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Abstract. Theorem 1 of Euler’s paper of 1737 “Variae Observa-

tiones Circa Series Infinitas,” states the astonishing result that the
series of all unit fractions whose denominators are perfect powers
of integers minus unity has sum one. Euler attributes the Theo-
rem to Goldbach. The proof is one of those examples of misuse of
divergent series to obtain correct results so frequent during the se-
venteenth and eighteenth centuries. We examine this proof closely
and, with the help of some insight provided by a modern (and com-
pletely different) proof of the Goldbach-Euler Theorem, we present
a rational reconstruction in terms which could be considered rigor-
ous by modern Weierstrassian standards. At the same time, with
a few ideas borrowed from nonstandard analysis we see how the
same reconstruction can be also be considered rigorous by modern
Robinsonian standards. This last approach, though, is completely
in tune with Goldbach and Euler’s proof. We hope to convince the
reader then how, a few simple ideas from nonstandard analysis,
vindicate Euler’s work.
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1. Introduction

Euler’s paper Variae Observationes Circa Series Infinitas, [7], ought
to be considered important for several reasons. It contains the first
printed version of Euler’s product for Riemann’s zeta function; it defi-
nitely establishes the use of the symbol π to denote the perimeter of the
circle of diameter one, and it introduces a legion of interesting infinite
products and series. The first of these is Theorem 1 which Euler says
was communicated and proved to him by Goldbach in a letter (now
lost):

∑

m,n≥2

1

mn − 1
= 1.

(One must avoid repetitions in the above sum). We will refer to this
result as the Goldbach–Euler Theorem (GET).

Date: June 2004.
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Goldbach and Euler’s proof is a typical example of what some his-
torians consider a misuse of divergent series as it starts assigning a
“value” to the harmonic series

∑

1/n and proceeds by manipulating it
by substraction and replacement of other series till reaching the desired
result. This unchecked use of divergent series to obtain valid results
was a standard procedure in the late seventeenth and early eighteenth
centuries. It has raised quite a lot of criticism, corrections and, why
not, praise caused by the audacity of the mathematicians of the time,
led by Euler, the Master of us All, as Laplace baptized him. We offer
Goldbach and Euler’s proof in section 2. We also make some considera-
tions about the use of divergent series as a method of proof examining
another famous instance of exactly the same kind of manipulations:
the ‘proof’ of the divergence of the harmonic series by Jakob Bernoulli.
In this last case, though, the conclusion was a contradiction instead of
a valid result. As it happens, the same procedure led to different an-
swers! Despite Euler being completely aware of this apparent paradox
he did not question Goldbach’s proof of the GET at all. That means
that his confidence in the use of the harmonic series and its infinite
sum was based on something more solid than sheer audacity.

There are quite a number of papers devoted, either directly or indi-
rectly, to Euler’s use of the infinitely large and the infinitely small. A
recent one by Detlef Laugwitz is specially relevant [12]. Part I of this
paper bears the title “The algorithmic thinking of Leibniz and Euler”.
The word ‘algorithmic’ in the title emphasizes the point of view that
Leibniz and Euler used ‘infinitely large’ and ‘infinitely small’ numbers
as any other real number. Laugwitz argues that Euler was “more in-
terested in algorithmic applications” than in “conceptual arguments”
without being altogether careless for, in some cases, it is possible to
verify his results “rigorously” by the proper limit considerations. In
Laugwitz words,

It is not difficult to verify ‘rigourously’ these sums of series
by considering finite partial sums and passing to the limit.
But for Euler there were no limit considerations, and what
we want to know is the kind of reasoning employed by him
and by his contemporaries. This being so it would be coun-
terproductive to handle these problems using perfected later

means. [12, p. 450] [Our emphasis]

Thus, at the base of Euler’s reasoning there must have been something
consistent enough to make most of his results correct. These apparently
solid foundations come from a concept of number sufficiently enlarged
so as to encompass the infinitely small and the infinitely large har-
monically. Our modern model for that is what is called nonstandard
analysis after Abraham Robinson’s monograph [16]. We give a very
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short account of the basic ideas behind nonstandard analysis in sec-
tion 3. But even these few concepts will suffice to review the proof of
the GET vindicating in this way Goldbach and Euler’s work.

As a preliminary test for the power of nonstandard tools, section 4
reconstructs Jakob Bernoulli’s proof. We see how, either using perfected
later means or through a nonstandard prism the same wording shows
that the contradiction is, in fact, a tautology!

