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Abstract. The Treatise on Quadrature of Fermat (c. 1659), be-
sides containing the first known proof of the computation of the
area under a higher parabola,

∫

x+m/n dx, or under a higher hy-

perbola,
∫

x−m/n dx— with the appropriate limits of integration in
each case—, has a second part which was not understood by Fer-

mat’s contemporaries. This second part of the Treatise is obscure
and difficult to read and even the great Huygens described it as
“published with many mistakes and it is so obscure (with proofs
redolent of error) that I have been unable to make any sense of
it”. Far from the confusion that Huygens attributes to it, in this
paper we try to prove that Fermat, in writing the Treatise, had
a very clear goal in mind and he managed to attain it by means
of a simple and original method. Fermat reduced the quadrature
of a great number of algebraic curves to the quadrature of known
curves: the higher parabolas and hyperbolas of the first part of
the paper. Others, he reduced to the quadrature of the circle. We
shall see how the clever use of two procedures, quite novel at the
time: the change of variables and a particular case of the formula
of integration by parts, provide Fermat with the necessary tools
to square very easily curves as well-known as the folium of Des-

cartes, the cissoid of Diocles or the witch of Agnesi.
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1. Introduction

One of the last papers of Fermat is devoted to the quadrature of a
wide family of algebraic curves, among which the best known and more
widely treated by historians are the “higher parabolas and hyperbolas”.
A curve with equation y = xm/n, with m/n > 0 is what we call a “higher
parabola”; if m/n < 0, we call it a “higher hyperbola”. Fermat’s
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paper also contains an extremely interesting second part concerning
the reduction of the quadrature of some curves to the quadrature of
others. The paper was written around 1659 and has quite a lengthy
title:

De aequationum localium transmutatione et emendatione ad

multimodam curvilineorum inter se vel cum rectilineis com-

parationem, cui annectitur proportionis geometricae in qua-

drandis infinitis parabolis et hyperbolis usus, (11).

In English,

On the transformation and alteration of local equations for

the purpose of variously comparing curvilinear figures among

themselves or to rectilinear figures, to which is attached the

use of geometric proportions in squaring an infinite number

of parabolas and hyperbolas, (translation by Mahoney, (15,
p. 245)).

This long title, understandably enough, has been abridged to Treatise
on Quadratures (ibid).

It was published in 1679 as part of the complete works of Fermat

collected by his son, Clément-Samuel, (10, pp. 44–57).
Fermat had done some work on quadratures before. He had tried,

unsuccessfully, to square the cycloid and he seems to have already
worked on the problem of quadratures in the 1640’s as some correspon-
dence with Cavalieri and Torricelli proves (see (15, p. 244)).

The Treatise has been studied before, mainly its first part where, as
we have already mentioned, Fermat presents the integration of x±n/m.
The second part has been studied in depth in two works: Zeuthen’s (24)
and Mahoney’s (15). Zeuthen’s work is a very long paper— in point of
fact it is a series of four papers— on different aspects of the history of
mathematics. Mahoney’s is a book published originally in 1973 with
a second printing in 1994. This last work can be considered as the
current obliged reference on Fermat’s mathematical work.

Respect the first part of the Treatise we have nothing new to say. It
has been thoroughly studied for its great importance within the history
of integration since it goes apace with the of other mathematicians of
the XVIIth century as Pascal, Cavalieri, Torricelli, Wallis,

Barrow, etc. who were working on the problem of the integration of
xn.

In 1644, according to (24, pp. 41–45), Fermat was already in pos-
session of the proof of the computation of the quadrature on [0, b] of
the parabolas with equation bmyn = bnxm, with m,n positive integers,
and b a given constant 1. This was precisely the year that Fermat

sent his results to Cavalieri via father Mersenne. The complete

1Fermat multiplies each side of the equation by the constant b raised to the
necessary power in order to maintain the homogeneity of dimensions. See later note
5.
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transcription of his work on quadrature into the Treatise must have
taken place after 1657, most likely in 1659 (see (15, pp. 244–245, 421)
or (24, p. 45)), and in that same year he included the quadrature on
[b,∞) of the higher hyperbolas xmyn = bn+m, m > n, using an appro-
priate partitioning of the coordinate axes with the help of geometrical
progressions. The details can be found in (15, pp. 245–254), or in (6).

The second part of the Treatise has a much greater interest. Using
Mahoney’s words:

In this second part, Fermat grouped together all his
mathematical forces— his analytic geometry, his method
of maxima and minima, his method of tangents, and his
direct quadrature of the higher parabolas and hyperbolas—
to construct a brilliant “reduction analysis” for the quad-
rature of curves. ((15, p. 254))

This reflects the importance of this second part where Fermat devel-
ops a true “method” in order to reduce the quadrature of a wide class of
algebraic curves to known quadratures among the higher parabolas and
hyperbolas as well as the reduction of other curves to the quadrature of
a circle. These procedures constitute one of the most interesting lines
of research of Fermat’s and their success can be attested by the quad-
rature of some well-known curves: the folium of Descartes, the witch
of Agnesi (the versiera or versaria), and the cissoid of Diocles.2

Both Zeuthen and Mahoney coincide in pointing out that the words
transmutation and alteration in the title of the Treatise clearly show
two things:

1) that the Treatise’s goal was much more ambitious than the
simple quadrature of parabolas and hyperbolas, and

2) that Fermat was imitating Viète who in his On the Emenda-
tion of Equations had studied the solubility of algebraic equa-
tions with the help of their transmutation and alteration. Fer-

mat wanted to do the same with the algebraic equations of
curves to determine their “quadrability”.

A first reading of the second part of the Treatise leaves one with the im-
pression that Fermat treats the quadrature of a few particular curves
in a disconnected and confused way. Hence, the hasty reader tends
to disregard this part of the paper as a simple speculation without
real importance. This is exactly what happened to Huygens when he
read the Treatise the year it was published, 1679. In a letter to Leibniz
quoted in (15, p. 421)) he says talking of the Treatise:

. . . this treatise has been published with many mistakes and
it is so obscure (with proofs redolent of error) that I have

2The quadrature of some of these curves is by no means trivial even with our
modern integration techniques. See ((17)).
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been unable to make any sense of it. Letter of Huygens to
Leibniz, 1 September 1691 (21, vol. 4, p. 137).

We shall try to prove that this is not so. Contrarily to these impres-
sions, we hope to show that the whole of the Treatise possesses great
depth of thought and the presentation, once understood, shows the
great internal coherence of the ideas considered. With Fermat, we
want to emphasize that,

It is remarkable how the theory just presented [the quad-
rature of the higher parabolas and hyperbolas] can help to
advance the work on quadratures since it allows for the easy
quadrature of an infinity of curves which no geometer, nei-
ther ancient nor modern, has thought of. (11, p. 224).

