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Abstract

This is a survey of the economic growth literature growth. In the first
two sections we analyze the main differences between exogenous and endoge-
nous growth models using a fixed savings rate analysis. We argue that in
order to have endogenous growth there must be constant returns to the factors
that can be accumulated. A graphical tool 1s developed to show that changes
in the saving rate have different effects on long-run growth in the two types
of models. We show how different growth models can be generated by sim-
ply changing different features of the production function. We then explore
Ramsey’s optimal-saving neoclassical model. Finally, we discuss the role of
technology in the neoclassical model of growth.




“"The consequences for human welfare involved in gquestions like
these are simply staggering: once one starts to think about them, it is hard

to think about anything else”. Lucas (1988), p. 5.

(1) INTRODUCTION

Most economic growth models discussed in the literature have a simple
general equilibrium structure. First, there are households who own the
assets and inputs in the economy and choose the fraction of income they will
consume and the fraction they will save. Second, there are firms who hire
the different inputs in order to produce the final output they sell to
consumers. And finally, there are markets where households sell their
inputs to firms and where firms sell their output to households.

In the initial section of these notes, however, we will use a setup
with no markets or firms. We will think of household-producers who own the
inputs and the technology which transforms them into output. These
household-producers then choose how much of the output to consume and how
much to save and invest. This setup is often known as a Robinson Crusoe
Economy. The only asset in this (closed) economy is something we call Kt.
One may wish to think of K as physical capital but it may also include other
inputs that can be accumulated, such as knowledge or skills. The other
input in the economy, Lt' cannot be accumulated in that it is assumed to
grow at a rate which is independent of individual choices. We may want to
think of L as labor but it may also include other non-reproducible resources
such as iand or energy. We assume that the technology available transforms
combinations of these two inputs into output according to the following
function:

(1.1) Yt = F(Kt’Lt)'

where Yt stands for aggregate output.
To simplify matters we assume that output is a homogeneous good which
can be either consumed or saved. The reason why households may choose to

save is that unconsumed output can be transformed into capital through a




process that we will call investment. If we let s() be the fraction of

income that is saved, the increase in the capital stock is given by

(1.2) Kt = s() F(Kt,Lt) - 6Kt'
where K=dK/dt is the time derivative of K (this notation will be used
throughout these notes) and & 1is the constant rate of depreciation.1

Equation (1.2) says that in a closed economy, gross investment (the sum of

net investment, k, and depreciation) is equal to gross saving.2

In most of the recent economic growth literature, households are
assumed to choose a consumption path by maximizing a utility function
subject to some intertemporal budget constraint.3 In Section 3 we will find
that the optimal saving rate s() is a complicated function for which there
are in general no closed form solutions. The complicated mechanics of
dynamic optimization, however, obscure some of the important points and
issues. Hence, before studying optimal-savings models it will be convenient
to follow Solow (1956) and Swan (1956) and start with the assumption that

the saving rate, s(), is an exogenous constant which we denote by 's'n4 We

1 This assumption implies that the depreciation rate is independent of

economic conditions. More realistically, firms choose the intensity at
which they use their capital, and when capital is used more intensively, it
depreciates faster. Hence, in the real world, 8 is a function of economic

conditions. We will, however, abstract from the the choice of capacity
utilization here, and assume that & is constant. Nonetheless we will see
later that the rate of depreciation is an important determinant of the rate
of economic growth. Thus, endogeneizing the depreciation rate 1is

potentially a productive area of research.

2 More generally, in an open economy, the difference between saving and

investment is equal to the current account balance.

3 Early economists used to confine the intertemporal optimization
analysis to normative issues. The celebrated Ramsey (1928) paper starts
with the sentence "The first problem I propose to tackle is this: how much
of its income should a nation save?" (p.543). Contemporaneous economists,

on the other hand, use intertemporal optimizing models for descriptive or
positive analysis as well. Following Barro (1974), the representative agent
is assumed to be a family or group of individuals linked to each other
through bequests.

4 In Section 3 we will show that a constant saving rate is optimal under




assume that the production function is Cobb Douglas so

< acB @
(1.3) Y, = AK(LY,

where A is the level of the technology. From a macroeconomic perspective,
we should think of 'technology’ in a broad sense that includes government
distortions, protection of property rights, and things of this sort. In
other words, for the same amount of K and L, economy 1 may get more output
than economy 2 because it 1is less distorted, 1its government 1is more
efficient, or its institutions favor private production more effectively.
The 'technology’ parameter A, therefore, should capture all these concepts.
Using the Cobb Douglas production function and the assumption of constant

saving rates, we can write the net increase in capital as

(1.4) K = s aAKPL® - sk,

where time subscripts have been omitted (we will keep omitting them when no
ambiguity arises).

We imagine that population is equal to employment, and thereby abstract
from unemployment and labor force participation issues. We further assume

that population grows at an exogenously determined constant rate, L/L=n.S

certailn conditions.

S In the real world, people choose how many children to have and whether

to migrate or not. For example, if the production of children requires that
parents spend time with their kids, then high wages will tend to deter
reproduction. Similarly, high future wages induce higher fertility rates
because children will become grown-ups who will earn those future wages.
Interest rates will also affect fertility rates if the parent’'s utility
function exhibits diminishing returns to children. This is true because, in
this case, parents would like to smooth children over time (much in the same
way they want to smooth consumption). Wages and interest rates should also
affect mortality rates by affecting the amount of time people spend working
rather than taking care of themselves or their children. In terms of
migration, high wages in a country tend to attract immigrants. Hence,
economic conditions (such as wages, interest rates and so on) should, in
principle, affect the rate of population growth. However, we simplify the
analysis here by abstracting from these important, interesting, and largely
unresolved issues, which should be the subject of future research (see Barro
and Sala-i-Martin (1994), Chapter 9, for examples of growth models with
endogenous fertility and migration. I know of no growth models that




Define lower case k as the capital-labor ratio {(or capital per worker), K/L.
By taking the time derivative of kt' we can rewrite (1.4) in per capita
terms as:6

(1.5) k = sakPLeB1

(é+n)k.

The growth rate of capital per worker is given by kt/ktéyk. We can
compute this growth rate by dividing both sides of (1.5) by k. Define
steady state as the state where all variables grow at a constant (possibly
zero) rate. Thus, the steady-state growth rate, %, |is constant7 by
definition. Hence, we can write [7; + & +n]/sA = kB_lLa+B—1, where all the
variables in the left-hand-side are constants. Take logarithms and time

derivatives of both sides and get
(1.6) 0= (8-1)1; + nla+B-1).

This key equality deserves some attention. Consider first the
neoclassical production function where output is assumed toc exhibit constant
returns to scale (CRS) and positive but diminishing returns to each input.
In the Cobb Douglas setup, these two assumptions respectively require that
a+B=1 and 0<B«<1. Given a+B=1, the second term in the right-hand-side of

(1.6) vanishes so we are left with

(1.7) 0= (8-1)1;.

incorporate endogenous mortality rates)

6 Notice that the difference between expressing the accumulation equation

in levels or in per capita terms is the addition of the term nk to 8k. We
can in fact think of nk as some extra depreciation since it represents the
loss of capital per person due to the addition of population. Note in
particular that in the hypothetical case where people do not save anything
(s=0), capital per ©person would fall both because capital falls
(depreciation) and because the number of people increases (population
growth).

7 From now on we denote steady-state values of the various variables with

stars.



The assumption of diminishing returns to capital, B«<1, implies that the
only sustainable steady-state growth rate ‘is 7;=0. In other words, the only
steady-state growth rate consistent with the neoclassical model is zero.