A similar reconstruction can be done with the proof of the GET. In
order to do so, we use some ideas drawn from a modern (and completely
different) proof of the GET which appeared in this Monthly [15] as a
solution to a previously proposed problem [17]. This proof, reproduced
in section 5, is extremely short but very appealing. In the same section
we examine in detail the line of thought behind it. This will not only be
an interesting exercise on its own but will also reveal some unexpected
and very simple results to be used later on. As a more recent reference
let us mention that a different, new —though much longer— proof of
the GET appeared in [1].

We devote section 6 to the reconstruction of Goldbach and Euler’s
proof. We re-read it both from a passage-to-the-avoiding point of view
and from the nonstandard point of view. We show how the same argu-
ments used by Euler, slightly modified, become rigorous for our mod-
ern standards. And, as in the case of Bernoulli’s proof, the main point
is that almost exactly the same wording can be considered a Weier-
strassian proof or a nonstandard one.

In the epilog we show that in the same Variae Observationes other
results proved using the same techniques are not so easily amended as
the GET and how, in some instances, some blunders make their way
into Euler’s otherwise brilliant analysis.

2. Goldbach-Euler’s Theorem

Comment # 72 from [7], titled Variae Observationes Circa Series
Infinitas starts in a tantalizing way:

The remarks I have decided to present here generally refer
to that kind of series which are absolutely different from the
ones usually considered till now.

But in the same way that to date the only series which
have been considered are those whose general terms are
given or, at least, the laws under which, given a few terms
the rest can be found are known, I will here consider mainly
those series that have neither a general term as such nor a
continuation law but whose nature is determined by other

conditions.
Thus, the most astonishing feature of this kind of se-

ries would be the possibility of summing them up, as the
known methods till now require necessarily the general term

or the continuation law without which it seems obvious that
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we cannot find any other means of obtaining their sums.
[Our emphasis. Translation of the whole paper electroni-
cally available at [8].]

Euler refers to series whose general term is unknown and which, for
that reason, had not been considered before. These series are defined
by a special property satisfied by their terms, and are otherwise difficult
to characterize. Euler continues with his first example: the GET.

I was prompted to these remarks by a special series commu-
nicated to me by Cel. Goldbach[. . . ]

Theorem 1. Consider the following series, indefinitely con-

tinued,

(1)
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+

1

31
+

1

35
+ · · ·

whose denominators, increased by one, are all the numbers

which are powers of the integers, either squares or any other

higher degree. Thus each term may be expressed by the for-

mula
1

mn − 1
where m and n are integers greater than one.

The sum of this series is 1.

The proof presented is the following.

Let

x = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · · .

Now, as we have

1 =
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · · ,

it will result, subtracting this series from the former

x − 1 = 1 +
1

3
+

1

5
+

1

6
+

1

7
+

1

9
+

1

10
+ · · · ;

thus all powers of two, including two itself, disappear from
the denominators remaining all the other numbers.

Also, if from that series above we subtract this one

1

2
=

1

3
+

1

9
+

1

27
+

1

81
+

1

243
+ · · ·

there will result

x − 1 − 1

2
= 1 +

1

5
+

1

6
+

1

7
+

1

10
+

1

11
+ · · · ;

and subtracting again

1

4
=

1

5
+

1

25
+

1

125
+ · · ·

it will remain

x − 1 − 1

2
− 1

4
= 1 +

1

6
+

1

7
+

1

10
+ · · · .
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Proceeding similarly deleting all the terms that remain, we
finally get

x − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

or

x − 1 = 1 +
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+

1

10
+ · · ·

whose denominators, increased by one, are all the numbers
which are not powers. Consequently, if we subtract this
series from the series we have considered at the beginning

x = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · · ;

we get

1 =
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+ · · · ,

series whose denominators, increased by one, are all the pow-
ers of the integers and whose sum is one. Q. E. D.

In the proof just offered, there are two remarkable facts:

a) The assignation x =
∑

1/n.
b) The procedure consisting of obtaining new series (and conse-

quently, new results) from adding, subtracting and replacing
expressions by known series.

What exactly would a modern mathematician find “incorrect” or “not
rigorous” in the former proof?

Clearly that would be point a), that is to say, the fact that Goldbach
and Euler refer to the harmonic series

∑

1/n as if it had a real value
assigned to it.

If this difficulty is overlooked, point b) may be justified by the re-
arrangement theorem as the adding and subtracting of series with po-
sitive terms is a common procedure when the series involved are con-
vergent.