It is precisely in this second part that we think our article adds some-
thing to the existing literature. Despite highlighting the importance of
the Treatise, the excellent contributions of Zeuthen (24) and Mahoney
(15), cannot devote much space to it since their aim is much broader.
Therefore their treatment of the second part of the Treatise is rather
descriptive and does not unravel the logical thread that conducts all the
examples presented by Fermat. Zeuthen quite accurately describes
the method and each of the individual examples. He neither delves
into the method’s more delicate aspects nor considers the examples as
a whole. Moreover, he does not pay any attention to the question of the
limits of integration, which are almost completely disregarded by Fer-

mat. As far as the method and its details are concerned Mahoney is
more thorough, but does not look into more than a couple of examples,
missing their coherence as a whole once more.

It is worth mentioning that the Treatise passed unnoticed by Fer-

mat’s contemporaries,3 possibly because it was not circulated before
its publication. Fermat probably wrote it in response to Wallis’s
Arithmetica Infinitorum of 1656 but there is no mention of it in any of
Wallis’s later papers or correspondence, see (15, p. 244).

Without deeper analysis it is difficult to account for the little inter-
est that Fermat’s Treatise aroused in the scientific community of the
1680’s, the time it was published. We dare point out a few, rather ob-
vious reasons why this was so. First, the scientific focus was placed on
the calculus of Newton and Leibniz, which was flowering with great

3At the end of his note (3), Aubry remarks that Fermat’s “ingenious procedure
of variable substitution as well as his concern to avoid radicals, both in the tracing
of tangents and in the quadratures, have had a certain influence on Leibniz and
on the updating of his Nova methodus”, but he does not substantiate his assertion
and we have not been able to find any evidence of it.

Despite the existence of the Treatise and the extant correspondence Fermat–
Cavalieri on integration, Andersen in (1) says: “Fermat never disclosed his
ideas about the foundation of arithmetical integration”. She does not mention any
influence between both mathematicians’ ideas on integration. We are of the opinion
that the question deserves a little more attention.
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force at the time. Fermat’s methods, purely algebraic and geometric,
based on the comparison of the quadrature of two algebraic curves re-
lated by a change of variable, were far from the trend of thought of the
new calculus. Second, Fermat’s style is very laconic and, as he was
wont to, did not devote much effort or space in making his ideas more
comprehensible for the reader.4 Even in the cases he solves he does not
bother in making the calculations explicit but he limits himself to a
mere description of how to attain the desired quadrature. Third, Fer-

mat’s method of quadrature could only be used on a very particular
class of curves with a known algebraic equation and did not apply to
the more frequent (and trendy) curves of the time: the quadratrix, cy-
cloid, spiral of Archimedes, etc. Also, Fermat, contrarily to the rest
of authors of the time, did not even refer to infinitesimal quantities,
the germ of the new calculus. Finally, the technique of the change of
variables, with all certainty, was something new, difficult to grasp and,
consequently, suspicious of leading to errors.

In section 2 we undertake the revision of the basis of Fermat’s
method which consists of his proof of the linear character of the squar-
ing of sums of parabolas and hyperbolas. Section 3 is devoted to the
two instruments of Fermat’s method: a particular instance of the
formula of integration by parts and the change of variables. Section
4 tackles the quadrature of the folium of Descartes as the first ex-
ample of the power of the method. This is followed in section 5 by
the quadrature of the witch of Agnesi and the cissoid of Diocles.
We reconstruct this last quadrature since Fermat only mentions in
passim that it can be carried out in a similar way to the quadrature of
Agnesi’s curve. This reconstruction is important because the quad-
rature of the cissoid reduces to the quadrature of the powers of the
ordinates of a circle, that is to say, the integration of functions like
n

√
b2 − x2. This is precisely what is done in section 6. Section 7 studies

the last example presented by Fermat, a rather involved quadrature
that requires several iterations of his method. Lastly, some concluding
remarks are offered in section 8.

2. Fermat’s approach

In the second part of the Treatise, after having learned in the first
part how to square higher parabolas and hyperbolas, Fermat begins
by saying that the quadrature of a curve whose equation is the addition
or subtraction of different expressions can be squared by the addition
or subtraction of the quadrature of each separate summand.

4This is typical of Fermat’s writings. See (15, p. 25).
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Let us consider a curve whose property leads to the following
equation5

b2 − x2 = y2.

(It is seen at once that this curve is a circle.)
We can reduce the power of the unknown y2 to a root

through a division (application6 or parabolism). We can
indeed write y2 = bu, as we are free to equate the product
of the unknown u and the constant b to the square of the
unknown y. We will then have

b2 − x2 = bu.

But the term bu can decompose in as many terms as those
present in the other side of the equation, affecting each one
of these terms of the same signs as the corresponding terms
of the other side. Let us then write

bu = bi − bō,

always representing, following Viète, the unknowns by vow-
els. We will have

b2 − x2 = bi − bō.

Let us equate each one of the terms of one side to the cor-
responding one in the other side. We will obtain

b2 = bi from which i = b will be given,

−x2 = −bō or x2 = bō.

The extremity of the line ō will be on a primary parabola.
Thus, in this case, everything can be reduced to a square. If
we order all the y2 on a given straight line7, their sum will
be a rectilinear solid, given and known. (11, p. 225)

Fermat’s next example performs the same decomposition to the curve
with equation

x3 + bx2 = y3.

With these two examples, Fermat has just told us that the sum of all
the powers of an ordinate ym, when ym =

∑

aix
i, can be carried out

summing each one of the parabolas of the right hand side. The same

5In this paper the indeterminates x and y will denote the usual rectangular
coordinates. Fermat, following Viète, used E and A, and Tannery and Henry, in
their translation (21) use e and a. We prefer to stick to the now traditional x and
y in order to make the paper more readable. However we will keep the dimensional
homogeneity that Fermat maintains in all his equations: all the monomials of an
algebraic expression must have the same degree in order to be added or subtracted.
This is essentially Viète’s Homogeneity Law, (23, chap. 3, pp. 2–4). Thus, we
will normally use b raised to the necessary powers as a constant that will help us
to abide by Viète’s law. Fermat follows Viète very closely on this point but not
only as a formal requirement but also, as we will see, as a tool that will help him
in his calculations. To know more about the Law of Homogeneity see (12).