An interesting question arises. If the only steady-state growth rate
is zero, how did the neoclassical theorists of the 1950s and 1960s explain
the fact that most industrialized countries have experienced centuries-long
positive growth rates? Their answer was that the technology used by these
countries had improved over time. In order to capture this idea, they

allowed the term A in (1.3) to grow at an exogenously given rate, g (in

other words, A/A = g).8 When technology grows at a constant rate, the rest
of the variables follow. Hence, the steady-state growth rates of income per
capita, capital per capita, and consumption per capita in a neoclassical
model with exogenous productivity growth are all equal to g.

A second (and possibly more interesting) way to read equation (1.6) is
the following: "If we want to have positive steady-state growth rates
(7k>0) in a model with constant returns to scale (oa+B=1), then the
production function must exhibit constant returns to the inputs that can be
accumulated, B=1." This implies that a« = 0, and the production function

takes the form:
(1.8) Y, = AK

where A is a constant. This technology, known as the "AK technology",
yields the simplest model of endogenous growth. One of the main differences
between endogenous and neoclassical models of growth 1is that the
steady-state growth rate, yi, derived from endogenous growth models can be
positive, even when no variable is assumed to grow at an exogenous rate.
The steady-state growth rate depends on different choice or endogenous

variables like the saving rate or the tax structure, rather than on the

8 Productivity growth in the neoclassical model had to be exogenous

because in a world of competitive markets and CRS technologies, the rewards
to all private inputs (given by the marginal products) exhaust the value of
the final product. Since technology is a public good (in the sense of being
a non-rival and non-excludable good), there are no resources left to finance
activities such as research and development.




exogenously given rate of productivity growth. This is why they are called
Models of Endogenous Growth.

Despite its simplicity, it is important to study the AK model in detail
because all endogenous growth models embed a linearity that makes them look
like the AK model. We will study the AK model in Section 5.

There are various ways to motivate the AK technology. The most obvious
one 1s to take (1.1) and to think of labor as capital: what really matters
for production is not the number of bodies (raw labor), but rather the
amount of quality-adjusted labor. This quality, in turn, can be accumulated
by foregoing consumption, just like physical capital can. In other words,
people invest in their human capital much in the same way that they invest
in thelir physical capital. If the production functions for human and
physical capital are similar, then we can combine the two concepts into a
broad measure of capital to get a production function that resembles AK.
This idea, which we will derive more formally in Section 5 of these notes,
underlies the work of Rebelo (1991).

Another way to motivate the AK technology is to think in terms of
private capital along with publicly provided inputs {such as roads,
infrastructure, or law enforcement). The production function could be
written as Y=AKBgl_B. where K is the private capital good and g is a
publicly-provided good. If the government increases the supply of public
inputs in proportion to the supply of private capital (perhaps because
increases in private capital generate increases in tax collection), then the
setup resembles an AK technology (see Barro (1990)). In Section 6 we will
examine the Barro model in more detail.

Equation (1.6) allows for a third reading: "Assuming no population
growth, n=0, we can have non-reproducible inputs, a>0, together with
positive steady-state growth, 7;>0. if there are constant returns to the
inputs that can be accumulated, B=1. But notice that this implies a+8>1;

that is, it Implies increasing returns to scale (IRS)".9

9 Note that when the rate of population growth 1is positive, n>0,

thetechnology exhibits IRS, so that a+p>1 applies, then there 1is no
steady-state growth rate 7; which satisfies the key equality (1.6). What

occurs in this case is that the growth rate is never constant, but rather,



The problem is that if we plainly postulate an (IRS) production
function we may have trouble finding a set.of..prices to support a general
competitive equilibrium. Furthermore, the usual optimization techniques
cannot be used because the usual concavity requirements for the first order
necessary conditions to be sufficient are not met.

There are at least two ways to get around this problem. The first one
is to follow Alfred Marshall and introduce IRS at the aggregate level but
CRS at the firm level. This can be formulated through production
externalities or spillovers: each producer’s decision affects all other
producers’ output, but no one takes this into account. Hence, all producers
face a concave problem so the usual optimizing tools can be applied. The
economy as a whole, however, faces an IRS production function which, (under
some conditions that we will outline below) generates endogenous growth.

The Cobb Douglas version of this production function is
y = akPLl7BeY,

where K is private capital and k is the aggregate capital stock in the
econonmy. Individual firms do not realize that their own investiment
decisions affect k so they take it as given. In the aggregate, however,
total capital will equal the sum of the capital stocks of individual firms.
Therefore, k=K. It follows that, effectively, aggregate output is given by

(1.9) y = akPHYL17R,

Note that if the size of the externality is such that pB+y=1, then we
have constant returns to capital in an IRS world. Thus, by modeling IRS
through externalities we get around the problem of the existence of
competitive general equilibrium. As it is well known, however, competitive
equilibrium models with externalities tend to generate non-optimal outcomes.

In Section 7 we show how Romer (1986), following Arrow (1962) and Sheshinski

increases over time. This phenomenon, also known as scale effect, explains
why all the models of endogenous growth with IRS always assume no population
growth.




(1967), uses capital externalities in the aggregate production function to
generate endogenous growth.

A second way to get around the problem of the non-existence of
competitive equilibrium is to drop the assumption of competitive behavior.
This is sometimes called the Chamberlinian approach to increasing returns.
Among other things, this approach is interesting because, under imperfect
competition the rewards to all inputs of production do not exhaust total
output. Hence, there are rents that car be assigned to activities such as
research and development (R&D}, which are not directly productive but which
may contribute to the expansion of the frontiers of knowledge (and knowledge
benefits all firms in the economy). Not surprisingly, therefore, this
approach has been extensively used by economists who think that R&D is an
important source of economic growth. In Section 9 we explore a model of R&D
and growth based on Romer (1987, 1990) and Grossman and Helpman (1991,
Chapter 3) where firms invest in R&D in search of new capital goods. In
this model, there are no diminishing returns to the introduction of new
varieties so the incentive to undertake R&D never diminishes. This keeps
the economy growing.

Before working through the mechanics of all these models, let us
introduce a graphical device that will further clarify the basic differences
between exogenous and endogenous growth models. This device will also help
us understand why the saving (or investment) rate does not affect the

long-run growth rate in the former models but does affect it in the latter.

(2) MNODELS WITH CONSTANT SAVING RITE: A GRAPHICAL EXPOSITION
We often hear economic advisors to Third World countries argue that one
of the necessary conditions for economic growth and development is an
increase in national saving rate. The suggested mechanism is that higher
savings lead to higher investment (since they must be equal in a closed
economy), and higher investment leads to more rapid economic growth. In
this section, we analyze the conditions wunder which this policy

recommendation is valid. For this analysis, we continue to assume a constant

saving rate.




Neoclassical Growth
Let us first imagine that the production function is neoclassical in
that exhibits constant returns to scale, a+B8=1, and diminishing returns to
each input, 0<B,a<1. Capital per person accumulates according to (1.5). If
we divide both sides of (1.5) by k we get

(2.1) = k/k = sAk (17B) -(8+n).

4"
The left-hand-side of this equation is the instantaneous growth rate of

the stock of capital per person. The right-hand-side says that this growth
rate is gliven by the difference between two functions, sAk_(l_B) and (3+n).
We depict these two functions in Figure 1. The function 8+n is independent
-{1-B)
is

downward sloping in k, it approaches infinity as k approaches zero, and it

of k so it is a flat line. Since we assume (<1, the function sAk

approaches zero as k approaches infinity. Since 8+n is strictly positive,
the two curves must cross once and only once in the positive quadrant. The

value of k at which they cross, denoted by k*, is the steady-state capital

per worker given by

k* = (sAs(a+n))/(17R)

We can use Figure 1 to study the behavior of an economy over time.
Equation (2.1} says that the growth rate of k is given by the vertical
difference between the two curves. Hence, the growth rate is positive for
k<k* and negative for k>k*. Moreover, the growth rate is larger the further
below the steady state an economy is. Consider an economy with an initial
level of capital ko below k*. The growth rate of capital is initially large
but falls over time as the economy grows towards its steady-state position.
When the economy reaches the steady state, the economy stops growing. The
behavior is symmetric if the initial capital stock is above steady state.
We can take logarithms and derivatives of the production function to see
that the growth rate of output per capita is proportional to the growth rate
of capital per person, 7y=87k. It follows that the dynamic behavior of y
parallels the behavior of k.