As we shall see, Euler was well aware of problem a). Since the
harmonic series is divergent, to assign a value to it is as absurd as
pretending that x := 1 + 2 + 3 + 4 + · · · is a determined quantity.
The real motivation for accepting the argument must have been that
the procedure used led to results that were correct in the sense that
could be verified by more trustworthy finite means. A salient example
is Johan Bernoulli’s derivation of the sum of the telescoping series (2).

Starting with

H = 1 +
1

2
+

1

3
+

1

4
+ · · · ,

and subtracting from it

H − 1 =
1

2
+

1

3
+

1

4
+ · · · ,
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Johan Bernoulli obtains

1 =

(

1 − 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · · ,

that is to say, the telescoping series:

(2)
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · = 1.

Consequently, this procedure seems to work quite well and produce
‘valid’ results. But there is a drawback: in some instances, a sim-
ilar manipulation leads to contradiction. This is the case of Jakob
Bernoulli’s proof of the divergence of the harmonic series. In 1689
spurred on by his brother’s argument above, Jakob reversed it and de-
rived the contradiction H = H − 1 which proved that H could not be
a finite quantity.

Let us examine Jakob’s argument closely.

2.1. Jakob Bernoulli’s proof of the divergence of
∑

1/n. The
following is a slightly reworded version —to suit our needs— of Jakob
Bernoulli’s proof. The original can be found in [18, pp. 316–323] or,
more extensively, in [2].

Let

H = 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · .

Subtracting from here the telescoping series (2) we have

H −
(

1

1 · 2 +
1

2 · 3 +
1

3 · 4 +
1

4 · 5 + · · ·
)

=
1

2
+

1

3
+

1

4
+

1

5
+ · · · .

If now from the series above we subtract this one

1

2
=

1

2 · 3 +
1

3 · 4 +
1

4 · 5 + · · ·

there will result

H −
(

1

1 · 2 +
2

2 · 3 +
2

3 · 4 +
2

4 · 5 + · · ·
)

=
1

3
+

1

4
+

1

5
+ · · · .

Subtracting again
1

3
=

1

4 · 5 + · · ·
it will remain

H −
(

1

1 · 2 +
2

2 · 3 +
3

3 · 4 +
3

4 · 5 + · · ·
)

=
1

4
+

1

5
+ · · · .

Proceeding similarly all the terms on the right hand side will eventually
be deleted, and we shall have

H −
(

1

1 · 2 +
2

2 · 3 +
3

3 · 4 +
4

4 · 5 + · · ·
)

= 0
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or, after simplification,

H =
1

2
+

1

3
+

1

4
+

1

5
+ · · · .

Consequently,

H = H − 1,

and in Jakob’s words, “the whole equals the part” which is impossible
for a finite quantity.

We see then how, with similar manipulations to those performed in
the proof of the GET, we reach a contradiction. This is caused, quite
obviously, by the careless use of divergent series. As late as 1826, Abel
echoed this state of affairs saying that:

Divergent series are the invention of the devil, and it is a
shame to base on them any demonstration whatsoever. [. . . ]
with the exception of the geometrical series, there does not
exist in all of mathematics a single infinite series the sum
of which has been determined rigorously. [. . . ] That most
of these things are correct in spite of that is extraordinarily
surprising. [9, p. 170]

Euler knew about the divergence of the harmonic series. He acknowl-
edges it several times in the Variae Observationes and in 1734 he had
even written a paper about it [6] in which, among other results, he had
obtained:

(3) lim
n→∞

(

1 +
1

2
+

1

3
+ · · · + 1

n
− log n

)

= γ

where γ is Euler’s gamma constant (in fact (3) may be considered γ’s
definition). Later, in his Introductio in Analysin Infinitorum (1748) he
provided a completely different argument for the divergence of

∑

1/n
based on the expansion of log (1 − x)−1. See [3, pp. 29–31].

Therefore Euler was perfectly conscious of the fragility of the method
of deriving new results using divergent series. How come he accepted
Goldbach’s proof of the GET without any qualm or objection about
its validity? Did he not notice the difference between divergent and
convergent series or he simply did not care?

