer, D. (1993), “Sequential Trade”, (Mimeo, Kellogg School of 
Management). 

DeMarzo, P. and Urošević, B. (2001), “Ownership Dynamics and Asset Pricing with a 
`Large Shareholder`”, (Mimeo, Graduate School of Business (Stanford)). 

Demsetz, H. and Lehn, K. (1985), “The Structure of Corporate Ownership: Causes and 
Consequences”, Journal of Political Economy 93, 1155-1177. 

Demsetz, H. (1986), “Corporate Control, Insider Trading, and Rates of Return”, The 
American Economic Review, 76, 313-317. 

El Karoui, N., Peng., S., and Quenez, M. (1997), “Backwards stochastic differential 
equations in finance and optimization”, Mathematical Finance, 7, 1-71. 

Franks, J., Mayer, C. and Rossi, S. (2002), “The Origination and Evolution of Ownership 
and Control of the Corporation”, (Mimeo, London Business School). 

Grinblatt, M. and Ross, S. (1985), “Market Power in a Securities Market with 
Endogenous Information”, Quarterly Journal of Economics, 100, 1143-1167. 

Grossman, S. and Hart, O. (1980), “Takeover bids, the Free-Rider Problem, and the 
Theory of the Corporation”, Bell Journal of Economics, 11, 42-64. 



 20

Gomes, A. and Novaes, W. (2001), “Sharing Control as a Corporate Governance 
Mechanism”, (Mimeo, Institute for Law and Economics Research Paper, 
University of Pennsylvania). 

Holmstrom, B. and Milgrom, P. (1987), “Aggregation and Linearity in the Provision of 
Intertemporal Incentives”, Econometrica, 55, 303-328. 

Holmstrom, B. (1982), “Moral Hazard in Teams”, Bell Journal of Economics, 13, 324-
340. 

Jarrow, R.(1992), “Market manipulations, bubbles, corners, and short squeezes”, Journal 
of Financial Quantitative Analysis, 27, 311-336. 

Kahn, C. and Winton, A. (1998), “Ownership Structure, Speculation, and Shareholder 
Intervention”, The Journal of Finance, 53, 99-129. 

Kihlstrom, R. (1998), “Monopoly Power in Dynamic Securities Markets”, (Mimeo, The 
Wharton School of Business). 

Kihlstrom, R. and Matthews, S. (1990), “Managerial Incentives in an Enterpreneurial 
Stock Market Model”, Journal of Financial Intermediation, 1, 57-79. 

Kocherlakota, N. (1998), “The effects of moral hazard on asset prices when financial 
markets are complete”, Journal of Monetary Economics, 41, 39-56. 

Kyle, A. (1985), “Continuous Auctions and Insider Trading”, Econometrica, 53, 1315-
1336. 

La Porta, R., Lopez-de-Silanes, F. and Shleifer, A. (1999), “Corporate Ownership 
Around the World”, The Journal of Finance, 54, 471-517. 

Leland, H. and Pyle, D. (1977), “Informational Asymmetries, Financial Structure, and 
Financial Intermediation”, The Journal of Finance, 32, 371-415. 

Lindenberg, E. (1979), “Capital market equilibrium with price affecting institutional 
investors”. In: Elton, Gruber (eds.) Portolio theory 25 years later, 109-124 
(Amsterdam: North Holland). 

Magill, M. and Quinzii, M. (2000), “Capital Market Equilibrium with Moral Hazard”, 
(Mimeo). 

Maug, E. (1998), “Large Shareholder as Monitors: is There a Trade-Off between 
Liquidity and Control?”, The Journal of Finance, 53, 65-98. 

Meulbroek, L. (2000), “Does Risk Matter? Corporate Insider Transactions in Internet-
Based Firms”, (Mimeo, Harvard Business School). 

Mikkelson, W., Partch, M. and Shah, K. (1997), “Ownership and operating performance 
of companies that go public”, Journal of Financial Economics, 44, 281-307. 

Pritsker, M. (2002), “Large Investors: Implications for Equilibrium Asset Returns, Shock 
Absorption, and Liquidity”, (Mimeo, Federal Reserve System). 

Seyhun, N. (1998), Investment Intelligence from Insider Trading (MIT Press: Cambridge, 
MA). 



 21

Seyhun, N. (1986), “Insider’s Profits, Costs of Trading, and Market Efficiency”, Journal 
of Financial Economics, 16, 189-212. 

Shleifer, A. and Vishny, R. (1986), “Large Shareholders and Corporate Control”, Journal 
of Political Economy, 94, 461-488. 

Shleifer, A. and Vishny, R. (1997), “A Survey of Corporate Governance”, The Journal of 
Finance, 52, 737-783. 

Stoughton, N. and Zechner, J. (1998), “IPO-Mechanisms, Monitoring and Ownership 
Structure”, Journal of Financial Economics, 49, 45-77.  

Stulz, R. (1988), “Managerial Control of Voting Rights: Financing Policies and the 
Market for Corporate Control”, Journal of Financial Economics, 20, 25-54. 