The intuitive reason behind the lack of steady-state growth is the




assumption that the returns to capital diminish and approach zero; when the
capital stock is low, each addition to the capital stock generates a large
increase in output (that 1is, the marginal product of capital is high).
Since, by assumption, agents save and invest a constant fraction of this
additional output, the increase in the capital stock 1is large. As the
capital stock grows however, each additional unit generates fewer and fewer
units of output. Since agents still save a constant fraction of it, the new
additions to the capital stock are smaller and smaller. In fact, they would
approach zero if the capital stock were arbitrarily large. Before reaching
zero, however, the economy reaches a point where the new additions to the
capital stock are just sufficient to replace the depreciated stock and makei
up for population growth (at rate n). This 1is just enough to keep the
capital per person at a constant level. Once the economy reaches this
(steady-state) point, it remains there forever.

Imagine that, starting from a steady-state position, the saving rate,
s, experiences a sudden and permanent increase (maybe because the government
;“'B) will shift to the right
while the line (8+n) will be unaffected. We can see in Figure 1 that the

changes the tax structure). The curve sAk

following things are true:

(a) the growth rate experiences an immediate increase.

(b) the growth rate falls over time and eventually returns to zero.

(c) the new steady-state stock of capital per worker is higher.

The main point is that, even though the permanent increase in the
saving rate leads to a short-term increase in the growth rate and an
increase in the steady state level of capital per worker, the steady-state
growth rate remains unaffected. The transitional dynamics following an
exogenous and permanent increase in A, 8 or n are very similar: there is a
short-run effect on the growth rate, but in the long run, only the levels of
capital and output change. Incidentally, when the level of technology A
increases continuously at a constant rate g (as is the case of the
neoclassical models with exogenous productivity growth), then the curve
sA(t)f(k)/k shifts to the right continuously. It follows that the
steady-state capital stock k* also shifts to the right at the same rate, g.

Hence, the steady-state per-capita growth rate of the economy is positive

10




and equal to g.

A Quantitative Measure of the Length of the Transition

An important question is how quickly the economy reaches the new steady

state. To answer this question we can log-linearize equation (2.1) around
the steady state to getlo
(2.2) I T -(1-B)(8+n)[log(k)-log(k*)].

The speed of convergence is given by (1-8)(8+n). To get a quantitative
measure of this speed of convergence we note that the rate of population
growth in industrialized nations is between 0.01 and 0.02. The depreciation
rate 1is somewhere between 0.05 and 0.1, depending on how we treat
residential capital and other durable goods. The physical capital share in
industrialized countries lies between 0.25 and 0.30. Hence, the speed of
convergence predicted by the model is somewhere between 0.042 and 0.09. In
other words, between 4.2 and 9 percent of the gap between k(0) and k* is
closed every vyear. These numbers imply half lives of 7.7 and 16 years
respectively (that is, half of the distance between k(0) and k* disappears
in 7.7 years). Hence, the speed of convergence towards the steady state is
quite large, implying that the transition takes a short period of time.

The predicted speed of convergence would be much smaller if we took a
broad view of capital (so as to include things like human capital). For
instance, if the broad capital share was 0.75, then the predicted speed of
convergence wWould lie somewhere 0.015 and 0.03 (with implied half lives of
23 to 47 years). Barro and Sala-i-Martin (1991, 1992) and Mankiw, Romer and
Weil (1992) show that these smaller speeds of convergence accord better with
the data.

The Convergence Hypothesis.

10 To log-linearize ihe equation, we rewrite (2.1) in xergilgﬁ)log\k).
Note that Ty is the time derivative of log(k). The term Ak can be

- - *
written as e-(l-B)log(k). The steady-state value of sAe (1-B)log(k*®) is
equal to &+n. Take a first-order Taylor approximation of (2.1) around
log(k®*) to get (2.2).

11




Figure 1 suggests that the growth rate for an economy which starts
below the steady state is high and decreasing. This implies that if
economies differ ONLY in their initial capital-labor ratios, then we should
observe that poor economies grow faster than rich ones (in Figure 1,
different economies would be represented by different stocks of ko but all
of them would have the same steady state k*). Since the growth rate of
income per capita is proportional to the growth rate of caplital per person,
the model also predicts a negative relation between the initial level of
income and its growth rate. This inverse relation between the level of
income and its growth rate is known as the convergence hypothesis. This
hypothesis 1is interesting because it can be easily tested using data for a
cross—section of countries by simply plotting growth rates and levels of
income. If the correlation is negative, then the economies tend to
converge.

But note that the neoclassical model just outlined predicts a negative
relation between income and growth rates if the only difference across
countries 1is their 1initial capital stocks. However, 1if economies also
differ in the level of technology, A, the savings rate, s, the depreciation
rate, &8, or the rate of population growth, n, then the model dces not
predict that poor countries should grow faster. As an example, consider
Figure 2 where two economies (called P for poor and R for rich) have the
capital stocks kOP and kOR respectively (with kOP < kOR)' Imagine that the
saving rate in the poor economy is also lower so it converges to a smaller
steady-state capital ratio, k; < kﬁ. Note that in this particular example,
it happens that the poor economy grows less than the rich one so there is no
convergence in the absolute sense. Yet there is conditional convergence in
the sense that the growth rate of a country is inversely related to the
distance from 1its steady state. In other words, the model predicts
convergence only after controlling for the determinants of the steady state.
This can also be seen in equation (2.2), where the growth rate is negatively
related to (the log of) k relative to k*. Hence, from an empirical point of
view, we need to hold k* constant. Barro and Sala-i-Martin (1991, 1992) and
Mankiw, Romer and Weil (1991) find empirical support for the conditional

convergence hypothesis and, therefore, for the neoclassical model. The
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capital share needed by the model to fit the data is substantially larger
than 0.3 and close to 0.75.

An Extended Solow Model

The empirical evidence on the convergence hypothesis suggests that the
neoclassical model is consistent with the data if the capital share is close
to 0.75. Empirical estimates of the physical capital share in
industrialized economies suggest that it is closer to 0.3 than to 0.75.
Hence, we need to think of K in a broad sense to include other forms of
non-physical capital.

To incorporate this idea, Mankiw, Romer and Weil (1992) constructed
what they call an 'extended Solow model’. The model includes three inputs:

capital, raw labor and human capital (denoted by H) in a Cobb Douglas
technology

(2.3) y = oLl

They assume that both human and physical capital can be accumulated out of

the output stream so

Ao 1-A-a

K+H = BKHL - C - GKK - 6 H,

H

where GK and GH are the depreciation rates for physical and human capital
respectively. For simplicity, they assume 6K = GH. The marginal product of
physical and human capital in this model must be equalized at all points in
time so AY/K = a¥Y/H. This can be rewritten as H = (a/A)K so human capital
must be proportional to physical capital for all t. If we plug this
equality into the output equation we get Y = AKBLl_B, where the effective
capital share, B, 1is the sum of the physical and human capital shares,
B=A+a, and where A=B(a/k)a is a constant. Hence, the extension of the Solow
model to include human capital is just a way to argue that the relevant
capital share is larger than the physical capital share. In other words, it
is a way to argue that the relevant capital share is closer to 0.75 than to
0.3. Note that the speed of convergence derived in equation (2.2) would

depend on the ’'broad capital share’ B = A+a, rather than the physical

13




capital share A (so the speed would be equal to (1-A-a)(8+n).) If the share
of physical capital is A=0.3 and the share of human capital is «=0.4S5, then
the relevant capital share is 0.75 and the predicted speed of convergence
lies somewhere 0.015 and 0.03. This is much closer to the findings of Barro

and Sala-i-Martin (1991, 1992) and Mankiw, Romer and Weil (1992).

