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Abstract

That individuals contribute in social dilemma interactions even
when contributing is costly is a well-established observation in the
experimental literature. Since a contributor is always strictly worse
off than a non-contributor the question is raised if an intrinsic mo-
tivation to contribute can survive in an evolutionary setting. Using
recent results on deterministic approximation of stochastic evolution-
ary dynamics we give conditions for equilibria with a positive number
of contributors to be selected in the long run. Journal of Economic
Literature Classification Numbers: C72, D23, H41, M14, Z13. Key-
words: work ethic, evolution, group selection, public goods, stochastic

dynamics.



Organizations endure [...] in proportion to the breadth of the morality by
which they are governed.
Chester 1. Barnard, The Functions of the Fxecutive, 1938.

1 Introduction

In a social dilemma the provision of a public good requires some costly ef-
fort from one or more individuals, but explicit contracting is not possible.
Each participant in a dilemma therefore has an incentive to free-ride on the
contributions of the others. How social institutions mitigate social dilemmas
is the subject of a large literature both in economics and the social sciences
more generally. In this paper, we instead study the evolutionary survival
properties of an intrinsic motivation to contribute in dilemma situations.

Consider the case of cooperation within the firm. When individual contri-
butions to output are not verifiably measurable, complete contracting within
the firm is impossible, and a free-rider problem is present. This observation
has been used as the basis for explanations of the organizational structure
of the firm, such as the monitoring and budget-balance-breaking roles of
an outside owner discussed by Alchian and Demsetz [1] and Holmstrém [7],
respectively.

But free-rider problems in production may also be overcome if individ-
ual agents have an internalized work ethic. Experimental evidence of long

standing suggests that

1. people do in fact contribute in dilemma situations even though contri-

bution is not enforceable, and

2. the rate of contribution is declining in group size and the individual

cost of contributing.

(See, e.g., the classic study of Latané, Williams, and Harkins [10]. For a

survey specifically of the experiments on the underlying model of the present



paper, see Croson and Marks [6].) In a broad sense, laboratory behav-
ior therefore more or less conforms to some of the possible predictions of
the noncooperative public goods provision model introduced by Palfrey and
Rosenthal [13, 14], which we shall take as our basic model in this paper.

A version of this model was originally proposed to explain phenomena
such as positive turnout in elections. Given that other people vote, the
probability of being pivotal is small. If voting is costly to the individual
voter, how can it be rational to vote? The earlier political science literature
puzzled over this. It was often suggested that observed voting behavior could
only be explained by there being utility directly attached to the act of voting.

This notion is problematic for at least two reasons. First, it cannot be
rational for everyone to abstain, either, since then the probability of being
decisive is one for an individual who does decide to vote. Hence there must
be some positive turnout in equilibrium. This is the point made by Palfrey
and Rosenthal. But secondly, even if individuals are intrinsically motivated
to vote, or, more generally, to contribute toward the provision of a public
good, how could such a behavioral trait survive in the long run if it is costly
to its carrier?

Since in any given dilemma interaction a contributor is always strictly
worse off than a non-contributor, the intrinsic motivation to contribute—
what we shall think of as a work ethic—could not evolve unless there were
many interactions going on at the same time, and behavioral material from
one interaction might end up in another later on. If the latter is the case,
then the direct fitness disadvantage of contributors may be balanced by the
indirect cost to noncontributors arising from the risk of being matched into
an interaction where there are too few contributors and where the public
good is therefore not provided. When this happens, we are dealing with
group selection in the sense of, e.g., Sober and Wilson [19].

The general Palfrey-Rosenthal model typically has multiple equilibria,
some of which involve positive contributions, others which do not. In this

paper we embed the game in a dynamic evolutionary setting with random
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mutations (along the lines of Young and Foster [23] and Kandori, Mailath,
and Rob [8]), which allows us to predict the equilibria we would be likely
to observe in the long run. By evolution we shall mean cultural evolution
by means of imitation of successful behavior, but our model is also open to
other interpretations. We show that for group sizes small enough, and a cost
of contributing low enough, in the long run we are most likely to observe a
positive amount of contributions even when also non-contribution is a stable
state of the deterministic model.

The paper is organized as follows. We introduce the underlying model by
means of a simple example, and note the relation to group selection theories,
in Section 2. Section 3 studies the deterministic evolutionary dynamics of
the more general model. We note that there are generally evolutionarily
stable equilibria involving no contribution. Section 4 gives examples of all
the possible dynamic behaviors of the deterministic model. In Section 5
we introduce mutations, and give conditions for equilibria with a positive
measure of contributors to be selected in the long run. Section 6 concludes.