This is not the case. As Laugwitz points out in [11, p. 14] and [12]
Euler knew the difference very well. In the same paper mentioned
above, [6], dedicated to the different harmonic series (series whose gen-
eral term is c/(a+nb), n = 1, 2, . . .), and just before deriving (3) Euler
had written:

Although the terms of these series constantly decrease, if in-
definitely continued the sum of the series is always infinite.
In order to prove this we do not need to find a method for
summing these series but the truth will easily come out from
the following principle. Series with a finite sum when indef-

initely continued, do not increase this sum even if continued



8 P. VIADER, L. BIBILONI AND J. PARADÍS

to the double of its terms. The quantity which is increased

behind an infinity of terms actually remains infinitely small.
If this were not the case, the sum of the series would not
be determined and consequently, would not be finite. As a
result of this it follows that if what remains when the terms
are continued beyond the place where they begin to become
infinitesimal was a finite magnitude, the sum of the series
would necessarily be infinite. Therefore from this principle
we may judge whether any proposed series has an infinite or
a finite sum. [Our translation and our emphasis.]

These words show unmistakably that Euler gave credit to the consid-
eration of different infinitely large and infinitely small numbers. They
also hint at the fact that he could be much more explicit and accurate
than he usually was in matters regarding convergence had he been in-
terested in doing so. Actually, the emphasized fragment can be clearly
considered as a criterium of convergence for series (of positive terms).

The acceptance of Goldbach’s proof seems to lie in the fact that, at
the time, Euler (and most of his contemporaries) actually manipulated
a model of real numbers which included infinitely large and infinitely
small numbers. A model that much later Bolzano [11, pp. 19–21] would
try to build on solid grounds and that today is called “nonstandard”
after A. Robinson definitely established it in the 1960’s [16].

3. A few strokes of nonstandard analysis

For a short and quick introduction to Robinson’s nonstandard ana-
lysis we recommend Lighstone’s excellent paper in this Monthly [13].
Here we can only outline some intuitive ideas.

The fundamental notion at the base of nonstandard analysis is the
assumption of the existence of an infinitely large positive integer, say
Ω, to obtain with its addition an extended number system, much in the
same way as the adjunction of i :=

√
−1 to Z leads to the Gaussian

integers, or its adjunction to the real numbers leads to the complex
numbers.

In the case of nonstandard we have to postulate a sequence of rela-
tions

(4) 0 < Ω, 1 < Ω, 2 < Ω, 3 < Ω, 4 < Ω, . . .

instead of the single one i :=
√
−1, and we must make the fundamental

assumption that the laws of arithmetic continue to hold.
This immediately leads to the existence of a legion of new integers

as −Ω, Ω − 1, Ω + 1, Ω2, ΩΩ, etc. In fact, the natural ordering must be
preserved and we get something like

(5) 1, 2, 3, . . . ; . . . , Ω − 1, Ω, Ω + 1, . . . , 2Ω, . . . , Ω2 . . . .

Notice the use of the semicolon to separate the standard natural num-
bers from the nonstandard ones.
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If we think of Z ⊂ Q ⊂ R then we get Z(Ω) ⊂ Q(Ω) ⊂ R(Ω), and
we end up with the nonstandard real numbers.

In each case the guiding principle in the construction of a model
of nonstandard numbers is the principle of permanence of the laws of
arithmetic which goes back to Leibniz. In nonstandard analysis jargon
it is known as the transfer principle and in our näıve picture may
be rather vaguely stated as what is true for finite numbers (i.e. real
numbers) is also true for infinite numbers.

The existence of any of such infinitely large numbers, ω, and our com-
mitment to keep the usual operations of arithmetic valid, implies the
existence of a number as ε = 1/ω which verifies ε < 1/n for all n. These
new numbers, smaller than any positive number, will be called infinites-
imals. The existence of infinitesimals implies that any real number a
(we now enter the kingdom of real numbers) has a sort of retinue of
infinitely close nonstandard numbers, {a ± ε : ∀ε infinitesimal}.

There are, though, a few obvious differences between standard and
nonstandard numbers. For instance, between two standard natural
numbers there is only a finite number of other natural numbers but
between two nonstandard natural numbers, there may be an infinity of
other nonstandard numbers, e.g. between Ω and 2Ω in (5).

In Q(Ω) or R(Ω) expressions which admit an algebraic closed form

like
√

Ω, Ω
√

Ω, etc. acquire a well-defined sense, but in dealing with infi-
nite series the essential point is that they may be viewed as ‘ordinary’
sums:

∑ω

k=1 ak.
Thus, given a traditional infinite series,

∑

k ak instead of writing
∑∞

k=1 ak to denote the limit of the partial sums, we write
∑ω

k=1 ak

where ω is an infinitely large number. The question is that now we
must talk of different “sums” if different values of ω are used. If the
series

∑

k ak is convergent in the standard sense, then any two sums
which extend to two different infinitely large indexes are not equal
(=) but only infinitesimally close (≈). If the series is divergent then
this difference may be finite or even infinite depending on the indexes
considered. For example

1 + 2 + 3 + 4 + · · · + Ω =
Ω(Ω + 1)

2

is a true identity, though of course each side is an infinitely large num-
ber.