Urošević, B. (2002), “Essays in Optimal Dynamic Risk Sharing in Equity and Debt 
Markets”, (Ph.D. Thesis, University of California at Berkeley). 

Vayanos, D. (2001), “Strategic Trading in a Dynamic Noisy Market”, Journal of 
Finance, 56, 131-171. 

Vayanos, D. (1999), “Strategic Trading and Welfare in a Dynamic Market”, Review of 
Economic Studies, 66, 219-254. 

Zwiebel, J. (1995), “Block Investments and Partial Benefits of Corporate Control”, 
Review of Economic Studies, 62, 161-185. 

 

Appendix 
PROOF OF THE PROPOSITION 1:  In this equilibrium, each agent maximizes her certainty 
equivalent taking into account other agents’ equilibrium allocations. Denoting for 
simplicity, lα = α expression (7) follows from the expression for certainty equivalent (6) 
upon substituting the expression for the share price (5). Indeed: 
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Given her own initial allocation α− and the other agents’ aggregate equilibrium allocation 
choice β, an agent’s best response is given by the first order condition: 
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Summing up N identical equations (A1), taking into account that l

l
Aα =∑  and 

( 1)l

l

N Aβ = −∑ , and solving for the aggregate allocation Ac one obtains (8).  

 

PROOF OF THE PROPOSITION 2:  From (6), and a calculation similar to that in the proof 
of Proposition 1, it follows that if the price-taking equilibrium exists, the equilibrium 
allocation is given, for each insider, by the following expression (here, each insider is 
taking β and pA  as given): 

 ( ) ( )arg max , ( ) .pz Aα α β − α ν τ  

This implies that, in such equilibrium, the optimality conditions (1 ) 0p I pAγα γ− − =  
need to be satisfied for each insider. In addition, an equilibrium condition is needed 
which states that the sum of each insider’s holdings pα  is equal to the aggregate holdings 

pA .  Summing up N identical equations and solving for pA  renders (10) as well as 
/p pA Nα = . The second order condition reads: ( ) 2

1, ( ) 0z rαα α β = µ − γσ <  which 
completes the proof.  

 

PROOF OF THE PROPOSITION 3:  By backward induction. Let me first establish the 
relations (19)-(21) and (A2)-(A5). I have established them for t=T. Suppose that they are 
valid for t+1. One can easily see that, then, they are valid for t as well. Indeed, each 
insider’s maximization problem reads: 

 1 1max ( , ) ( , )( )
t

r
t t t t t t t t tJ z V e J

α
δ α β α β α α − ∆

− +≡ + − +  

where, by assumption, (19) and (20) hold. Consequently, the optimal insiders’ holdings 
are easily seen to yield (21) as well as (A2)-(A3). Utilizing these expressions it is 
immediate to see that the equilibrium share price at time t-1 is a linear function of the 
aggregate insider holdings at time t and that (A4). Using (21) and the linearity of the 
share price, value function tJ  can be re-written as a quadratic form in variables 

1 1( , )t tα β− − . Reading off the appropriate coefficients in tJ establishes (A5). In order to 
establish the second order conditions, note that they are equivalent to 1 0tn < , where 1tn is 
given by the first expression in (A3). Using (A2)-(A5), as well as the fact that 1 0µ ≥  and 
that volatility and the insiders risk aversion are positive constants one shows, working 
backwards period by period, that 1 0tn <  and, thus, that the equilibrium is a unique sub-
game perfect equilibrium under the assumptions of the model  

RECURSIVE RELATIONSHIPS AND BOUNDARY CONDITIONS USED IN PROOF OF THE 
PROPOSITION 3:   
The following is a list of the recursive relationship and the boundary conditions used in 
the proof of the Proposition 3.  

The coefficients in (21) are determined as follows: 
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The coefficients itn are defined by the following relations: 
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so that  3 4
1
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The following are the recursive relations that define the coefficients in (20): 
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The set of 6 recursive relations that defines the coefficients in (19) is listed below and 
denoted by (A5): 
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    (A5) 

The boundary conditions read as follows: coefficients Jt+1 vanish at time t=T; the 
boundary values for the stock price coefficients are given by (11) and the initial insiders’ 
allocations are given by an (exogenous) vector −α .  

 

PROOF OF THE PROPOSITION 4:  By backward induction. When t=T and 0Iγ = , from 
formulas  (A3) and  (A4) in the Appendix it follows that 
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Also, from (A2) and  (A4), it is immediate that: 
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Thus, the Proposition holds when t=T. Let me now assume that it holds at time t+1. Then 
from (A5) it is immediate that 0

2 0a
t t t tn J J Jβ= = = = . In addition, 

, , , , ,
1 1 1 1 1 1 1(1 )t t t t t tJ l l v l lα β α α β β β β α αδµ+ + + + + += + − . Plugging these expressions into the definition of 2tn , 

and utilizing the induction hypothesis one obtains that 2 0tn = . From (A4) it follows that 

0 0tv =  while (A2) implies that , , ,0 ,0 0t t t tl l l lα β β α β α= = = = . Finally, from the induction 
hypothesis and the first equation in (A5) it follows that , , 2/( )t t t tl l v v rα α β β δγ σ= = + .  
 