All proofs of propositions are in the Appendix.

2 Group Selection and the Work Ethic

When contributors survive evolutionary selection in social dilemma interac-
tions, as we shall show may happen, it is an example of group selection at
work. Group selection is natural selection where what matters is the differen-
tial fitnesses of groups, not differences in fitness between individuals within
the same group. Of special interest are situations in which a trait that is
disadvantaged vis-a-vis other traits within a group can nevertheless grow in
relative population representation over time.

Already Charles Darwin noted that the survival of traits seemingly disad-
vantageous to the individual organism might be explained by their benefits

for the group. The central problem that group selection theories have faced



Individual 2

Worker Shirker
Individual 1 Worker 1—-k,1—-%k 1—k,1
Shirker 1,1—k 0,0

Table 1: An example group interaction.

since then is to define precisely what constitutes a group. Only fairly re-
cently, thanks to the work of, e.g., Sober and Wilson [19], has some clarity
been reached on this issue.

Although group selection effects have recently attracted some attention in
economics (see, e.g., Sjostrom and Weitzman [18], Bergstrom [5], Robson [15],
and Kuzmics [9]), it is seldom pointed out that the potential for such effects
is already built into the standard evolutionary game theory model.

Consider the following example, a special case of the more general model
(due to Palfrey and Rosenthal [13]) that we shall study in this paper. A
group consists of two individuals. An individual is programmed® to be either
a worker or a shirker. If there is at least one worker in the group, the group is
successful, and each individual gets a gross payoff, or fitness, of 1. Otherwise
each individual gets a payoff of zero. A worker also always sustains the cost
k, with 0 < k < 1. That is, the payoff structure of the group interaction is
as shown in Table 1.

Note that if there is one worker and one shirker in the group, the fitness
of the worker is strictly less than that of the shirker. Hence we may say that
workers are strictly disadvantaged relative to shirkers in a group. (Note that
this does not mean that being a worker is a strictly dominated strategy.) But

if the group consists of two shirkers, they will both do less well than does a

LA related paper, Lohmann, Oechssler, and Wirneryd [11], studies the survival proper-
ties of altruistic preferences in a social dilemma where individuals behave rationally given

their preferences and their information about the interaction situation.



worker in a group with a shirker. A group with two shirkers is not successful.
That is, although a worker always has lower fitness than a shirker in the
same group, in a group with at least one worker everyone has greater fitness
than individuals in a group with only shirkers. Hence workers increase group
fitness at the expense of their own individual fitness.

Suppose now that there are many groups, composed randomly out of a
large population where the overall share of workers is x € [0, 1]. The average
fitness of workers is then 1—k, and that of shirkers is -1+ (1—x)-0 = z. Hence
if we have x < 1 — k, workers have greater average fitness than shirkers and
would tend to grow in relative representation in the population. Conversely,
if at any time we have x > 1 — k, the population proportion of shirkers would
increase. Hence © = 1 — k is the only stable proportion of workers. Although
workers suffer the cost k, shirkers run the risk of ending up in a group that
is not successful.

Sober and Wilson [19] identify two properties necessary for group selection
of locally disadvantaged traits to occur—that group interactions are isolated
from each other in payoff terms, i.e., that what happens in one group does
not affect what happens in another, and that there is mixing of behavioral
material over time, so that the offspring of players in one group may end up
in another, differently composed, group. This also highlights the fact that
evolutionary game theory in general (see, e.g., Mailath [12] for a survey) is,
in essence, about group selection. The standard evolutionary game theory
model concerns individual agents from a large population randomly matched
and re-matched to play games (typically, two-player games). The match is,
of course, a group.

As we have seen, the large-population version of our example game has a
unique stable evolutionary equilibrium with a positive frequency of workers.
In the following we shall show, however, that in a more general setting,
with more than two players in a group and a contribution threshold greater
than one, there is always a stable equilibrium with no workers as well. We

shall eventually give conditions for an equilibrium with positive contribution



levels to be selected in the long run when the system is subjected to random

mutations.

3 Deterministic Evolution

We now generalize the example from the preceding section. We assume there
is a large number N of individuals, each of whom is either a worker or a
shirker. The share of workers in the population is = € [0, 1].

Individuals are randomly matched? into firms that have n > 2 members
each. Each firm’s technology is such that in case there are at least m workers
in the firm, the firm is successful and each firm member gets a gross payoff or
fitness of 1. We assume 1 < m < n. As before, workers also always sustain
the fitness cost k, with 0 < k < 1.