Open Economy Considerations

The growth models described up to this point assume that the economy is
closed, in that there 1is no trade o1 goods, assets or labor across
economies. The empirical evidence mentioned above deals with economies,
such as states within the United States, prefectures within Japan, or even
OECD economies, that are not obviously closed. Barro, Mankiw and
Sala-i~-Martin (1992) present an open-economy model where economies can
borrow in international capital markets but cannot use all their capital as
collateral. Using the production (2.3), imagine that physical capital can
freely move across borders but human capital cannot. Imagine that the world
capital market faces a constant world real interest rate r*. The assumption
of perfect physical mobility would equalize the marginal procuct of physical
capital to the world real interest rate so AY/K = r* + 3. Using this
equality, we can write K as a function of ¥ as K = AY/(r*+38). Plug this in

the production function (2.3) to get a reduced form production function

where B
B1/(1-7\)

a/(1-2) is the relevant capital share and A =
[A/(r‘+6)]l/(1_l) is a constant. Note that the reduced form
production function of this open economy model 1is 1identical to the
production function of the neoclassical model. Moreover, the relevant
capital share is numerically very close. If we continue to assume that A is
close to 0.3 and a is 0.45, then the relevant capital share is B8 = 0.45/0.7
= 0.65. The implied speed of convergence lies between 0.21 and 0.42 (recall
that the closed economy speed for similar capital shares lied between 0.15
and 0.31). Hence, allowing for capital mobility in the neoclassical model
does not change substantially the qualitative or quantitative predictions

about the speed of the transition, as long as the fraction of the capital
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stock that can be used as collateral is not very large. The implication is
that, for most practical purposes, assuming a closed economy setup may not
be a bad idea.

Endogenous Growth

Imagine now that the capital share of the previous model is equal to
one, B=1. This corresponds to the AK technology described in (1.8). The
growth rate of the economy is still given by equation (2.1). The difference
is that the sAk_(l-B) curve is now a flat line at sA, as displayed in Figure
3. If we assume that the economy is productive enough so that sA>8§+n, then
the growth rate (the difference between the two lines) is constant and
positive.

There are four important differences between this and the neoclassical
model. First, the economy has no transitional dynamics in that it grows at
a constant rate equal to sA-(8+n), independently of the capital stock.

Second, an exogenous increase in the saving rate increases both the
short-run and the steady-state growth rates. Hence, contrary to the
neoclassical predictions, policies directed to increase the saving (and
investment) rate affect the long-run growth rate of the economy. The same
thing is true for policies that affect the level of technology, A, the rate
of population growth, n, or the depreciation rate, $&.

Third, this model predicts no relation between the growth rate of an
economy and its level of income. In other words, this model does not
predict convergence (conditional or absolute). This explains why the
convergence hypothesis has received so much attention in the modern growth
literature: it is one of the features that distinguishes the new endogenous
growth models from the old neoclassical models and, as a consequence, it is
a way to test the validity of the two approaches.

Finally, the AK model predicts that a temporary recession will have
permanent effects. That s, if the capital stock temporarily falls for some
exogenous reason (an earthquake, a natural tragedy or a war that destroys
part of the capital stock), the economy will not grow temporarily faster so
as to go back to the prior path of capital accumulation. The AK model
predicts that after such a temporary reduction in the capital stock, the

growth rate will still be the same so the loss will tend to be permanent.
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For completeness, Figure 4 depicts the case where B>1 (increasing
returns to the inputs that can be accumulated).11 The curve sAk-(l—B) is
upward sloping (and if B>2 its slope is increasing!). Notice that this
implies growth rates that increase over time. The prediction of

ever-increasing growth rates does not seem empirically attractive.

The Harrod-Domar Model

Long before the neoclassical theory came to life in the mid 1950s, the
most popular model of economic growth was the Harrod-Domar model ({developed
by Harrod (1939) and Domar (1946)). We can use the graphical tool developed
in the last subsection to learn about this older growth model.

Harrod and Domar tried to combine two of the key features of Keynesian
economics -the multiplier and the accelerator- in a model that explained
long run economic growth. We have been using the multiplier assumption
(savings are a fixed proportion of income) all along so let us describe the
distinguishing feature of the Harrod-Domar model: the accelerator. The
increase in capital required to produce a given increase in output is
assumed to be a constant number. In particular, it is independent of the
caplital-labor ratio. That is

(2.4) AYt = AAKt,

where A 1is constant. Notice that one production function that satisfies
this relationship is the AK function used by the endogenous growth
literature. Thus, one could be tempted to identify the the new endogenous
growth models with the old Harrod-Domar model. Yet that would be a mistake.
The reason is that Harrod and Domar were very concerned about the effects of
growth on long-run employment and unemployment12 (their study could be

thought of as an explanation for the then-existing long-run unemployment of

n In this case the assumption of CRS, «a+8=1, must be dropped since a

negative labor share makes little economic sense. Think of thlis case as one
where a=0 (so all inputs can be accumulated)} and 8>1 (so there are both RS
and increasing returns to capital.)

12 In fact, Domar’'s paper is called "Capital Expansion, Rate of Growth,

and Employment”.
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the Great Depression). Although they never introduced a specific production
function, the fact that they worried so much about employment seems to
indicate that they were not thinking of a function such as AK, where there
i1s no role for inputs like labor.

Another production function which satisfies the accelerator principle
and which is closer to the spirit of what Harrod and Domar had in mind is
Leontief’s fixed coefficients function. Output 1is here assumed to be
produced by a fixed proportion of capital and labor. Given this proportion,
an Increase in the level of one of the inputs without a corresponding
increase in the other leaves output unchanged. Thus, we should replace the
production function (1.1) by

(2.5) Yt = min(AKt.BLt).

where A and B are exogenous production parameters. After rewriting this
function in per capita terms, y = min(Ak,B), we graph it in Figure 5. We
see that there is a capital-labor ratio k = B/A that has the following
property: for capital-labor ratios smaller than ﬁ, Ak is smaller than B so
output is determined by Ak. For capital-labor ratios larger than E, Ak 1is
larger than B so output is determined by B. In other words, this production

function can be expressed as

2
1]

Ak for all k < B/A

(2.6) y

<
1

B for all k > B/A

Note that this technology is similar to the Ak model, but only for
small capital-labor ratios. For large k, the production function is flat so
the marginal product of capital is equal to =zero. We can now apply our

basic growth equation (2.1) to this technology to get

=
]

sA - (8+n) for k < B/A

(2.7) k/k = 5
sB/k - (8+n) for k > k = B/A.
Harrod and Domar pointed out that there are three possible

configurations of parameters, each of which will vyileld different

implications for growth and employment.
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CASE 1: sA < &+n

When the savings rate and/or the marginal productivity of capital are
very small compared to the aggregate depreciation rate {(which includes
population growth), there is no possible steady state. This is pictured in
Figure 6a. Notice that the economy converges to a point where the logarithm
of the capltal-labor ratio is negative infinity (so the capital-labor ratio
converges to zero). In this case not only will there be unemployment
{(because Y=AK<BL), but also it will grow over time. Harrod and Domar
thought that this was a good description of the observed large and growing
unemployment rates of the 1930s.

CASE 2: sA = &+n

When, by chance, the exogenously-given saving rate and marginal product
of capital are such that sA = 8+n (see Figure 6b), the economy will reach a
steady state where all per capita variables are constant, ¥*=0, and K*=K.