6On the sense of the term application see later note 9.
7The interval on which we sum.
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can be made when the right hand side is made of hyperbolas or a sum
of parabolas and hyperbolas,

But we obtain not less quadratures by dyeresis8, with the
help of hyperbolas, either on their own or in combination
with parabolas.

He then presents two examples, one that combines parabolas and hy-
perbolas,

(1) y2 =
b6 + b5x + x6

x4
,

and the other using only hyperbolas,

(2) y3 =
b5x − x6

x3
.

The technique is the same in all cases. If we are interested in calculating
the ‘ordered sum of the ym, we “linearize” ym through the term bm−1u,
that is to say, we effect the change of variable ym = bm−1u, and then
introduce as many new variables as necessary. For example in the case
of the curve with equation (1), the new variables are ō, i and ω:

y2 = bu = bō + bi + bω,

which equated term to term with the right-hand side of (1) provide us
with three new curves: two hyperbolas,

b5 = x4ō, b4 = x3i,

and one parabola
x2 = bω.

The ordered sum9 of the y2 of the original curve can be found through
the ordered sums of the ordinates of the variables ō, i and ω referred
to the quadrable two hyperbolas and parabola, i.e. their quadrature.10

8The quadrature by means of parabolas is called syneresis.
9 We must recall that Fermat sees the problem of the quadrature of a curve as a

purely geometrical problem that can be tackled with the help of algebra. Hence the
geometrical language he uses and his geometrical way of thinking. The idea is to
sum the ordinates thinking of the area to calculate as the result of putting together
all the ordinates that correspond to the curve in question. In that sense, he reminds
us of Cavalieri, with whom he often used to interchange letters, and thus it is not
strange that their language resembles. The actual influence of Cavalieri’s method
of indivisibles on Fermat has not been thoroughly studied. Neither Giusti (13)
nor Andersen (1, p. 358), mention any evidence of any influence.

One should point out, though, that their summing methods were entirely dif-
ferent. Fermat, when he speaks of summing ordinates ordered on a given base,
understands the sum of an infinity of small rectangles, whereas Cavalieri’s sums
of ordinates are a more ambiguous geometrical idea. Mahoney (15, pp. 255–256)
translates sum of all the ordinates on a given line as apply all the ordinates to a

given line and discusses at length the use of the word “application” in this new
context. We refer the interested reader to this work.

10It is important to notice that Fermat makes no comment about the limits of
summation of all those expressions. When squaring a parabola, he takes as base
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3. The instruments of Fermat’s method

After the result of the previous section, which can be described as the
“linearity of the summing operation” (the quadrature of a sum is the
sum of the quadratures), Fermat turns to the first essential element
in his method of quadratures. We will call it the General Theorem:

Let ABDN be any curve (see Figure 1) with base HN and
diameter HA. Let CB, FD be the ordinates on the diameter
and BG, DE the ordinates on the base.

Figure 1.

H G E N

P
D

O

B

F

C

A

Let us assume that the ordinates decrease constantly from
the base to the summit, as shown in Figure 1; that is to say
HN > FD; FD > CB and so on.

The figure formed by the squares of HN, FD, CB, or-
dered on the line AH, that is to say, the solid

CB2 × CA + · · · + FD2 × FC + · · · + NH2 × HF + · · ·
is always equal to the figure formed by the rectangles BG×
GH, DE × EH, doubled and ordered on the base11 HN ,
that is to say, the solid

2BG · GH · GH + · · · + 2DE · EH · EH + · · ·
assuming both series of terms unlimited. As for the other
powers of the ordinates, the reduction of the terms on the

the interval [0, b] and when squaring a hyperbola he takes as base the interval [b,∞]
in order to compute the area between the hyperbola and its asymptote (the axis).
In this sense, the example we have presented is a little confusing as the presence
of both curves in the same quadrature will certainly present problems with the
limits of summation. Fermat completely ignores this objection but later, when he
applies the method, he never mixes parabolas and hyperbolas.

11Fermat uses the expression “on the base” or “on the diameter” to indicate,
first, the axis on which the infinite partition has to be considered, that is, the
modern dx and dy; second, it is his reference to the interval on which to carry the
summation. When he says, “on the line b” he means the summation on the interval
[0, b].
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diameter to the terms on the base is carried out with the
same ease; and this observation leads to the quadrature of
an infinity of curves unknown till today.

Fermat’s result, in modern notation would amount to
∫ b

0

x2 dy = 2

∫ d

0

xy dx.

He states the result also for the case of the sum of the cubes, x3, and
the bi-squares, x4

∫ b

0

x3 dy = 3

∫ d

0

x2y dx;

∫ b

0

x4 dy = 4

∫ d

0

x3y dx.

As the reader can see at once, the General Theorem consists of a ge-
ometrical result equivalent in modern language to the following equa-
tion, nothing else than a particular case of the formula of integration
by parts (we regain the usual role of x and y):

(3)

∫ d

0

yn dx = n

∫ b

0

yn−1x dy

where y(x) represents any curve decreasing from the value b to the
value 0 as shown in Figure 2.12 Fermat, without stating it, will use
the theorem even if the value 0 is reached at infinity, as is the case of
Figure 3 for which

∫ ∞

0

xn dy = n

∫ d

0

xn−1y dx.

d d

b

y(x) x(y)

Figure 2. Figure 3.
Fermat’s General Theorem is stated without proof. As can be judged
from the quotation, in the case n = 2 a sort of three-dimensional

12We will use the modern integral notation to indicate Fermat’s ordered sums.
Thus, the sum of y2 on the base x will be denoted by

∫

y2 dx. We are conscious of
the dangers of misinterpretation that this notation has, but the advantages it offers
surpass this inconvenience.
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argument is used which gives a hint for a possible proof, see (24, p.
51). The cases n = 3 and n = 4 are merely worded without more ado.

A geometrical proof of the theorem can be found in a work by Pas-

cal published in 1659, Traité des trilignes rectangles et des leurs on-
glets (18, pp. 142–143) or (20, 241–244). Pascal’s result is more gen-
eral but the proof he offers is consistent with Fermat’s geometrical
arguments. It is likely, then, that Fermat was familiar with Pascal’s
theorem and its proof through some correspondence exchanged in 1659
(21, Fermat to Carcavi, 16 February 1659).

With the General Theorem, Fermat is already in possession of one
the keys to his method. In his own words: “From here, as we will see,
there will derive an infinite number of quadratures”.

The second instrument he needs is the transformation of equations13

with help from the technique of the change of variables.
The first example he offers begins with the equation of a circle.