Letting u be the random number of other workers in a matching, the

expected fitness of a worker is therefore
Uy () := Prob(g >m —1) -1+ Prob(p <m —1)-0—k,
and that of a shirker
ug(z) := Prob(p > m) - 1 4+ Prob(u < m) - 0.
Hence the average expected fitness in the population is
w(x) == 2uy + (1 — 2)us = x(Prob(p > m — 1) — k) + (1 — 2)Prob(u > m),

and the difference between the expected fitness of a worker and the popula-

tion average is

Uy (z) —u(z) = (1 —z)(Prob(p =m — 1) — k).

2In the following, we shall ignore complications arising from the fact that the population

is actually finite, i.e., we shall assume the law of large numbers applies.



Since p is binomially distributed we have that

n—1

Prob(p=m — 1) = g(x) := < )xml (1—z)" ™.

m — 1

Now assume actions are taken at discrete times ¢ € {1/N,2/N,...}. In
every period exactly one individual, drawn at random, has the opportunity
to revise his strategy.

We shall assume the strategy updating proceeds by means of imitation.
The individual who gets the opportunity to revise observes the action choice
and current expected payoff of a randomly drawn other individual, and may
choose to imitate the behavior of the observed individual.

It seems reasonable to assume that the probability of imitation is increas-
ing in the current payoff advantage of the sampled action. In a non-strategic
setting, Schlag [16, 17] shows that this is in fact the optimal scheme for im-
itation. Apesteguia, Huck, and Oechssler [2] provide experimental results
that suggest this model also agrees well with actual behavior.

We shall here assume the probability of imitation is in fact exactly equal
to the approximate expected payoff difference between the strategy of the
randomly drawn other player and that of the revising individual, provided
this difference is positive. This behavior defines a Markov chain X on the
space ANX ={0,1/N,2/N, ..., 1} with the transition probabilities

P(x,z +1/N)=2 (1 — x)max{g(z) — k,0},

P(z,z —1/N) =2 (1 — ) max {k — g(z),0},

and 5
P =0f —yl > —.
(z,y) or |z —y|> N

The difference between the first two transition probabilities gives the ex-
pected net increase in the population of workers from one transition time to

the next, conditional upon the current state x, as

Fw(z)=P(z,2+1/N)— Pz, —1/N)=a (1 —z) (g(z) — k).



Note that this function is bounded and continuous in z. We are interested in
the deterministic approximation of the above Markov chain when the popu-
lation size is large and thus the time interval between successive transition

times is short. The associated mean-field equation

@ =p(r)=a1-x)(g(z) - k)

givess the limiting deterministic dynamic as N tends to infinity. Benaim and
Weibull [4] prove that for large population size, the deterministic dynamic
is a good approximation of the unperturbed Markov chain. In particular,
by Proposition 4 of Benaim and Weibull [4], as N tends to infinity, the
asymptotic frequency distribution of X ¥ will almost surely put all probability
mass on the set of stationary states of the deterministic dynamic.

The function ¢ is also the deterministic replicator dynamics of evolution-
ary game theory, since it says that the growth rate of workers is equal to the
difference between their current average fitness and the population average.
(See Taylor and Jonker [20].) The original purpose of the replicator dynamics
was to serve as a model of asexual genetic reproduction. We have just seen
that it may also be interpreted in terms of imitation behavior.

A restpoint of this dynamics is a point x such that ¢(z) = 0. A restpoint

x 18 interior if 0 < x < 1.

Define
i _(n—1 (m—1>m1 (n—m)"m
maeeT Am =1 n—1 n—1 '

The following result about restpoints and all other results in the text are

proved in the Appendix.

Proposition 1 Under the replicator dynamics, v =0 and x = 1 are always

restpoints. In addition,
1. ifm=1, thenx =1— Y= s restpoint,
2. if m = n, then kY=Y is q restpoint,
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3. f 1 <m <n and k = kpax, then x = (m — 1)/(n — 1) is a restpoint,

and

4. 1f 1 <m < n and k < kyax, then there are two interior restpoints,
one strictly less than (m — 1)/(n — 1), the other strictly greater than
(m—1)/(n—1).

There are no other restpoints.

The interior restpoints correspond to the symmetric mixed strategy equi-
libria identified by Palfrey and Rosenthal [13], who studied the static version
of this model.

A restpoint is asymptotically stable—henceforth, stable—if, loosely speak-
ing, a small perturbation causes the system eventually to return to the rest-
point. In the present context a restpoint is stable if the derivative of ¢ (x)
with respect to x is negative at the restpoint. We can show the following

about the stability of restpoints.