CASE 3: sA>8+n

The third case, depicted in Figure 6c, is one where the marginal
product of capital or/and the savings rate are large relative to the
aggregate depreciation rate, d&+n. We see in Figure 6c that, fcr small
capital-labor ratios, this case looks very much like the AK model. The
growth rate is positive and constant. There is a moment, however, when the
capital stock reaches the level k=B/A. At this point the marginal product
of capital 1s zero, but because of the constant saving rate assumption,
people keep saving (and investing) a constant fraction of their income. We
can see in Figure 6c that the growth rate starts falling towards zero. The
steady-state capital stock is such that k*>k. This inequality implies that,
in the steady state, AK>BL, so that there are idle machines. Since the
stock of capital per person is constant at k* and population grows at the
rate n, there is a perpetual growth in excess capacity. Again, this is an
undesirable outcome.

Two out of the three configurations of parameters yield long-run
equilibria where there are idle resources. The only one that does not, can
only be achieved by chance because all the relevant parameters (A, s, & and
n) are given exogenously. Hence, in all probability the economy will be

stuck in one of the bad equilibria.
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In the 1950s, the neoclassical approach led by Solow and Swan was seen
as a way of solving this knife-edge property of the Harrod-Domar model
That is, the neoclassical production function achieves the equality between
sA and 8+n by allowing for the marginal product of capital to vary in k.13

Another way to avoid the knife-edge property of the Harrod-Domar model
is to endogenize the saving rate. The old Cambridge School in England, for
example, argued that the savings rate was endogenous because workers had a
different marginal propensity to save from capitalists. In the process of
economic growth, their argument went, the distribution of income would
change, and with it, so would the aggregate saving rate.14

The saving rate can also be endogenized by allowing agents to make
optimal intertemporal decisions. In fact, one could argue that the main
reason behind the instability of the Harrod-Domar model were that the
household-producers were assumed to keep saving and investing (purchasing

machines) a constant fraction of their income, even if there was a large and

growing number of idle machines! Optimizing agents would never choose to

behave in this manner.15

‘Sobelow’ and CES Production Functions
With this graphical approach we can visualize the behavior of the

economy for more complicated production functions. Consider Figure 7 for

13 We know that there will be a level of capital k such that the marginal

product of capital is equal to (8+n)/s since the marginal product is assumed

to range from zero (f’ (w)=0) to infinity (f’'(0)=w) in a continuous fashion.

14 This was one of the main differences between the Cambridge (U.S.) and

the Cambridge (U.K.) schools of thought. The other main difference was that
the British rejected the neoclassical production function and, 1in
particular, they rejected the notion of an aggregate capital stock. They
thought of capital as a number of different machines which, combined with
different types of workers, yielded different types of output. Such a
heterogeneous set of objects, they argued, is impossible to aggregate into a
single variable called aggregate capital stock. See Robinson (1954).

15 This 1s another reason against those who argue that the endogenous

growth literature is just a new version of the Harrod-Domar model: the
endogenous growth literature always uses optimizing models, whereas all the
results derived by Harrod and Domar disappear as soon as agents are allowed
to choose saving and investment in an optimal manner.
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example. The steady state is similar to the one described by the AK model
but the transitional dynamics are different.-- One production function that

exhibits such dynamics is the following:
(2.8) y = Ak +BkPL!F

This production function was first proposed by Kurz (1968) later
reintroduced in the endogenous growth literature by Jones and Manuelli
(1990). Notice that this function is half way between Solow (BKBLI_B) and
Rebelo (AK).16 It has all the nice concavity properties required by the
usual optimization theorems so we can apply straightforward optimization
techniques to find solutions.

In per capita terms, the Solow production function is concave, and as k
tends to infinity, the marginal product of capital approaches =zero. The
Rebelo production function in per capita terms is linear with slope equal to
A for all values of k. The Sobelow production function is also concave for
all capital-labor ratios. As k goes to infinity, however, the slope «f the
production function does not go to zero but rather to A. Hence, the only
difference between the Solow and the Sobelow functions is that the latter
does not satisfy the Inada condition.

We observe in Figure 7 that sf(k)/k now does not approach zero
asymptotically; instead, it approaches A>0. If A is sufficiently large (in
this case if sA>8+n), then the steady state growth rate is positive, even
though there is a transition period where growth rates are decreasing
monotonically.

It is worth noticing that if the economy has been going on for a while,
the decreasing returns part of the production function will be almost
irrelevant. Hence, in the long run, this model is essentially AK.

A production function that exhibits similar behavior is the Constant

Elasticity of Substitution (CES) production function given by:

(2.9) Y = A [B(bx)“’ . (1—3)[(1-b)u"‘]““’,

where A, B8, b, ¥ are constant parameters with 0<g<1, 0<b<1l, and -w<y<1l. The

16 Hence, the label "Sobelow".

20




(constant) elasticity of substitution between capital and labor is given by
€e=1/(1-y). As ¢y tends to -w, the production function approaches Leontief’'s
fixed proportions function Y=min{bK, (1-b)L] with a zero elasticity, e€=0. As
¥ approaches 0, (2.9) becomes Cobb Douglas with a capital share equal to B
with a unit elasticity, e€=1. Finally, for y=1, the production function is
linear Y = A {B(bK) + (1—8)[(1—b)L]]. with an infinite elasticity, e=+w.

The average product of capital in per capita terms, f(k)/k, is given by

(2.10) £(k)/k = A [Bbw . (1—B)(1-b)wk—w]1/w.

The reader can check that when 0<y<1 (that is, when the elasticity between
capital and labor 1is relatively large) this average product approaches
AbBl/w>O as k goes to infinity. Hence, the function sf(k)/k in the growth
equation remains bounded above zero, just as in the Sobelow model. The
dynamics of the model closely resemble those depicted in Figure 7. The main
point is that conventional CES production functions can generate perpetually
positive growth rates if the elasticity of substitution is sufficiently

large.17

Poverty Traps
Another possibility is depicted in Figure 8. Here we see the function
sf(k)/k crossing the horizontal line (8+n) twice so there are two steady
states. The lower crossing represents a stable poverty trap. That is,

countries whose initial capital is very low will tend to this zero-growth,

low-income trap. In fact, all countries whose initial capital lies to the
left of kE will fall into this trap. Countries that start to the right of
kE will enjoy positive growth rates forever.

Consider a country stuck at k;. Imagine that the government manages to

generate a small increase in the saving rate so that the sf(k)/k curve

17 Again, the only difference between the CES and the ’'normal’

neoclassical production function 1is that when O0<y<1, the CES does not

satisfy the Inada condition lim f’(k)=0. Instead, the marginal product of
1y Koo

capital approaches ADbB W' which is a positive constant. In words, the

marginal product of capital does fall as k Jincreases, but it does not

converge towards zero.
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shifts up slightly. Imagine that, after the shift, the sf(k)/k line still
crosses the (8+n) line. The country will experience a period of positive
growth rates but it will quickly converge to another zero-growth steady
state. However, if the increase in s was so large that the sf(k)/k curve no
longer crossed the (8+n) line the country would escape the poverty trap
forever as the growth rate would become permanently positive. Similar
predictions would arise with reductions in fertility rates, n, or
improvements in A (which, as argued before, include measures of aggregate
distortions and government inefficiencies): small changes in policy would
have no effect on the long-run growth rate.

For modern versions of models with poverty traps, see Murphy, Shleifer
and Vishny (1989), and Azariadis and Drazen (1990). Durlauf and Johnson
(1992) propose and use econometric techniques to look for evidence of

poverty traps using large cross-sections of countries.