With these ideas in mind, Euler’s criterium of convergence empha-
sized in the quotation of Section 2 may be reworded as follows:

Euler’s convergence criterium. The series of general term ak,
ak ≥ 0 is convergent (has a finite sum) if and only if

∑2Ω
k=Ω ak is an

infinitesimal for any Ω infinitely large. I

Laugwitz [11, p. 14] rephrases Euler’s criterium as
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A series (of real numbers) has a finite (i.e., real) sum iff
the values of the sum between infinitely large numbers are
infinitesimal.

He goes as far as interpreting Euler’s words as equivalent to Cauchy’s
1821 convergence criterium.

Remark. With Laugwitz’s more general formulation if we consider
∑ω2

k=ω1
ak, for any two different infinite numbers, ω1 and ω2 instead of

∑2Ω
k=Ω ak, Euler’s criterium is also valid for series of arbitrary terms. I

The application of Euler’s criterium to the harmonic series,

2Ω
∑

k=Ω+1

1

k
=

1

Ω + 1
+

1

Ω + 2
+ · · · + 1

2Ω
>

Ω

2Ω
=

1

2
,

proves at once its divergence.
In fact, we can easily go a little further and see that:

2Ω
∑

k=Ω+1

1

k
≈ log 2.

Indeed, the nonstandard version of (3) is

(6) HΩ ≈ log Ω + γ (Euler writes =)

and it leads us to
2Ω
∑

k=Ω+1

1

k
≈

2Ω
∑

k=1

1

k
−

Ω
∑

k=1

1

k
≈ log 2Ω − log Ω ≈ log 2.

All these considerations are the result of the modern and rigorous point
of view offered by nonstandard analysis, but we must concede that they
are rather well tuned to Euler’s words quoted above!

Unfortunately, we cannot deal more fully with nonstandard analysis
but we hope that the few glimpses offered will arouse the reader’s
interest in getting more acquainted with its methods much in the spirit
of André Weil’s statement that

[. . . ] our students of mathematics would profit much more
from the study of Euler’s Introductio in Analysin Infinito-

rum, rather than of the available modern textbooks. [5, p.
xii]

4. Bernoulli’s proof re-examined

Let us retake the thread of section 2. We saw there Bernoulli’s ‘proof’
of the divergence of the harmonic series and the disturbing observation
that the same “style” of proof as that offered by Goldbach and Euler,
led to a contradiction. This immediately makes the proof of the GET
suspicious of error.
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Let us place ourselves at a modern standpoint. Since we cannot write
H :=

∑

1/n , we are forced to consider only the partial sums of the
harmonic series:

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
.

Now, as we only have a finite number of summands, instead of sub-
tracting the whole telescoping series

1 =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·

we are almost naturally led to consider the subtraction of

(7) 1 =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · + 1

(n − 1) · n +
1

n

which results in

Hn −
(

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · + 1

(n − 1) · n

)

=
1

2
+

1

3
+

1

4
+ · · · + 1

n
+

1

n
.

Now, if from the sum above we subtract this one

(8)
1

2
=

1

2 · 3 +
1

3 · 4 + · · · + 1

(n − 1) · n +
1

n

we have

Hn −
(

1

1 · 2 +
2

2 · 3 +
2

3 · 4 + · · · + 2

(n − 1) · n

)

=
1

3
+

1

4
+ · · · + 1

n
+

2

n
.

The same procedure for 1/3 leads to

Hn −
(

1

1 · 2 +
2

2 · 3 +
3

3 · 4 + · · · + 3

(n − 1) · n

)

=
1

4
+ · · · + 1

n
+

3

n
.

and continuing in the same way we finally get

Hn −
(

1

1 · 2 +
2

2 · 3 +
3

3 · 4 + · · · + n − 1

(n − 1) · n

)

=
1

n
+

n − 1

n
= 1

or, after simplification,

Hn =
1

2
+

1

3
+

1

4
+ · · · + 1

n
+ 1 ,

which is no other than the identity Hn = Hn.
Therefore, even if we let n → ∞ we never get anything like H = H−

1, whatever consistent meaning we may attach to H. The contradiction
has disappeared!
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As long as we think of n as a positive integer, the former is a typical
case of the use of perfected later means to make an argument rigorous
or, as in this case, to explain an apparent contradiction.