Proposition 2 Under the replicator dynamics,

1. if m =1, then x = 0 and x = 1 are unstable restpoints, and v =

1 — kY=Y s g stable restpoint,

2. ifm=n, thenz =0 and z = 1 are stable restpoints, and x = k%=1

15 an unstable restpoint, and

3. 4f 1 < m < n, then x = 0 is a stable restpoint, x = 1 is an unstable

restpoint, and furthermore

(a) if k = kmax, then @ = (m — 1)/(n — 1) is an unstable restpoint,

and

(b) if kb < kmax, the lesser of the two interior restpoints is unstable

and the greater is stable.
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Figure 1: n =5,m =1,k = .25.

We note in particular that as long as we have m > 1, there is always a
stable restpoint with no workers. When there is also a stable restpoint with a
positive measure of workers, as is the case except when m < n and k > kyax,
we need to consider perturbations of the system in order to make sharper

predictions about the ultimate outcome.

4 Examples

In this section we discuss some examples that illustrate all the possible dy-
namic behaviors of the deterministic model.

Throughout, we shall set n = 5. In the phase diagram of Figure 1, we
have m = 1 and k£ = .25. There is therefore a unique stable interior restpoint
at x ~ .29.

Note that this restpoint is inefficient. In general, the expected number of
workers in a firm when the population share is x is equal to nz. Hence in the
present case it is approximately 1.45. It would be efficient to have exactly

one participant working, but we have assumed that such a contract is not
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e(r) 0 /\u
1

Figure 2: n =5,m =5,k = .25.

possible.

Figure 2 shows the situation when all participants in the firm have to
be workers in order for the firm to be successful, still with &£ = .25. In this
case, there is an unstable interior restpoint at x ~ .71. Starting points below
.71 therefore ultimately converge to = = 0, starting points above to z = 1.
The unstable interior restpoint measure of workers is thus the critical mass
necessary for convergence to a population where everyone is a worker. We
note that the latter situation is the unique efficient one.

The dynamical system in Figure 3 has an unstable restpoint at x ~ .08
and a stable one at .5. In this case, the lower interior restpoint functions as a
critical mass for convergence to the higher one. For future reference, denote
the lesser interior restpoint when there are two interior restpoints by z, and
the greater interior restpoint by xy. Again, the stable interior restpoint =y
is inefficient, since the expected number of workers in a firm is here 2.5 > 2.

Figure 4 shows an example where we still have m = 2, but now we have
k = .5 > kmax &~ .42. Hence there are no interior restpoints, and the only

stable state is x = 0.

13



p(z) 0 /\
Ty :L'U

Figure 3: n =5,m = 2,k = .25.

Figure 4: n =5,m =2,k = .5.
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Xy, TH 1

Figure 5: n =5,m = 3,k = .15.

If we have n odd and m = (n + 1)/2, ¢ is symmetric around a maximum
at .5. Since with this parameter relationship a firm is successful if more
than half of its members are workers, we might call such technologies simple-
majority technologies. Figure 5 shows an example with n = 5, m = 3, and

k = .15.
When we have k < kpayx, simple-majority technologies allow for analytical

solutions for the interior restpoints. They are

11 n—1 \\¥e D\
“_5_5(1_4<k/<(n—1)/2>> )

11 n—1 \\¥eD\ Y2
xH—§+§<1—4<k:/<(n_1)/2)> )

In the example, we have x;, ~ .20 and z g ~ .80.

and
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5 Long-Run Dynamics

Biological evolution is subject to mutations, and in the context of cultural
evolution by means of imitation of successful behavior it makes sense to
assume that individuals may make mistakes in selecting their actions. Par-
ticularly when studying the behavior of an evolutionary system in the very
long run it seems reasonable to take into account that there may be persis-
tent random shocks. (See, e.g., Young and Foster [23], Kandori, Malaith and
Rob [8], Young [21], or Young [22].) This also turns out to allow us make
more precise predictions about situations where the deterministic replicator
dynamics has multiple stable restpoints.