Let, for instance, b2 − y2 = x2 be the equation that consti-
tutes the curve (which will be a circle). According to the
general theorem above, the sum of the x2 ordered on the line
b [the diameter] equals the sum of the products HG · GB
[Figure 1] doubled and ordered on the line HN or d [the
base]; but the sum of the x2, ordered on b equals, as has
been proven above, a given rectilinear area. Consequently,
the sum of the products HG · GB, doubled and ordered on
the base d constitute a given rectilinear area. If we half it,
the sum of the products HG ·GB, ordered on the base d will
also constitute a given rectilinear area. (11, pp. 228–229)

Fermat applies his General Theorem (to x(y)) and obtains the result
(in the case of his example, b2 − y2 = x2)

(4)

∫ d

0

xy dx =
1

2

∫ b

0

x2 dy .

In this particular case d = b.14 But none of these two “summations”
corresponds, from Fermat’s point of view, to a proper ordered sum of
ordinates applied to a segment. For this reason he needs to “linearize”
the product xy in order to have a properly quadrable (and new) curve.

This is the purpose of the second essential element of his method,
the change of variables.

In order to pass easily and without the burden of radicals15

from the first curve to the new one, we have to employ an

13Notice that the main emphasis in the title of the Treatise is on the transfor-

mation and alteration of equations. See the introduction.
14We must keep in mind that Fermat always uses examples to present theoret-

ical results. Thus, while the example he offers refers to the circle, he speaks as if
the curve were the curve ABDN of the General Theorem.

15This is one of the important consequences of Fermat’s method: the sum
of radical powers of ordinates avoiding the use of radicals. In this first example,



FERMAT’S TREATISE ON QUADRATURE : A NEW READING. 11

artifice which is always the same and which is the essence of
our method.

Let HE ·ED [Figure 1] be any of the products we have to
order on the base. In the same way that we call analytically
x the ordinate FD or its parallel HE and we call y the
coordinate FH or its parallel DE, we will call xy the product
HE · ED. Let us equate this product xy, formed by two
lines unknown and undetermined, to bu, that is to say, the
product of the given b by an unknown u and let us suppose
that u equals EP taken on the same line that DE. We will
have

bu

x
= y.

But according to the specific property of the first curve,16

b2−y2 = x2. Replacing y by its new value bu/x we will have
b2x2 − b2u2 = x4 or, transposing,

b2x2 − x4 = b2u2, 17

equation that constitutes the new curve HOPN [Figure 1],
derived from the first. For this curve it is proved that the
sum of the bu ordered on b is given. Dividing by b, the sum of
the u ordered on the base, that is to say, the surface HOPN
will be given as a rectilinear area and we will consequently
obtain its quadrature.

Fermat effects the change of variable18 y = bu/x and the circle trans-
forms into a new curve in the xu-plane (see Figure 4).

Fermat wants to calculate

∫ b

0

x
√

b2 − x2 dx.

The change of variable will “linearize” xy and convert it to bu, where u will be the
ordinate of a new curve. See (24, p. 55).

16That is to say, its analytic equation.
17Notice that bu = x

√
b2 − x2.

18Notice the homogeneity of the dimensions. The constant b is introduced not
only to keep the dimensions right but also to keep the “limit” of summation under
control. Notice that the point (b, 0) in the xy-plane becomes (b, 0) in the xu-plane.



12 J. PARADÍS, J. PLA, AND P. VIADER

u

xb

Figure 4. The new curve, b2x2 − x4 = b2u2.

As the change amounts to xy = bu, the new curve is quadrable for the
new ordinates u can be summed when ordered on the line b:

∫ b

0

u dx =
1

b

∫ b

0

xy dx =
1

2b

∫ b

0

x2 dy ,

and as the sum of the x2 can be obtained squaring two parabolas,
∫ b

0

x2 dy =

∫ b

0

(b2 − y2) dy =
2b3

3
,

we have
∫ b

0

u dx =
b2

3
.

Fermat’s method in this first example consists essentially of the fol-
lowing. We start from an algebraic equation yn =

∑

aix
i +

∑

bj/x
j

and, consequently we know how to calculate
∫ b

0
yn dx. We then proceed

in two steps:

1) Apply the General Theorem:
∫ b

0
yn dx = n

∫ d

0
yn−1x dy;

2) Linearize the integrand through an appropriate change of vari-
able: yn−1x = bn−1u, where u is the ordinate of a new—and a
fortiori , quadrable— curve.

In Fermat’s account it is worth mentioning the absolute lack of ref-
erences to the region which is actually squared in each curve. It goes
without saying that if the curve draws a closed region this is precisely
the area to be squared. If the curve has an asymptote, the region to be
squared is the one trapped by the curve, the asymptote (which is always
an axis) and an appropriate ordinate which is almost self-evident.19

The next example presented by Fermat follows the same pattern:
an application of the General Theorem and a change of variables. The
starting curve is the cubic

(5) y3 = bx2 − x3.

19Fermat only considers positive values of the variables and consequently, his
quadratures limit themselves to the first quadrant.
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The new curve, however, ends up being an algebraic curve of degree
9 in the variable y and degree 3 in the new variable u. The squaring
of this last curve is a challenge even if one is equipped with all the
artillery our calculus provides us with.

Fermat offers this example not only as a second instance of his
method but also to exemplify a situation which needs an improved
version of the General Theorem.

Fermat reminds us that the sum of all y3 on the interval [0, b] is
immediately obtained as a sum of two quadrable parabolas (see Figure
5),

∫ b

0

y3dx =

∫ b

0

(b x2 − x3) dx =
b4

12
.

(y3)

ȳ

x2(y) x1(y)

xb2b/3

Figure 5. f(x) = b x2 − x3.

On the other hand, the General Theorem says that

(6)

∫ b

0

y3 dx = 3

∫ ȳ

0

y2x dy.

Fermat now makes the change of variable that provides the lineariza-
tion part of the method,

x =
b2u

y2

which takes the curve (5) into the curve with equation (see Figure 6):

b5u2y2 − y9 = b6u3.
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y

ȳ
u2(y)

u1(y)

u

Figure 6. b5u2y2 − y9 = b6u3.

The change effected on the integral of the right-hand side of (6) is

∫ b

0

y2x dy = b2

∫ ȳ

0

u dy .

Notice the upper limit of integration in the new integral: ȳ. If you look
at Figure 6, you will clearly see that the “sum of all the u” has to be
“ordered on the line ȳ”. But actually, the value of ȳ is irrelevant for
Fermat’s purposes as the quadrature he is interested in is represented
exactly by that last integral which will be calculated going backwards
in the chain of integrals obtained so far:

∫ ȳ

0

u dy =
1

b2

∫ ȳ

0

y2x dy =
1

3b2

∫ b

0

y3 dx =
b2

36
.