But if we allow infinitely large numbers to enter the scene as first
class citizens —as it seems obvious that Euler did— we may consider
n an infinite positive integer, n = ω. It makes no difference at all
to the proof above and we again reach the tautology Hω = Hω. Our
argument can now be interpreted as the amendment of an error. The
crucial point being that any of the Hω contains all finite unit fractions.

It is clear that the contradiction in Bernoulli’s proof arises from the
following two reasons:

(a) That there are as many “different” harmonic numbers Hn as
positive integers n. When n is infinitely large any of them can
do the job since all finite unit fractions appear in any “infinite
harmonic number”.

(b) That the remainders of the involved series have not been taken
into consideration.

The problem in Jakob Bernoulli’s argument came not from the accep-
tance of infinitely large numbers, but from the use of methods of proof
suited only for Weierstrassian mathematics when applied to them, even
though Weierstrass was still one hundred and fifty years in the future!

5. An elementary proof of the GET

The GET appears as problem 132 in the excellent book by Konrad
Knopp [10, p. 273]. It is there where we came across it and then
proposed it at a Problem Solving Seminar at the Catalan Mathemat-
ical Society. As we later discovered, the simple and elegant proof we
had found at the Seminar already existed (as almost everything else
in mathematics!). It had appeared in this Monthly [15] in a very
synthetic way. We reproduce it for the sake of completeness.

5.1. Solution of the GET by University of South Alabama
Problem Group. Let S be the set of positive integers that are powers
and T its complement, that is, the nonpowers.

∑

s∈S

(s − 1)−1 =
∑

k≥2

∑

a∈T

(ak − 1)−1 =
∑

k≥2

∑

a∈T

∑

i≥1

a−ik

=
∑

n≥2

∑

k≥2

n−k =
∑

n≥2

(n(n − 1))−1 = 1. �

In order to emphasize the fact that Euler’s treatment is more direct
and, in a sense, needs less ingenuity than any modern treatment let us
examine the ideas that are behind this short proof.



ON A SERIES OF GOLDBACH AND EULER 13

Remarks on the proof. The proof above is based on the well-known
elementary identity

(9)
1

n − 1
=

1

n
+

1

n(n − 1)

which will be referred to as the telescoping identity.
Let us assume that the series (1) is convergent and let A be its sum

(10) A =
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+ · · · .

Notice that the terms in this sum are of the form

(11)
1

am − 1
.

The difficulty in summing the series (10) arises from the fact that,
as Euler points out, we cannot use (11) as its general term. This
is because, on the one hand, the series depends on two indexes: the
base a and the exponent m and, on the other hand, to the fact that
repetitions must be avoided.

Let us concentrate on expression (11), and tentatively let us use on
it the telescoping identity (9) with n = am. We obtain

1

am − 1
=

1

am
+

1

am(am − 1)
.

We see how (11) splits in two summands of different “shapes”: 1/n
and 1/[n(n − 1)].

If we let a remain fixed and m runs over the integers greater than 1,
then the first summand of

(12)
∑ 1

am
+
∑ 1

am(am − 1)

becomes a geometric series which can be evaluated in closed form:

(13)
∑

m≥2

1

am
=

1

a(a − 1)
.

This is correct because if the original sum contains all powers, it must
contain all powers of each number a, and since repetitions are avoided
it must contain each power of each number a only once.

After this, quite unexpectedly, both summands in (12) take the same
shape. One is

∑

a

1

a(a − 1)

and the other
∑

a

∑

m≥2

1

am(am − 1)
=:
∑

b

1

b(b − 1)
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where b runs over the integers that are powers. After these elementary
transformations,

(14) A =
∑

a

1

a(a − 1)
+
∑

b

1

b(b − 1)
.

If we only knew that the a’s and the b’s taken together amount to all
integers greater than 1 without repetitions, then (14) would precisely
be Bernoulli’s telescoping series (2) whose sum we know to be 1.

Is that the case? Can we prove it? A little reflection shows that
the answer to both questions is affirmative since a positive integer n
is a power if and only if it is a power of a nonpower. That is to say,
if it admits an expression n = am where a is a nonpower and m ≥ 2.
Moreover, in this case and only in this case, a and m are unique. Both
statements are a direct consequence of the Fundamental Theorem of
Arithmetic.