Hence we now introduce perturbations to the Markov chain defined above.
Specifically, we assume that with probability ¢ € (0, 1), the agent drawn to
revise his strategy picks a strategy at random, irrespective of the payoff to the
current strategy. This defines a perturbed Markov chain X V¢ with transition

probabilities

Pé(x,2+1/N)=(1—-¢)z (1 —z)max{g(z) — k,0} + g,

(1— =)
2

P(z,2 —1/N) = (1 — &)z (1 — 2) max {k — g(z),0} + gs,

and 5
Pf(x,y) =0 for |z —y| > —.
(z,y) v —yl = +
The perturbations make the Markov chain both irreducible and aperiodic.
Moreover, as € tends to zero, its transition probabilities converge to those of

the unperturbed Markov chain. For X "¢ the expected net increase in the

3A Markov chain is irreducible if there is a positive probability of moving from any
state to any other state of the state space in a finite number of periods. Let N, be the
set of all integers s > 1 such that there is a positive probability of moving from the state
z to z in exactly s periods. A Markov chain is aperiodic if, for every state z, the greatest

common divisor of N, is unity.
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population of workers, from one transition time to the next, conditional upon

the current state z becomes
1
Fo(x) =21 —2)(g(z) — k) + (5 - x) €.

The fact that X™¢ is irreducible and aperiodic implies the existence of a
unique invariant probability measure v such that for any Borel set B C
[0,1], N e N,and € € (0,1),

v (B) = lim Pr(X"*(T) € B) = lim V"¢ (B,T),

T—o00 T—o00

where V¢ (B, T) denotes the relative frequency with which B is visited by
XNe during the first 7' periods. By computing the limit of vV (B) as ¢
tends to zero and N tends to infinity, we are able to calculate the states that
are most likely to be observed in the long run for large population size and
small randomization probability. More precisely, we look for states with the

following property.*

Definition 1 We say that a state x is selected if, for any neighborhood U
of x, we have that
lim lim v (U) = 1.

e—0 N—oo

We can now show the following.

Proposition 3 The following holds for the perturbed Markov Chain X<,
1. Ifm =1, then x =1 — kY™ Y s selected.

2. If m = n, then x = 1 is selected for k < 1/2"7 ', and 2 = 0 is selected
for k> 1/2" %

41t can be shown that Proposition 3 below holds also if the order of limits is reversed
in the definition of selection, i.e., if a state x is selected when, for any neighborhood U of

z, limpy oo lim. g vV (U) = 1.
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3. (a) If 1 <n <m and k > kpax, then x = 0 is selected.

(b) If 1 <n <m and k < kyax, then v = xg is selected if vy > 2xp,

and x =0 if xg < 2xr.

Consider, in particular, the case when there are two interior restpoints.
The basin of attraction of the restpoint xz under the deterministic replicator
dynamics, i.e., the set of starting-points such that the trajectory eventually
converges to zy, is the interval (z7,1). Let (x1,zg) and (xz g, 1) be the left
and right sub-basins of xp, respectively.

We see that long-run selection of the high-effort equilibrium happens if
the length of the left sub-basin of xy is greater than the length of (0,z1),
the basin of attraction of x;. Hence it could happen that zy has a larger
basin of attraction than z but is nevertheless not selected in the long run.

In the special case of the simple-majority technologies defined earlier, we

can solve explicitly for the conditions for selection of xy. We need that

h< <(nn—_1)1/2> G)(”‘”/Q_

More generally, we can prove some limited comparative statics results

relating the cost £ to long-run equilibrium selection.

Proposition 4 If 1 < m < n, xg/xy is strictly decreasing in k for k €
(0, kmax). Moreover, there exists a k* € (0, kmax) Such that for k € (0,k*),
I'H/{L’L > 2, fO’I".I{I = ]{3*, IH/.%’L = 2, andfork: € ('If*ykmax)y IH/.%’L < 2.

Proposition 5 Letm,n, and s be positive integers. If k € (0, kpax), m—1 =
(m—1)s,n—1=(n—1)s, and 1 < m < n, then there exists an s such that
for 1 < s <3, xg/xy is decreasing in s, and for s > §, there are no interior

stationary states.

Consider the effects of scaling the game up or down by multiplying the
firm’s size and the threshold number of workers by some constant. Propo-

sitions 3, 4, and 5 together imply that if we have 1 < m < n, the interior
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Figure 6: Example selection boundary in cost-scale space.

equilibrium z g is more likely for low cost and low scale, and the equilibrium
with no workers for high cost and high scale.

Figure 6 shows an example with m — 1 =s, n — 1= 2s, 2 = 1/3, and
xy = 2/3. Each point on the curve corresponds to a combination of &£ and
s such that xpy/x; = 2. The equilibrium x g is selected for combinations to
the southwest of the graph, and x = 0 for combinations to the northeast of
the graph.

To sum up, we have shown that for a cost of contributing low enough,
and a firm size small enough, an equilibrium with a substantial frequency of
contributors is the situation most likely to be observed in the long run. In

the case of simple-majority technologies, the condition can be made precise.

6 Concluding Remarks

We know from experimental work that individuals contribute in dilemma
games even when contributing is not enforceable. We have shown in this pa-

per how such behavior may be understood as the long-run stable equilibrium
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of an evolutionary system subject to mutations.