Thus, the quadrature of the new curve is b2/36.
As we mentioned before, in this example, some comments are really

necessary to fully understand Fermat’s technique.
The initial curve, y3 = bx2−x3, is not decreasing, a necessary condi-

tion for the General Theorem to hold. In fact, seen as a function y(x) it
increases on the interval [0, 2b/3], and decreases from there until reach-

ing the value 0 for x = b. The highest value it attains is ȳ =
3
√

4b2/3.
In terms of y3, this maximum is, obviously, ȳ3 = 4b2/27.

This means that when y varies between 0 and ȳ, for each value of the
variable y, two values are obtained for the variable x. Let us denote
each of these values by x1 and x2, as shown in Figure 5. We can think
of x1(y) and x2(y) as two different functions. The same considerations
have to be made about the new curve, see Figure 6. Again, for a given
y, two values of u have to be considered, u1 and u2.
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Thus, to be rigorous, Fermat’s procedure should be rewritten as
follows:

∫ b

0

y3 dx = 3

∫ ȳ

0

y2(x1 − x2) dy = 3b2

∫ ȳ

0

(u1 − u2) dy,

this last integral representing the lined area in Figure 6.
Fermat is conscious that this example is not exactly covered in his

General Theorem and proceeds to offer a new version when the curve
is not decreasing. His explanation amounts to saying that if a curve
as the one shown in Figure 7a) is given, the General Theorem can be
applied first to the decreasing portion of the curve, x2(y) from x = 0 to
x = z where the maximum is reached. A different procedure, though,
has to be used for the increasing portion, the one we have called x1(y)
that increases from x = b to x = z. Essentially what Fermat does
is change the axes in such way as to have the increasing portion as a
decreasing curve. Consider x = z as the new “base”. On the one hand
we have the curve z − x2 which is decreasing from the new base to
x = z (we have to think of positive x downwards), see Figure 7b; and
on the other hand we have the curve x1 − z which decreases from the
new base to x = b − z, see Figure 7c. The sum of the yn ordered on
[0, b] can obviously be decomposed into the two portions.

x

b

z

ȳ

x1(y)

x2(y)

y

ȳ0

b−z
x1(y)−z

ȳ0

z

z−x2(y)

Figure 7a. Figure 7b and 7c.
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His arguments, translated into our notation would lead to:
∫ b

0

yn dx =

∫ z

0

yn dx +

∫ b

z

yn dx

= n

∫ ȳ

0

yn−1(x1 − z) dy + n

∫ ȳ

0

yn−1(z − x2) dy

= n

∫ ȳ

0

yn−1(x1 − x2) dy.

Obviously, the value z of y where the maximum ȳ for x is attained can
be obtained by his method of maxima and minima, developed twenty
years before. Paradoxically, these values are of no importance as they
only are intermediate values that are not explicitly needed to carry out
the quadrature 20. This is probably one of the reasons why Fermat

pays no attention at all to the limits of summation in the intermediate
curves he uses.

4. The quadrature of the folium of Descartes.

The next example Fermat offers has the clear intention of creating
an impression on the reader.

Just to clearly show that our method provides new quadra-
tures, which had never even been suspected before among
the moderns, let the curve before considered be proposed21

with equation
b5x − b6

x3
= y3.

It has been proved that the sum of the y3 is given as a
rectilinear area. Transforming them on the base22 we will
have, according to the preceding method, b2u/y2 = x. Re-
placing the new value of x and finishing the calculations
according to the rules,23 we will arrive at the new equation
y3 + u3 = byu, which provides a curve from the side of the
base. It is the one from Schooten, who gave its construc-
tion in his Miscellanea, section xxv, page 493.24 The curvi-
linear figure AKOGDCH of this author is, consequently,
easily quadrable according to the preceding rules.

20Mahoney (15, p. 264) says on this point that “Fermat employs his method of
maxima and minima to determine the value of x for which y attains a maximum
and the value of that maximum.” This is not really so as the actual values of both,
the maximum and the value of x where it is attained, are irrelevant in Fermat’s
method.

21It is example (2).
22That is, using the General Theorem.
23The rules of algebra, of course.
24The curve is the folium of Descartes. We coincide with (15, p. 265, n. 67)

when he insinuates that Fermat deliberately slights Descartes as the author of
the curve and attributes it to van Schooten.
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The folium of Descartes appeared during the controversy that con-
fronted Fermat and Descartes around 1637 on the methods for the
tracing of tangents to curves. After quite an acrid exchange of letters
with examples and counterexamples to prove the superiority of each
other’s method, Descartes ended by challenging Fermat to find the
tangents to the curve of his invention with equation (see Figure 8)

(7) x3 + y3 = bxy.

Figure 8. The folium of Descartes, x3 + y3 = bxy.
Fermat not only solved the problem but offered a general solution that
allowed him to find the two tangents of a given slope (see (8) or (15, p.
181 and ff) for more details about the controversy). Descartes, after
this tour de force of his opponent, had to admit Fermat’s superiority
and the merit of being one of the greatest geometers of the moment. It
is not strange, then, that twenty years later, Fermat used the same
curve to prove once more the mettle of his genius.

If you follow the exasperatingly short description of Fermat in the
quotation above, one realizes that Fermat starts with an apparently
innocent curve that, as if by chance, gets transformed into the equation
of the folium. It is obvious that Fermat proceeded just in the contrary
direction. From the equation of the folium, he derived an equation
which had the necessary features for his method to be applied, that is,
an equation of the form

(8) ym =
∑

aix
i +

∑ bj

xj
.

In the case of the folium, Fermat’s most likely train of thought would
have been to essay a change of variable that replaced x in (7) by an
expression involving the new variable u and the old y in such a way
that after making the change the new equation would look like (8). In
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order to achieve this it is enough to make the change of variable25

x =
uy2

b2
,

which alters (7) into
u3y6

b6
+ y3 =

uy3

b
or, after simplifying y3 from each side and rearranging,

(9) y3 =
b5(u − b)

u3
.

The graph of y3 as a function of u can be seen in Figure 9b.26

We can now present the chain of integrals of Fermat’s method (see
Figures 9a and 9b):

∫ ȳ

0

(x1 − x2) dy =
1

b2

∫ ȳ

0

(u1 − u2)y
2 dy

=
1

3b2

∫ ∞

b

y3 du =
b3

3

∫ ∞

b

u − b

u3
du =

b2

6
.