Following this line of thought the reader should have no difficulty in
reconstructing the proof offered above. It is only necessary to reverse
the argument, making use of the rearrangement theorem for convergent
series of positive terms and of two well-known elementary facts:

(a) The sum of the geometric series (13) which Goldbach and Euler
also use in their proof and

(b) The sum of the telescoping series (2) in the last step.

It is interesting to observe that these two results may be derived by
iteration of the telescoping identity (9) in two different ways which are
totally within Euler’s spirit of formal manipulation. This point of view,
besides having some class-room value will be useful in the next section.

First, upon substitution of n− 1 for n in the telescoping identity we
get

1

n − 1
=

1

(n − 1)n
+

1

n
=

1

(n − 1)n
+

1

n(n + 1)
+

1

n + 1

and iteration leads to
1

n − 1
=

1

(n − 1)n
+

1

n(n + 1)
+ · · · + 1

(n + m − 1)(n + m)
+

1

n + m

for any positive integer m. We may then state:

Lemma 1. For any two positive integers n, k, 2 ≤ n < k:

1

n − 1
=

1

(n − 1)n
+

1

n(n + 1)
+ · · · + 1

(k − 1) k
+

1

k

(We have already used Lemma 1 in (7) and (8).)
Second, the same procedure but iterating on 1/(n − 1) leads to

1

n − 1
=

1

n
+

1

n

1

(n − 1)
=

1

n
+

1

n2
+

1

n2(n − 1)
,

which now gives rise to
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Lemma 2. For any two positive integers n, n ≥ 2 and k, k ≥ 1:

(15)
1

n − 1
=

1

n
+

1

n2
+ · · · + 1

nk
+

1

nk(n − 1)
.

I

6. Goldbach and Euler’s proof revisited

We are finally prepared to reconsider Goldbach and Euler’s proof of
the GET. We will see how, with almost the same phrasing, the proof
can be made rigorous from both points of view, the standard and the
nonstandard.

As in the case of Bernoulli’s proof, we can either think of n as a
finite natural number or as an infinite nonstandard natural number,

(16) Hn = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · · + 1

n

.

Let k2 be defined by 2k2 ≤ n < 2k2+1. Using Lemma 2, we can write

1 =
1

2
+

1

22
+

1

23
+ · · · + 1

2k2

+
1

2k2 · 1 ,

and subtracting this series from the former (16),

(17) Hn − 1 = 1 +
1

3
+

1

5
+

1

6
+

1

7
+

1

9
+ · · · + 1

n

−
(

1

2k2 · 1

)

.

Hence, all powers of two, including two itself, disappear from the de-
nominators remaining the rest of integers up to n.

If now from (17) we subtract

1

2
=

1

3
+

1

32
+

1

33
+ · · · + 1

3k3

+
1

3k3 · 2 ,

obtained again from (15) where k3 is defined by 3k3 ≤ n < 3k3+1, it
will result,

Hn − 1 − 1

2
= 1 +

1

5
+

1

6
+

1

7
+

1

10
+ · · · + 1

n

−
(

1

2k2 · 1 +
1

3k3 · 2

)

.

Notice that k2 ≥ k3 ≥ · · · . In fact for m >
√

n we get km = 1.
Proceeding similarly we end up by deleting all the terms that remain

and we finally get

Hn − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

7
− 1

10
− · · · − 1

n

= 1 −
(

1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

n · (n − 1)

)

.

This last expression has been obtained assuming n is a nonpower. If n

is a power, then 1/n will have disappeared at some stage and the last
fraction to be removed from (17) will be 1/(n − 1) which for n 6= 9
will be a nonpower (this is Catalan’s conjecture that 8 and 9 are the
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only consecutive powers that exist. The conjecture has recently been
proved [14]). The corresponding expression will be:

Hn − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

7
− 1

10
− · · · − 1

n − 1

= 1 −
(

1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

(n − 1) · (n − 2)

)

.

So we shall have

Hn − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

7
− · · · − 1

n

(

or
1

n − 1

)

= 1−
(

1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

n · (n − 1)

) (

or
1

(n − 1)(n − 2)

)

.

Consequently, if we subtract this series from (16) we obtain

1 −
(

1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

n · (n − 1)

) (

or
1

(n − 1)(n − 2)

)

=
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+ · · · + 1

n − 1

(

or
1

n

)

series that contains in its denominators, increased by one, all the powers
of the integers up to n. We must now take care of the “remainder”.