We have thought of the underlying public goods game as one in which
individuals expend irretrievable effort. The model can easily be extended
to a setting where contributions are instead monetary and fully refunded
if the public good is not provided, a case that Palfrey and Rosenthal [13]
also study from a static point of view. In the evolutionary version, one can
then show that there is a unique interior restpoint with a larger share of
contributors than in the interior restpoints without refund. Moreover, this
interior restpoint is the unique stable state of the replicator dynamic and
thus also the unique long-run prediction of the stochastic model.

A different extension of the model would be to allow for worker and firm
heterogeneity. Workers could differ in terms of their fitness cost of contribut-
ing and firms in terms of their size and contribution threshold levels. It is
also possible to make the size and contribution thresholds of firms deter-
mined endogenously through evolution. We leave these questions for future

research.

Appendix

Proof of Proposition 1. That x = 0 and x = 1 are restpoints is immediate.

At an interior restpoint we must have that

<”_ 1>xm—1(1 e (1)

For the cases where m = 1 and m = n, (1) may be solved explicitly for the
interior restpoints. When we have 1 < m < n, the left hand side of (1) is a
single-peaked function of  with a maximum at 2 = (m — 1)/(n — 1). Hence

if we have that
n—1 m—1I\""1 yp—m\" ™
ké < ) ( ) :kmam
m—1 n—1 n—1
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the equation (1) has at least one solution. In case the relation holds with
equality, the unique solution is # = (m — 1)/(n — 1). Otherwise (1) has
exactly two roots, where one is necessarily strictly less than (m —1)/(n — 1),

the other strictly greater. O

Proof of Proposition 2. We have that

S() = k(20 — 1) — (” - 1>xm1(1 — )0+ D — m).
m — 1
Suppose we have m = 1. Then we have ¢'(0) = 1—k > 0, (1) = k > 0,
and ¢'(1 — kYD) = (n — 1)(E™™=D — k) < 0.
Suppose instead we have m = n. Then we have ¢'(0) = —k < 0, ¢'(1) =
k—1<0,and ¢ (/") = (n - 1)(k — kD) > 0.
Finally, suppose we have 1 < m < n. Then we have ¢'(0) = —k < 0 and

©'(1) =k > 0. Let z, with 0 < z, < 1, be such that

-1
<n )xT_l(l —x)"" =k,

m— 1
Substituting, we find that

-1
o'(xy) =k(m —1—(n—1)z,) §O as z, 2 —

AV

n—1"

Note that if we have z, = (m — 1)/(n — 1), then z, is a saddle point that
attracts in one direction and repels in the other, and is therefore categorized

as unstable. O

The idea behind the proof of Proposition 3 is to calculate the limit of the
unique invariant probability measure "¢ as N tends to infinity and ¢ tends
to 0. When the deterministic dynamic has a unique stationary state, we rely
upon the following lemma, which holds for any ¢ € [0, 1), to determine this

limit.
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Lemma 1 For any open set U C [0, 1] containing all the stationary states

of the deterministic dynamic, we have that

J&Enoo (:Ilg%o e (U,T)> = 1 almost surely.
Proof. This follows directly from Proposition 4 of Benaim and Weibull [4]
by observing that the deterministic dynamic has no periodic orbits. O

When there is more than one stationary state, we proceed by estimating
and comparing the minimum probability of reaching and the maximum prob-
ability of leaving the basins of attraction of every asymptotically stable state.
Formally, let g be any asymptotically stable state of the deterministic flow
and let (:1:5, :1:3) denote its basin of attraction. By Proposition 8 in Benaim
and Weibull [3], for any z € [x[} xﬂ, the cost of the transition from {z(} to
{z} is equal to

e({ro} {o}) = [ log P(y.y + 1/N) = log P(y,y — 1/N))dy.

Using this concept we can define the radius of zo, R({z¢}), as the lowest cost

of going from {z(} to any state outside its basin of attraction, i.e., as

R({xo}) := min {c ({0}, {20 }) e ({wo}. {d})}.

Likewise, the co-radius of xy can be defined as the highest cost to go to the
basin of attraction of xy from anywhere outside its basin of attraction, i.e.,

as

OR ({ro}) i= max  min{e ({y}. 20}) e ({v) 2}) )

y§£ mg,xo
Lemma 2 Let x be an asymptotically stable state of the deterministic dy-

namic and suppose U C [1,0] is an open neighborhood of x. If R({z}) >
CR({x}), then

A}im 7lim VNE(U,T) =1 almost surely

and
lim lim Pr(XV(T) e U) = 1.