(3) NEOCLASSICAL GROWTH: THE RAMSEY MODEL
The Model of Household-Production

Up to now we have assumed that household-producers save a ccnstant
fraction of their income, without worrying about whether this behavior 1is
rational or not. In this section we describe the behavior of the same
household—producerslg, when they are allowed to choose their consumption path
in an optimal manner. The original model is due to Ramsey (1928) and it was
later refined by Cass (1965) and Koopmans (1965).

In this setup, agents are assumed to maximize a utility function of the

form
[+ ¢ [+ ¢
(3.1) u) = [ ePtu(e )L at = [ e Pt 7-1]L at,
t' Tt _t t
o (4} 1-o

where p is the discount rate, ¢

is population. Equation (3.1) says that utility is the sum (or integral) of

is consumption per capita at time t, and Lt

instantaneous wutility functions, u(ct), between times O and infinity.

18 In the next section we show that the results are identical to those

found in a competitive model with separate firms and households.
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Instantaneous utility functions are sometimes called felicity functions.
Each felicity function is discounted at rate p. Note that the planning
horizon is infinite. This may seem to be an unreasonable assumption given
that lifetimes are obviously finite. Following Barro (1974), however, we
may think that individuals care about their utility and about their
children’s utility. In this sense, we must think of agents as dynasties or
families where the number of individuals belonging to each dynasty is Lt'
Under this interpretation, the discount rate (which was described by Ramsey
(1928) as "ethically indefensible and arises only from the weakness of the
imagination“lg, (p. 543) at the individual level) represents the fact that
individuals care more for their own utility than for that of their children
so they discount the future. Since Cy is consumption per capita, U(Ct) is
the instantaneous per capita felicity. Hence, the instantaneous fellicity
for the whole dynasty or family is equal to the individual times the number
of people in the family (this explains the term Lt in (3.1)). o

The felicity function, u(c), is assumed to take the form ul(c)= S —1.

1-o
The parameter o measures how concave this utility function is. We assume

that people’'s preferences are concave, so ¢>0, which reflects their desire
to enjJoy smooth consumption paths over time (that 1is, people prefer to
consume a little bit every day rather than starve to death throughout the
month and have a big party at the end of the month). The larger the
parameter o, the larger the desire to smooth consumption. If =0, utility
is linear so individuals do not particularly like to smooth consumption. As

o approaches 1, the utility function becomes logarithmic.20

19 Ramsey was considering the optimal choice from a government's point of

view. He thought that introducing a discount rate was ethically
indefensible because that meant the government was giving a larger weight to
current as opposed to future generations.
20 . et o
This can be seen by taking the limit 1lim = , which is an
R o1 1-o 0
indeterminate number. We can apply 1'Hopital’s rule and take derivatives of

numerator and denominator with respect to ¢ to get that the limit is equal

to log(c) (recall that the derivative of ¢ 7 with respect to o is

cl_qlog(c)). The reason for the term -1’ in the felicity function is that,
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We still consider a one-good closed economy, where total output must be
either consumed or invested. Capital depreciates at the constant rate 8 and
population grows at rate n. The budget constraint faced by this
household-producer is similar to (1.2). 1If we write total savings as total

output per capita, F(K,L), minus total consumption, C, the budget constraint

can be written as

(3.2) K = F(K,L) - C -6K

We assume now that the production function is neoclassical in the sense

that it satisfies the following three properties:

(1) The production function exhibits constant returns to scale [so F()

is homogeneous of degree one: F(AK,AL)=AF(K,L}].
(11) The marginal products of all inputs are positive and diminishing

[that is 8F/8K>0, &8F/3L>0, 62F/6K2<0 and 82F/8L2<O]

(1i1) F() satisfies the Inada conditions. The Inada conditions
require that the marginal product of capital go to zero as capital tends to

infinity and go to infinity as capital tends to zero; a similar condition

applies for labor.
Note that the utility function depends on consumption per capita (lower
case c¢) while the budget constraint depends on aggregate consumption. We

can divide both sides of (3.2) and use the assumption of CRS to write

(3.3) K/L = £f(k) - ¢ - 8k

The right-hand-side of (3.3) is in per capita terms but the left-hand-side

is not. We can write K/L as a function of k as follows
(3.4) k = = K/L - nk.

Plug (3.4) in (3.3) and rearrange to get

in its absence, the limit as o tends to 1 would be infinity rather than an

indeterminate number so 1’Hopital’s rule could have not been applied.
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(3.5) k = f(k) - ¢ - (n+s)k.

Assumption (ii) implies f’'(k)>0 and f"(k)<0 while assumption (iii)

requires 1lim f' (k) = « and 1»m f’ (k) = 0. As mentioned in Sections 1 and 2,
k-0 k-o

a simple production function that satisfies the neoclassical properties is

the Cobb Douglas function F = AKBLI-B with 0<g«<i1. This function can be

expressed in per-capita terms as f(k)=AkB.

Agents maximize (3.1) subject to (3.5), given the initial stock of

capital k0>0. In other words, the neoclassical growth problem can be

written as

I
max u(o) = J e (ponit ci—o—l dt,
o —1~o
(3.6) subject to k = f(k)} - ¢ -(8+n)k,
where k, >0 is given

0

In order to have a bounded or finite utility (so as to have a
meaningful economic problem), we must require that the term inside the
integral to go to zero as t goes to infinity. This requires

(3.7) lim e PTMIY 170 4| = 1jp e (P7RIE

t 200 - t-ow
1-0

Ol - lim e’(p'“)t(l/(l-o)] = 0.

- Lo

As we will see later, the steady-state level of consumption 1is
constant. It follows that, if the 1limit in (3.7) has to be zero, it must be
the case that

(3.8) p > n.

To solve the model, we set up the Hamiltonian:21

21 See Barro and Sala-i-Martin (1994, mathematical appendix) for a
detailed discussion of the mathematical techniques used to solve this type
of dynamic problems.
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- e-(p—n)t REL

(3.9) H() -1} + v|f(k) - ¢ - nk- &k,

T1-¢
where v is the dynamic Lagrange multiplier (or shadow price of investment).
The first order conditions are:

e—(p—n)tc-v _

(3.10) H =0 e =0
c
(3.11) Hk = -p - - v = v(f’ (k)-n-8)
(3.12) lim (ktvt) = 0.
t o

Equation (3.10) says that the marginal value of consumption must equal
the marginal value of investment. Take logarithms of (3.10) to get

-(p—n)t—vlog(ct) = log(v). Now take the derivative with respect to time to

get -(p-n)-o(c/c) = v/v. We can now plug this in (3.11) to get the

traditional condition for consumption growth:

cre = o Yf (k)-p-5].

(3.13) .

Equation (3.13) is often called the Euler Equation. To interpret this Euler

equation, it will be convenient to rewrite it as

p o+ G(é/c) = f'(k) - &.

The left-hand-side 1is the return to consumption. The discount rate
represents the gain in utility from consuming today since we prefer

consumption for ourselves rather than for our children. The return to

consumption also includes the term o¢(c/c). If we like a smooth consumption

path over time (that is if ¢>0), then whenever we expect consumption to be

higher in the future (ie, when c/c>0),we will want to increase consumption
today. In other words, positive consumption growth rates imply non-smooth
consumption paths. Hence, we will want to shift part of the future

consumption to today and that is we put a premium on p to compensate for
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'early consumption’.22 The right-hand-side is the return to saving (and
investment]}, which 1is equal to the marginal -product of capital minus the
depreciation rate, 3é. Optimizing individuals should, at the margin, be
indifferent between consuming and investing. This indifference is the one
represented by equality (3.13). Using the Cobb-Douglas technology, y=AkB,

equation (3.13) can be written as

(3.14) ce = o tigak  (TRIL 5 C )

Equation (3.12) is the transversality condition. One interpretation of
this condition is the following: agents who are optimizing do not want to
leave anything of value after they die. If there were something valuable
left at the end of their planning horizons, then they could have consumed it
earller thereby increasing their utility. It follows that in this case they
would not be optimizing in the first place. Since the agent in this economy
is assumed to 'die' at infinity, equation (3.12) says that the value of the
capital stock in the last moment of the planning horizon (that 1is, at
infinity) must be zero. The value of the capital stock, in turn, is equal

to the stock of capital, k times its shadow price v

t’ t-
Equations (3.13) (or (3.14) in the case of Cobb Douglas production) and
(3.5) along with the initial condition ko, and the transversality condition

(3.12) fully determine the dynamics of the economy. Before studying such

22 The opposite 1s also true: if 7o is negative, then we know that we

will have less consumption tomorrow than today. Since we want to have a
smooth consumption path, we will want to shift some of today’'s consumption

to the future. Hence, the term o(c/c)<0 would in this case represent a
negative return to consumption today.