Since for all m ≥ 1 by the definition of km we have n < mkm+1 ≤
m2km , it follows that

√
n < mkm and

1

mkm · (m − 1)
≤ 1√

n

· 1

m − 1

which implies

1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

n · (n − 1)
≤ Hn−1√

n

or
1

2k2 · 1 +
1

3k3 · 2 + · · · + 1

(n − 1) · (n − 2)
≤ Hn−2√

n − 1

If we have chosen to consider n a finite integer, n, then we may pass
to the limit and use Euler’s asymptotic value (3) for Hn

lim
n→∞

Hn−1√
n

= lim
n→∞

log(n − 1) + γ√
n

= 0.

We are done.
But if we are willing to believe in infinite integers and infinitesimals

we do not need to pass to the limit. We use again (3) but now as a
nonstandard equality:

Hn−1√
n

≈ log(n − 1) + γ√
n

≈ 0
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and we finally obtain

1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+ · · · + 1

n − 1
≈ 1.

In this case, though, what we actually get is a different nonstandard
number infinitesimally close to 1 for every infinite n considered.

7. Epilog

Unfortunately not all of Euler’s maneuvers with infinite numbers
and infinitesimals are so easily amended. This is the case for many
of the results in the second part of the Variae Observationes (for all
the references to the Variae, see [7]). This part deals mainly with
Euler’s product formula for the Riemann’s zeta function which appears
in Theorem 8:

(18)
∏

p prime

1

1 − p−s
= 1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ · · · = ζ(s),

for s > 1. Euler only treats the case where s is a positive integer.
The proof of (18) follows the same lines as the proof for the spe-

cial case s = 1 which is where the real trouble lies and constitutes
Theorem 7:

(19) 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · · =

∏

p prime

1

1 − p−1
.

Euler clarifies that this common value is infinity. In this particular
case keeping track of the remainders is much more difficult (if at all
feasible). That may be the reason why Euler is so ambiguous in the
first part of the paper when he could have been much more rigorous.
He proceeds as follows. From

x = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

Euler obtains
1

2
x =

1

2
+

1

4
+

1

6
+

1

8
+ · · ·

which upon subtraction will provide
(

1 − 1

2

)

x = 1 +
1

3
+

1

5
+

1

7
+

1

9
+

1

11
+ · · · ,

a series with no even denominators. Multiplying this series by 1/3 and
subtracting the result from it we get

(

1 − 1

2

)(

1 − 1

3

)

· x = 1 +
1

5
+

1

7
+

1

11
+

1

13
+ · · ·
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and so on until all terms on the right-hand side are deleted. Euler
concludes

x ·
∏

p prime

(

1 − 1

p

)

= 1

which amounts to (19).
If we now consider (6), corollary 1 to Theorem 7 establishes the

‘degree’ of infinitude of the harmonic series:

[. . . ] if we denote absolute infinity as ∞, then the value of
this expression [

∏

p
1

1−p−1 ] is log∞, which is the minimum

among all powers of infinity.

Lastly, taking logarithms in (19) Euler derives Theorem 19, the closing
theorem of the Variae, the divergence of the series whose terms are the
reciprocals of the primes:

(20)
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · ·

= log

(

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

)

= log log∞.

Euler’s carelessness with the different meanings he attaches to the
equality sign is remarkable. As they stand, (19) and (20) are unac-
ceptable. To render them correct it is necessary to change the equality
signs by ∼ with the usual meaning that the quotient of both sides goes
to 1 as n goes to infinity. In fact the strong form of both of these
related theorems is due to Mertens in 1874 (see [4, p. 6, footnote]) and
may be stated as (p prime and Ω any infinitely large integer):

∏

p≤Ω

(

1 − 1

p

)

· HΩ ≈ e−γ or lim
n→∞

∏

p≤n

(

1 − 1

p

)

· Hn = e−γ

and

∑

p≤Ω

1

p
≈ log HΩ + γ + B or lim

n→∞

(

∑

p≤n

1

p
− log Hn

)

= γ + B

where B =
∑

p (log(1 − p−1) + p−1).
As a final comment we want to add that, on occasions, Euler’s care-

lessness took him too far. A striking example is Theorem 18 where he
claimed to have proved that

∑∞

n=1 λ(n)/n = 0, where λ(n) is Liouville’s
function (λ(n) = (−1)r(n) where r(n) is the number of prime divisors
of n counting repetitions), a result which is true but as deep (and as
difficult to prove) as the Prime Number Theorem.
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Universitat Autònoma de Barcelona. 08193 Bellaterra, Barcelona, Spain.
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