N—oo0 T—o0
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Proof. This follows immediately from Proposition 6 in Benaim and Weibull [4].
O
The following lemmata are useful for the calculation of the radius and

co-radius.

Lemma 3 Let g and z% be two arbitrary states such that x5 — zo and

xp — xp as e tends to 0. Then

L e(agh el los Py + 1/N) — log PA(y.y — 1/N)
£—0 —loge Jag =0 log e

dy.

Proof. Assume without loss of generality that z§ < 2%. Let ¢ € (O, 6’1/2)
and define the indicator function e o, that takes on the value 1 for z €

[z, %] and 0 for all other x. Then

1
0 < /PlogPE(x7x+1/N)dy
loge Jag

— [ B oz 108 (1= £y (1= ) max {gl) = £,0} + (1= ) 2/2)dy

1
< /Lpﬁ,:p%@log (1—=y)e/2)dy < /10,1 (1 —log(1—y))dy = 2.

Hence, by Lebesgue’s dominated convergence theorem we have that

_ ["p log P(y,y + 1/N) . log P(y,y + 1/N)
hm/ dy = /hm[xgyxs dy
=0 Jas log e e—0 P log e
wp_ log P* 1/N
_ / li 08P Wy FUN)
zo €0 log e

By the same argument follows that

+ log P*(y,y — 1/N)

zp log P* —1/N
lim dy = / lig 108 LWy = UN)
e—0Jag loge zo €0 loge
which proves the statement. O

Lemma 4 Let (z) be a sequence of asymptotically stable states such that

lim. o x{ = xo, and let (%) be a sequence of states such that x% is in the
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closure of the basin of attraction of xj for every e € (0,1) and lim._p2% =

zp. Then
e ({ofh o5

=ITp— Xg.
e—0 —loge

Proof. Suppose, without loss of generality, that xp — 2y > 0. Then

li /w”l Pe(y,y + 1/N)d
Ll R e - og P*(y,y + 1/N)dy
. 1 TP
- lg%logg/e log (1 — £)y (1 — y) max {g(y) — k. 0} + (1 - y)/2) dy.
Zo

Define the indicator function Ip, —y that takes on the value 1 for = such that
P(z,x+1/N) =0 and 0 for all other z. Using this function and Lemma 3,

we can write the above expression as

/xp liH(l) IP+:010g ((11 —y)e/2) dy
Jzg €= oge

TP log (1 —¢)y (1 —y)lgly) — k] + (1 —y)e/2)
+ /IO g% <1 B IP+:0) log e dy

zp
xo

Similarly, by defining the indicator function Ip__y that takes on the value 1
for x such that P(x,z — 1/N) =0, and 0 for all other x, we can write

lim /PlogPE(x,x—l/N)dy
=0 loge Jag
| o
— tim—— [ log (1= )y (1~ y) max {k — g(y), 0} +y=/2) dy
e—=0loge Jag
@ 1 2
= /Plim] 0 0g (<y/ >dy
zg €0 log e
@ log ((1 — 1—y) (k- 2
o [ i (1_11{:0) og (1—2)y(l—y)(k—gly) +ye/ )dy
20 €= log e
= 0.
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Proof of Proposition 3. Case 1: m = 1. For positive ¢, the function Fy,
has a unique root on the unit interval; z5,. As ¢ tends to zero, 25, tends to
zy = 1 — kY™ and hence, the statement follows directly by Lemma 1.

Case 2: m = n. For sufficiently small ¢, the function Fy;, has three roots on
the unit interval; 2§, %, and x, but only zj and x5 are asymptotically stable
states. As e tends to zero, the three points converge to 0, xp = kY1 and 1
respectively. It is clear that the radius of z{ is equal to ¢ ({z§}, {#%}) and the
co-radius ¢ ({7}, {z%}). Similarly, the radius of z] is equal to ¢ ({z{}, {z%})

and the co-radius ¢ ({z{}, {z%}). By Lemma 2, in the limit, as ¢ tends to

zero, the ratio of costs becomes
_nTrr g1/0en) g

i ST 25
==0c({z5} {2%}) 2P — 1m0
This implies that if & < 217", there exists an &, such that for all £ € (0, 4),
CR ({1}) < R({1}) and if k > 2! there exists an &, such that for all
€ (0,€), CR({0}) < R({0}).