23 We will discuss in a later sub-section that, in a finite horizon

problem, the transversality condition would state KTVT=0, where T 1s the

last moment of the planner horizon. The interpretation here would be that
if the agents are optimizing, then they would not want to leave any capltal
when they died, unless 1its price was =zero. Strictly speaking, this
intuition does not carry over to the infinite horizon case because there are
counter examples where optimal behavior of infinite horizon economic agents
violates the transversality conditions. See the mathematical appendix in
Barro and Sala-i-Martin (1994) for further details on the validity of the
transversality condition in infinite horizon problems.
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dynamics, we want to show that these dynamic equations also apply to two
different setups: a competitive market economy and a planner economy. The
planner economy is immediate because a planner would choose to maximize
utility subject to the economy-wide budget constraint. Since (3.5)
represents the economy-wide constraint, the planner would use the same
utility function and the same constraint as our household-producer. The

dynamic equations describing the solution would be the same.

Competitive Market Solution
Consider a setup where households own assets, B, and labor. The two
sources of income are labor and asset income. The competitive wage rate is
denoted by w so total wage income is wL. The rate of return to assets is
the rate of interest, r, so total asset income is rB. Total income is spent
on consumption and in the accumulation of assets. Hence, the budget

constraint (in per capita terms) is

(3.15) b=w=+rb-c - nb,

where b are assets per person. Agents are assumed to maximize (3.1) subject
to (3.15), given the initial stock of assets, bO' Following the same
procedure as before, we find that the first order conditions yield a rate of

growth for consumption equal to

(3.16) c/c = (1/¢)[r - pl,
and a transversality condition lim vtbt=0. Firms hire labor and capital at
1o
competitive rates and sell output. We assume that caplital depreciates at

rate 8. If R is the rental rate of capital, the net rate of return is given
by R-8. Since there is no risk or uncertainty, the rate of return to assets
and capital must be the same so r=R-§. Firms maximize profits which are

given by
(3.17) n = F(K,L) - (r+3)X - wL.

The first order conditions require the equalization of rental rates to
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marginal products:

(3.18) Fe 8= £ (k)
(3.19) W= f(k) - k £ (x).%4

Since this is a closed economy with no government, the only asset in

non-zero net supply is capital so b=k. Plug (3.18) into (3.16) to get

(3.13). Plug (3.18), (3.19), and b = k into (3.15) to get (3.5). Plug the
equality b=k in the transversality condition to get (3.12). Hence, we find
that the dynamic equations and terminal conditions describing the behavior
of the competitive market economy over time coincide with those derived for
the household-producer and planner economy. It follows that the three

setups are equivalent.

Steady-State Analysis
In the steady-state, the growth rates of all per-capita variables are
zero.25 By setting (3.13) to zero we get that the steady capital stock is
given by f’ (k*)=p+8. In the case of Cobb Douglas output, ABk‘—(l_B)2p+6, we

see

(3.20) K* = [BA/(5+p))1/(1—B)'

Plug this into (3.5) to get the steady-state value of consumption:

24 Write Y=Lf(k). Differentiate Y with respect to K, holding constant L,

to get (3.18). Differentiate Y with respect to L, holding constant K, to
get (3.19).

25 We can show that the only sustainable growth rate is zero: take the
constraint k=kB-c—nk-6k and divide it by k. Define k/k=7,, which in steady

state will, by definition, be a constant. Noticing that k B_l)=(7;¢+p+8)/ﬁ,

rearrange to get c/k=(7;¢+p+6)/6—7;—n—6, which is a constant. Take logs and

time derivatives to conclude that c/c=k/k=7;=7‘. Now consider again the

equality, k(B-1)=(7‘¢+p+6)/8. The right-hand-side of this expression is a
constant. Take logs and time derivatives of both sides to conclude that
(B-1)7;=0. Since B<1, it follows that 7;=7‘=0.




(3.21) c* = Ak'B - (8+n)k*,

where k* is given by (3.20).

Transitional Dynamics and the Shape of the Stable Arm
The neoclassical model just outlined is NOT a very interesting model of
steady-state growth (because steady state growth is zero). It is, however,

an interesting model of the transition towards the steady state. This

transition is shown in Figure 9. The vertical line is the ¢=0 locus. This

locus determines the steady-state value of k*. The inverse-u-shaped curve

is the k=0 locus. The intersection of the two loci is the steady state.
These two loci divide the space into four regions. In the region
closest to the origin, the dynamics of the system are such that the economy
moves in the northeastern direction (as depicted by the arrows in Figure 9).
Moving across regions in a counter clock manner, the arrows point south
east, south west and north west, respectively (as shown in Figure 9). Since
we can get to the steady state from only two of the four regions, the system
exhibits saddle-path stability. We will argue later that, in this infinite

horizon setup, the economy will always find itself on this unique stable

path. The exact functional form for this stable arm cannot be found in
general. Its shape, however, depends on the different parameters in
interesting and intuitive ways. For example, if the parameter o is large

(that is, if agents really want to smooth consumption), then the stable arm

for k<k* will be very close to the k=0 locus. Agents will try to consume as
much as possible early on in order to have a relatively smooth consumption

path (note that consuming as much as possible means investing as little as

possible; this is why the stable arm is close to the no investment, k=0,
locus). Similarly, when ¢ is very low agents do not mind non-smooth
consumption paths. The stable arm in this case will be close to the

horizontal axis for k<k. Close to the steady state, the stable arm will be
very vertical. Hence, agents will choose low consumption and rapid
accumulation of capital early on. As the economy reaches the steady state,

consumption rises rapidly. Hence, this consumption path is very uneven, but
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this does not make household unhappy because ¢ is close to zero.
Notice that the economy can converge to-the steady state from below or

from above depending on k. being larger or smaller than k*®*. The interesting

case is the one where we(ionverge from below so the economy actually grows.
Along this path, per capita capital grows, but it does so at a decreasing
rate (which ends up being zero in steady state). As capital increases, the
marginal product of capital falls, and therefore, so do the interest and
growth rates. Since output is proportional to capital, the qualitative
behavior of output mimics the behavior of capital. The initial level of
consumption is below the steady-state level, c*, and it grows at positive
rates until it converges to c*. Hence, along the transition, the growth

rate of consumption, capital, and output per capita are positive.

Golden Rule, and Dynamic Efficiency
It is worth noticing that, in Figure 9, there is a stock of capital

called kgold (for Golden Rule). This is the capital stock that maximizes

steady-state consumption. From the budget constraint we see that when k=0,
steady state consumption is equal to c*=f(k)-(8+n)k. The capital stock that
maximizes c* is the one that satisfies f‘(kgold)=(n+6). This level of
capital divides the set of capital labor ratios in two. Caplital stocks
above the kgold have the property that in order to achieve higher
steady-state consumption, the economy needs to get rid of some capital. In
other words, in order to achieve higher consumption in the future, the
economy would need to dissave (which of course means higher consumption
today). Therefore, if the economy were to find itself with such excess
capital, everybody could increase consumption at all points in time. The
points above kgold are called the dynamically inefficient region because
some generations could be made better off without making any generation
worse off. Notice that for stocks of capital below the Golden Rule, if the
economy wants to increase the steady state consumption, it needs to save:
higher consumption tomorrow would have to be traded for lower consumption
today. This may be good or bad depending on exact preferences and discount

rates. This region is called dynamically efficient region.