ȳ

x2(y)

x1(y)

x

Figure 9a. x3 + y3 = bxy.

ȳ

(y3)

b u

u2(y) u1(y)

Figure 9b. f(u) = b5(u − b)/u3.

We can also ask ourselves (see (17)) about the possibility that Fermat

carried out a few trials on curves composed by higher hyperbolas with
equations of the form:

(10) ym =
bm+k−1(x − b)

xk
; m ≥ 2, k > 2.

25The change x = b2u/y2 is an alternative that also solves the problem.
Bernoulli, in his (4, p. 403) uses this last change of variable in order to square the
folium, but here ends all similitude with Fermat’s method, despite what Aubry
says in (3). See also footnote 30.

26It must be noticed that equation (9) has a very special structure, which, as we
will see, occurs almost in the same form in many of Fermat’s examples.
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ȳ

y

b x

Figure 10.

The graph in Figure 10 corresponds to y in (10). The graph of ym, for
m > 0, is essentially the same.

Proceeding à la Fermat we make the change of variable

x =
bm−1z

ym−1
,

and we undertake the chain of integrals:
∫ ∞

b

ymdx = m

∫ ȳ

0

ym−1xdy = mbm−1

∫ ȳ

0

zdy .

The new curve’s equation will be

b(m−2)k−mzk + y(m−1)k−m = bm−2zy(m−1)(k−1)−m.

This family of curves, in the first quadrant have a loop similar to the
loop of the folium— which is the curve given by m = 3 and k = 3. The
areas of these loops, that is to say

∫ ȳ

0

z dy

are

A(m, k, b) =
b2

m(k − 1)(k − 2)
.

It is seen at once that Fermat’s method also solves in a quite straight-
forward way the quadrature of the generalized folia of (7) with equation

x2q+1 + y2q+1 = (2q + 1)bxqyq ,

where q is a positive integer.
The change of variable required is bq+1xq = uqyq+1, and the areas of

the loops in the first quadrant are

A(q, b) =
2q + 1

2
b2 .

More details can be found in (17).
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5. The quadrature of the witch of Agnesi and the cissoid

of Diocles.

Fermat next tackles the quadrature of the curve known today as
the witch of Agnesi.27 This curve seems to have been brought to Fer-

mat’s attention by the geometer Lalouvère who might have asked
Fermat about its quadrature,28 and immediately after that Fermat

says: “With the same method I have squared the cissoid of Diocles

or, I had rather say that I have reduced its quadrature to that of the
circle.” 29

Fermat in the Treatise does not give any more indications about
how he reached the quadrature of the cissoid.30 Notwithstanding, the
two curves, the versiera and the cissoid, have similar cartesian equa-
tions, a fact that makes a common treatment with Fermat’s method
possible. In fact, we will treat a more general family of curves which
can be tackled in the same way.

Let us consider the family of curves31 with equation

(11) bN−3xy2 = (b − x)N .

For N = 1 we have the versiera (Figure 11) and for N = 3 the cissoid
(Figure 12).

27This curve was studied in 1748 by Maria Gaetana Agnesi (1718-1799) and had
already been object of attention by Guido Grandi (1703) who gave it the curious
name of versiera or versaria (see (16; 22; 14) for the history of the name and other
details about the curve itself). In English it is known as the witch of Agnesi or
the curve of Agnesi.

28Fermat in the Treatise on quadratures (21, p. 234), after constructing geo-
metrically the versiera and after giving us the value of its quadrature, comments:
“It is so that we have solved at once that question proposed to us by a learned
geometer”. (2, p. 85) is of the opinion that the “learned geometer” mentioned
by Fermat is none other than Antoine de Lalouvère, a Jesuit from Toulouse
and frequent correspondent of Fermat. Anyway, we have not been able to find a
previous mention of a curve like the versiera in the literature, and this leads us to
think that Fermat might be the real author of the curve, at least of its algebraic
equation.

29The same Fermat in (9) squares the cissoid by purely geometrical methods
without using any of the methods of the Treatise. The result he obtains in that brief
“fragment” comes to say that the area trapped between the cissoid and it asymptote
is the triple of the area of the semicircle used in its geometrical construction. Details
of this construction can be found in (22).

30Aubry (3) offers a reconstruction of the quadrature of the cissoid of doubt-
ful likelihood. Aubry freely uses differentials and the full formula of integration
by parts, poles apart from Fermat’s method. More than from Fermat, Aubry
seems to borrow from John Bernoulli, who in (4, pp. 399–407) had tackled the
quadrature of the folium, the versiera and some other curves treated by Fermat.
Bernoulli’s procedure, though vaguely reminiscent of Fermat by the changes of
variables used, is definitely far from the method of the French mathematician.

31Notice that these curves are again of the form (10). The only difference is that
instead of x − b, now we consider b − x.
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b b

xy2 = b2(b − x) xy2 = (b − x)3

Figure 11. Versiera. Figure 12. Cissoid.

The quadrature of the family of curves (11) will correspond to the area
trapped between the curve and the two axes— the vertical axis is in
fact the asymptote of the curve. It can be obtained with the help, in
this case, of two changes of variables. We will use a t on the equal sign
to denote an application of the General Theorem and cv to denote the
corresponding change of variables.

Area =

∫ ∞

0

x dy(12)

CV1
=

1

b

∫ ∞

0

z2 dy
T
=

2

b

∫ b

0

yz dz
CV2
=

2

bN−1

∫ b

0

uN dz.

Fermat needed two changes of variable:

CV1: x =
z2

b
which led to the new curve

b2N−4z2y2 = (b2 − z2)N ,

and

CV2: y =
uN

bN−2z
giving the last curve which, independently of N , is the same circle,

u2 = b2 − z2.

Now, the quadrature of our first curve will depend on the sum of all
the uN on the interval [0, b],

∫ b

0

uN dz,

where u is the ordinate of a circle of radius b. For even values of
N , it is clear that the required sum will be very easy to calculate as



22 J. PARADÍS, J. PLA, AND P. VIADER

it will ultimately be a sum of quadratures of parabolas, the powers
(b2 − z2)N/2. For odd values of N , the required sum will not be so easy
to carry out.32

The simplest odd case, the case of the versiera (N = 1), is easily
dealt with. Its quadrature will depend on the quadrature of the circle
itself, (formula (12) for N = 1))

Area versiera = 2

∫ b

0

u dz =
πb2

2
.

For the rest, as the case of the cissoid (N = 3) demands, Fermat will
now deal with the problem of summing different powers of the ordinates
of a circle. 33

6. The sum of the powers of the ordinates of a circle

Fermat, apparently, stops analyzing the quadrature of curves and
turns to solve the problem of finding the sum of the powers of the
ordinate of a circle, which is absolutely coherent with his previous
calculation.