Case 3: 1 <n < m and k < kyax. For sufficiently small ¢, the function
F}; has three roots on the unit interval; x§, =7, and z%. The first and the
last of these points are asymptotically stable. As ¢ tends to zero, the three
points converge to 0, x7, and x gy respectively. It is clear that the radius of
xg is equal to ¢ ({2}, {z%}) and the co-radius ¢ ({z%}, {z%}). Similarly, the
radius of 2% is equal to ¢ ({z%}, {3 }) and the co-radius ¢ ({z(}, {z%}). By

Lemma 2, in the limit, as ¢ tends to zero, the ratio of costs becomes

NRACAN N

=0 c({z5}, {22}) =L
This implies that if 25 /xp > 2, there exists an £, such that for all £ € (0, ¢),
CR({zp}) < R({zg}), and if 2 5/x < 2, there exists an &, such that for all

€ (0,¢), CR({0}) < R({0}).
Case 4: 1 <m <n and k > kpax. f 2, = (m —1)/(n —1) < 1/2 and

k = Emax, for sufficiently small ¢, the function Fjj; has three roots on the unit

interval; zj, z3, and 2% (if (m — 1)/(n — 1) = 1/2, the two latter coincide
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with z,). Of these, z§ and 2% are asymptotically stable states. As ¢ tends
to zero, xj converges to 0, and z7, and z% both converge to x,. This case is

identical to the above where 1 < m < n and k € (0, kpax), and since

(i ) _m
=0 c({z5}, {z1}) ’
CR ({0}) < R ({0}) for sufficiently small .
fz,=(m—1)/(n—=1) > 1/2 and k = kpax, or if & > knax, for sufficiently

small €, the function Fy;; has one root on the unit interval; (. Since this point

converges to 0 as € tends to zero, the statement follows directly by Lemma 1.
O

Proof of Proposition 4. First, we shall prove that 0 (zg/x1) /Ok < 0 for
all k € (0, kmax). For z € {zp,zg}, g(x) — k =0 and

8(g($)—k‘):k<m—1_n—m)7§0.

ox x 1—=z
Hence, the implicit function theorem applies and we have that
Oox -0 (g(x) — k) /Ok
ok~ algle) — k) [0z

_ gt (m—l_n—m)_l
x 11—
The last expression is negative for z > (m — 1)(n — 1) and positive for
z < (m —1)(n —1). Since 2z, < (m — 1)(n — 1) < xp, it follows that
dxr/0k > 0 and dxy/0k < 0, and thus,
O(rg/xrp) xpdvg/0k — xgdxr/ok _

0.

ok r2
This implies that xy/xy is a continuous and strictly decreasing function of
k on (0, kmax)-
Secondly, we shall prove that there exists a k: such that xg > 2xy. Let
a € (1,(n—1)/(m — 1)) and define

A n—1 am — 1\"! m — 1\
- <— ) <1—a > .
m—1 2n—1 n—1
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Clearly, k € (0, kmax) and for all z € [(a/2)(m —1)/(n — 1), a(m — 1)/(n — 1)],
we have that

g(x) > k.

TH ( m—l) (am—l)l
— > |« — = 2.
Ty, n—1 2n—1
Since limg_,.. zg/rr = 1 < 2, the continuity and strict monotonicity

of zg/xy on (0, kmax) imply that there exists a k* such that for k € (0, k*),
xH/:UL > 2, for k = k*, $H/:UL =2, and for k € (k*,kmax>, $H/:UL < 2. O

It follows that

Proof of Proposition 5. Denote the probability function of the binomial

distribution by
b

a

g(z,a,b) = ( )x“ (1—a2)"".
Suppose that, for x € {zp, 25} and s > 1,
gz, s(m—1),s(n—1)) = ks
Then there exists a kg1 > 0 such that, for x € {zp, 2y},
gz, (s+1)(m—=1),(s+1)(n—1)) = kep1.

This kgyq is strictly smaller than kg since

ki1 _ g, (s+1)(m—-1),(s+1)(n—1))
ks g(z,s(m—=1),s(n—1))
glm=-1)/(n-1),(s+1)(m-1),(s+Hr-1)

g((m—=1)/(n=1),s(m—1),5(n—1)) ’

where the last inequality follows from a standard property of the binomial

distribution. Since, by Proposition 4, 9 (zg/xy) /0k < 0, this implies that

xp/xy is strictly decreasing in s for s such that

g(m=1)/(n=1)(s+ 1) (m=1), (s +1)(n—1)) = k.
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for

Finally, since
lim g (z,s(m—1),s(n—1))=0

§—00

any x € [0, 1], it follows that there exists an § > 1 such that for s > s,

g(m—=1)/(n—1),s(m—1),s(n—1)) < k.

Hence, for such s there are no interior stationary states. O
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