He begins by considering the equation of the circle y2 = b2 − x2. He
has already remarked that the sum of even powers of y are no problem.
The odd powers, he asserts, can be reduced through his method to the
quadrature of the circle.

Fermat considers only the case y3 and informs us that the general-
ization to all odd powers is very easy.

As (24, pp. 57–58) says, Fermat’s method reduces the sum of y2n+1

to the sum of zn where z is the ordinate of a circle of radius b/2 and
not centered on the origin. This reduction is faster than the one we
would undertake today if we had to calculate

∫ b

0

(b2 − x2)(2n+1)/2 dx

integrating directly by parts. This would imply the differentiation of
(b2 − x2)(2n+1)/2 and a reduction formula that reduces the degree in 2
units at a time.34 Fermat’s reduction, as we will see, halves the degree
each time.

32Here Fermat again faces the problem of the sum of a radical power of the
ordinates. His method circumvents the difficulty.

33Fermat, of course, does not inform us that the sum of the odd powers of the
ordinates of the circle is needed to square the cissoid!

34If we bother to do the necessary calculations, we get the reduction formula
∫ b

0

(b2 − x2)(2n+1)/2 dx =
(2n + 1)b2

2n + 2

∫ b

0

(b2 − x2)(2n−1)/2 dx.
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Let A(m, r) denote the sum of the ym where y is the ordinate of a
circle of radius r centered on the origin.

A(2n + 1, b) =

∫ b

0

y2n+1 dx

T
= (2n + 1)

∫ b

0

y2nx dy
CV1
= (2n + 1)b

∫ b

0

y2n−1u dy

T
=

2n + 1

2n

∫ b/2

0

y2n du
CV2
=

2n + 1

2n
bn

∫ b/2

0

vn du .

The changes of variable indicated are:

CV1: x =
bu

y

which leads to the new curve

b2u2 = y2(b2 − y2),

and

CV2: y2 = bv

which produces the curve

u2 = bv − v2 .

Let us remark that this last curve is a circle of center (b/2, 0) and radius
b/2. The sum of the vn, where v is the ordinate of this circle, has to
be taken as the sum of the expressions vn

1 − vn
2 , where the vi are the

monotone portions of the circle as shown in Figure 13.

u

b/2

v2(u)

v1(u)

b/2 b v

Figure 13. u2 = bv − v2.

Since Fermat presents only the case n = 1, he finds no difficulties as
the sum of the v is simply half the area of a circle of radius b/2. But for
n > 1 one must still reduce the new circle to another circle, this time,
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centered on the origin in order to be able to iterate the procedure. This
can be done with another change of variable:

(13) CV3: v1 =
b

2
+ t, v2 =

b

2
− t,

which transforms the sum of the vn as follows:

∫ b/2

0

(vn
1 − vn

2 ) du
CV3
=

∫ b/2

0

{(

t +
b

2

)n

−
(

t − b

2

)n}

du

= 2

dn/2e
∑

j=1

(

n
2j − 1

) (

b

2

)n−2j+1 ∫ b/2

0

t2j−1 du.

The sum of the odd powers of t correspond to the circle centered on the
origin with equation t2 = (b/2)2 − u2. We obtain a recurrence formula
for the sum of the odd powers of the ordinates of a circle:

A(2n + 1, b) =
2n + 1

n

dn/2e
∑

j=1

(

n
2j − 1

) (

b

2

)n−2j+1

· A (2j − 1, b/2) .

In this last formula, dxe denotes the ceiling of the number x, to wit,
the smallest integer greater than or equal to x.

7. The last turn of the screw.

Fermat, to close his paper yields to the temptation of presenting
the quadrature of a curve that needs up to eight changes of variable to
be reduced.

As for the rest, it often occurs that, strangely enough, in
order to reach the simple measure for a proposed equation of
locus we need to carry our analysis through a great number
of curves.

This last example is, obviously enough, a tour de force to present an
almost impossible quadrature. But after careful analysis we can see
that it is not only that. It can be placed along the class of curves that
lead to the quadrature of the folium of Descartes. The difference
lies in the fact that now Fermat wants to find the quadrature of the
first curve instead of starting with the known sum of the power of the
ordinates of a curve in order to derive the quadrature of a new curve.
In this, the example differs from the previous ones.
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Fermat’s initial equation is35

y2 =
b7(x − b)

x6
.

The aim of Fermat is to square this curve (see Figure 14), that is, to
compute

∫ ∞

b

y dx

or, what amounts to the same,

∫ ȳ

0

x dy.

Instead of studying Fermat’s curve directly, we will deal with his
example a little more generally. This greater perspective will help us
in our analysis.

Let us the consider the curve (see Figure 14) with equation

y2 =
bk+1(x − b)

xk
.

y

ȳ

b x

Figure 14. y2 = bk+1(x − b)/xk.

35Let us notice that this equation is again a generalization of the curves of the
form

ym =
bm+k−N (b − x)N

xk
.

This remark makes us consider the possibility that Fermat was conscious of the
generality of his method for this type of curves.
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The chain of integrals and the corresponding changes of variable with
the resulting curves is the following:

∫ ȳ

0

x dy
CV1
=

1

b

∫ ȳ

0

z2 dy
T
=

2

b

∫ ∞

b

z y dz
CV2
=

2

b

∫ ∞

b

u2 dz

T
=

4

b

∫ ū

0

u z du
CV3
= 4

∫ ū

o

v du

∗
= 4

∫ v̄

0

u dv
CV4
=

4

b

∫ v̄

0

v w dv

T
=

2

b

∫ b

0

v2 dw
CV5
= 2

∫ b

0

s dw
CV6
=

2

bk−4

∫ b

0

wk−4t dw

T
=

2

(k − 3)bk−4

∫ b

0

wk−3 dt ;

CV1: x = z2/b C1 : y2z2k = b2k(z2 − b2)
CV2: y = u2/z C2 : u4z2k−2 = b2k(z2 − b2)
CV3: z = bv/u C3 : v2k−2 = b4)(v2 − u2)u2k−8

CV4: u = vw/b C4 : b2k−10v4 = (b2 − w2)w2k−8

CV5: v2 = bs C5 : b2k−8s2 = (b2 − w2)w2k−8

CV6: s = wk−4t/bk−4 C6 : w2 = b2 − t2 .

A few remarks are in order. First, notice that the quadrature of the
initial curve ends by depending directly on the sum of the powers of
the ordinates of the circle, already studied by Fermat. Second, we
see that in order to be able to apply Fermat’s method, it is necessary
that k > 3. This is the condition which, from a modern point of view,
makes the improper integral

∫ ∞

0

bk+1(x − b)

xk
dx

convergent. Third, assuming that Fermat essayed different curves of
this nature, he did not choose k = 4 for then the quadrature would have
taken only five changes of variable. He also skipped the case k = 5 for
then the quadrature reduces to that of a higher parabola. Instead he
chose k = 6 which allowed him to exhibit eight changes of variable—
the last three, though, are only needed for summing the third power of
the ordinates of a circle. Fourth, in this example, he used for the first
time a quite obvious result which can be seen as the General Theorem
for the case n = 1. The area of a figure is the same whether the sum of
the ordinates is taken on the base or the sum of the abscissas is taken
on the diameter. That is to say,

∫

x dy =

∫

y dx.

It is the step marked above with the symbol
∗
=.
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Last, to emphasize the great internal coherence of the Treatise, it
is worth noting that this final example is the quadrature of a curve
of the same class as the first he had used to obtain the quadrature of
the folium. So, this last example closes the paper with a spectacular
display of his method and, at the same time closes a circle returning
to the starting point.

His last words clearly show the pride of the author for his creation:

We have thus used up to nine different curves to reach the
knowledge of the first.

8. Conclusions

One of the more momentous conquests of the first third of the seven-
teenth century was the expression of a curve by the means of a math-
ematical equation which, excluding power series, reduced to a polyno-
mial.

In fact, if a general method for determining properties of curves from
their algebraic equations could be devised, a giant step would have been
taken, since in this case, little by little, important parts of mathematics
would achieve their independence from pure geometry.

In this direction, Descartes’ finding in La Géométrie is crucial: as
a curve can be expressed by the use of a polynomial equation, P (x, y) =
0, the normal at a given point (x0, y0) of the curve can be found. The
method consists of cutting the curve with a circle of center O = (r, s)
and imposing that the resulting polynomial Q(x) = 0 had x = x0 as a
double root. A great success for a good method. It always depends, of
course, on the degree of the polynomial equation of the curve.

More or less at the same time, the geometers of the seventeenth
century came to realize the importance of squaring the curves of the
form ym = bm±nx∓n. They devoted a great deal of energy to achieve
these quadratures and they strived to find

∫ b

0

xn dx,

∫ ∞

b

x−n dx,

∫ b

0

x±m/n dx.

So, from Cavalieri to Newton and Leibniz, with different tech-
niques and different epistemological frameworks, all their calculations
led to

∫ b

0

x±m/n dx =
b±m/n+1

±m/n + 1
,

except the case in which the exponent is −1. The success was so spec-
tacular that Newton considered as the explicit analytical expression
of a function its power series expansion and thus developed a sort of
algebra of infinite series (see (19, p. 107)).

It is precisely in this context where Fermat’s contributions to al-
gebraic geometry, tangents to curves, lengths of curves and quadra-
tures have to be analyzed. Especially this last subject, the quadrature
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of curves, as shows the Treatise we have just reread. In a first part
he establishes a general method to find the quadrature of all higher
parabolas and hyperbolas. Next, he sets himself the problem of de-
termining the quadrature of an algebraic curve given by an implicit
equation P (x, y) = 0 using the known quadratures and assuming the
quadrature of a circle of radius b as known.

To achieve this end, he seeks a new curve, quadrable, whose quadra-
ture is expressible through the known quadratures of the curves at his
disposal, the higher parabolas and hyperbolas.

Thus, given an equation of the form

(14) yn =
∑

aix
i +

∑

bj/x
j

Fermat is able to obtain the sum of the yn through the squaring of
the parabolas and hyperbolas of the right-hand side. He then applies
the General Theorem to reduce the degree and proceeds to determine
a new curve by a change of variable that either linearizes (yn = bn−1u)
or reduces even more the degree.

In order to enlarge the class of reducible quadratures, he has to add
the circle to his stock of known quadratures. He then realizes that the
squaring of curves like

(15) (b2 − x2)n/2

will lead to the possibility of squaring more curves. The case in which n
is even presents no problem as y2 = b2 − x2, and for odd n he manages
to circumvent the difficulty of the radicals by a masterful use of his
method applied to y2m+1, where y2 = b2 − x2.

If we had to recap, in a general set ideas, we could summarize the
essence of Fermat’s method (leaving apart the last example in which
he deviates from the previous, though he maintains the spirit) as fol-
lows. Fermat knows how to compute

(16)

∫ b

0

yn dx,

either by squaring directly higher parabolas or hyperbolas, (14), or
as the sum of the ordinates of a circle, (15). Now, by the General
Theorem,

n

∫ ȳ

0

xyn−1 dy.

He then effects a change of variable of the style

xyn−1 = bn−quq

with a suitable q. In (14) or (15), x can be replaced by bn−quq/yn−1 in
order to obtain a new curve

P (y, u) = 0.



FERMAT’S TREATISE ON QUADRATURE : A NEW READING. 29

for which
∫ ȳ

0

uq dy

is computable in terms of (16). The process can be iterated until
reaching

∫ β

α

z dw

which is the actual quadrature of a curve F (w, z) = 0.
Strictly following the previous process, it seems that the “new”

quadrable curve, F (w, z) = 0, appears at the end of the process as
a sort of surprise. Fermat— and we hope our new reading of the
Treatise will have made thus clear— is conscious that the process can
be reversed at least for certain families of algebraic curves with a “stan-
dard” equation.

Fermat’s method of quadratures is, as has been shown, highly orig-
inal and powerful, but only applicable to a certain class of algebraic
curves. In fact this limitation to a certain family of curves and their
algebraic character partly explains the sparse attention the method
received in its time.

In our opinion, the history of mathematics consists of understand-
ing the writings of great mathematicians, their internal coherence, the
methodology that has been used, the extension of the methods de-
ployed. All this independently of the limited success of those writ-
ings. A paradigmatic text in this sense is the Lettres de Dettonville
by Blaise Pascal. Fermat’s Treatise on quadratures is another one
which we hope we have contributed to vindicate at least for its great
intellectual value. Our new reading is neither a historiographic analy-
sis of Fermat’s text nor a study of its ulterior influence— which has
been almost non-existent, but it offers a complete detailed analysis of
all of its examples showing its inter-dependence and the logical thread
that conducts them all. In some occasions we dare reconstruct obscure
parts of Fermat’s exposition but we do so in the hope that these
reconstructions shed some light on the method Fermat is trying to
construct.
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