We can ask whether our economy will ever be in the dynamic inefficient




region. To answer this question, we can integrate (3.11) forward between O

and t and get

t
—I (f" (k_)-8-n)ds
(3.22) vt = vo e 0 ,

which, after substituting in (3.12) yields

t
-J (£* (k_)-8-n)ds
Q

(3.23) lim vye kt = 0.
to
Since Yo is positive (and equal to cav), it must be the case that the
second term in (3.23) is equal to zero. This implies that in the steady
state, the marginal product of capital must be larger than d&+n. This

condition is always satisfied in steady state since we assumed p>n (recall
that we assumed this inequality in order to get a bounded utility function).
To see this, recall that in the steady state, the marginal product of
capital is equal to p+3d so that f’'(k®™) > n+d applies. Since k satisfies

gold
f'(kgold) and since f"(k)<0, it follows that k*<k Hence. our eccnomy

gold’
will never be in the dynamically inefficient region.

Ruling out explosive paths

We now want to show that, if the transversality condition (3.12) is to
be satisfied, then the economy will find itself on the unique stable arm.
To show this we must rule out all other possible paths. Suppose that we
start with the capital stock ko in Figure 9. Let € be the consumption
level that corresponds to that on the saddle path. Let us imagine first
that the initial consumption level is c6>c0. If this is the case, the
economy will follow the path depicted in Figure 9: at first both ¢ and k
will be growing. At some finite time, the economy will hit the k=0
schedule, and after that, consumption will keep growing while the stock of
capital is falling. The economy will hit the zero capital axis in finite
time. At this point, there will be a jump in ¢ (because with zero capital

there is zero output, and therefore, zero consumption) which will violate

the first order condition (3.14) (see Barro and Sala-i-Martin {1994, chapter
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2) for a detailled analysis of why the economy hits the vertical axis in

finite time.) If the initial level of c were-below S (as ca in Figure 9),

then the economy would display increasing ¢ and k for a while. After

crossing the c¢=0 line, the economy would converge to k**. Since k“>kgold.

this path would not be optimal (as shown in the previous sub-section, points

above the golden rule are not optimal). Hence, the only c, that satisfies

0
the optimality conditions is the c. on the stable arm.

0
The Importance of the Transversality Condition: A Finite Horizon Example
To emphasize the importance of the transversality condition in choosing
the initial level of q it is useful to compare the previous example with a
finite horizon case. That is, let us consider the problem (3.6) with one

change: the terminal date is not infinity but rather T<ew:

T
max u(o) = I e—(p'n)t[c:_o-l]dt.
0 —1:;~—
(3.24) sub ject to k = f(k) - ¢ -(8+n)k,
where k. >0 is given

6]

Note that the only difference between (3.6) and (3.24) is that the little
number on top of the integral is not infinity but T. The first order
conditions (3.10) and (3.11) still apply. Therefore, the dynamic equations
characterizing the solution (3.5) and (3.14) also apply. The transversality
condition, on the other hand, is no longer given by (3.12) but, rather by

(3.25) kaT = 0.

In words, (3.25) says that the capital stock the agents choose to leave at

the moment of ’'death’, must have no value. Equation (3.10) says that
vT=e_(p_n)Tc;¢. which 1is a positive number for all finite values of
consumption. Hence, the transversality condition (3.25) implies that the

stock of capital left at the moment of death must be zero:

(3.26) kT = 0.




We can analyze the transitional dynamics implied by this new terminal
condition. Note that, because (3.14) and (3.5) still hold, the phase
diagram which applies to this case is the same as in Figure 9. The question

is, given the initial value of k what is the optimal choice of consumption

at time zero? 1Is it still the oge on the stable arm?

The transversality condition says that at time T, it is optimal for the
agent to have zero caplital stock. Hence, the optimal strategy will involve
choosing a consumption path such that, at T, the system sits exactly on the
vertical axis, where k=0 applies. Note that this immediately rules out the
stable arm: if we follow the dynamics implied by the stable arm, it will be
impossible for the economy to be on the vertical axis at time T. The same
is true for any initial c below the stable arm. It follows that the initial
choice of consumption must be above the stable arm.

In fact, there is a unique value of ¢, with the property that, if we

0
follow the dynamics implied by (3.5) and (3.14), the system lies on the
vertical axis at exactly time T. In Figure 10, this point is denoted by -

If we follow the dynamics after c then consumption and capital increase

ol
over time as the economy gets closer to the steady state. Since we are

riding along a path above the stable arm, however, we must eventually hit

the k=0 locus. At that time, capital starts falling while consumption keeps
rising. Hence, along this path we have a rising consumption profile and an
inverse u-shaped capital profile. Note the similarity between the
predictions of this model and the life-cycle model. Here, we get the
inverse u-shape for k, however, without assuming that people retire during
the last period of their lives.

If the agent had chosen an initial level of consumption which was ’too
low’ (like point Ao in Figure 10), then the qualitative path for consumption

and capital would be very similar. A key difference would be that the new

path is closer to the steady state so c and k are closer to zero. This

means that the economy would spend longer time in that position because when

c and k are close to zero, c and k do not move much. Eventually, however,
the capital stock would start falling. But, because we spent so much time

around the steady state, time T would arrive and the capital stock would not
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be zero (in Figure 10, at time T the economy finds itself at A.r with a
positive capital stock). This, of course, would violate the transversality
condition.

Similarly, if the initial choice of consumption were too high (like
point BO in Figure 10), then the economy would reach the vertical axis
before time T. As it was the case in the infinite horizon problem, when the
system crashes into the vertical axis it must jump to the origin (there is

no capital left so there must be no consumption). Such a jump violates the

Euler equation (3.14).

Hence, there is a unique optimal choice of consumption, - The main
lesson is that this initial o is different from the one choose in the case
of infinite horizon. In other words, by changing the transversality

condition we arrive at a different choice of -
The Turnpike Theorem
We can use the analysis of the finite horizon case to describe the so
called ’turnpike theorem’ of Dorfman, Samuelson and Solow (1958). The
turnpike theorem says that if the horizon T is large, then the optimal way

to go from the initial stock of capital k. to the final kT=0 is to get very

0
close to the steady-state for a long period of time, and then diverge
towards zero (as seen in Figure 10). We can see that this is true by

looking at the optimal path c. in Figure 10 and asking ourselves: what if

0

the horizon was a little bit larger? In this case, we would choose a o
closer to the stable arm. The dynamics of the system would move closer to

the steady state. But note that being closer to the steady state means
being closer to the ¢=0 and k=0 loci. In this region, the economy does not

move very fast (that is why these are the é=0 and k=0 schedules!) so it
remains close to the steady state for a long time before eventually
departing towards the kT=0 point. Hence, if T is sufficiently large, the
optimal path will involve being around the steady state for a long period of

time. An example of such a path for capital is given in Figure 11.

Can a Constant Saving Rate be Optimal?

In Sections 1 and 2 we used a constant saving rate rule without
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worrying about whether this rule was optimal. We can show that there is a
set of parameters for which a constant saving-rate is optimal. To do so, we

construct a phase diagram in c/y and k (the previous phase diagram in
Figures 9 and 10 were in c and k). Note that y/y = Bk/k and (c/y)/(c/y) =

c/c - y/y = é/c - Bk/k. We can use (3.5) and (3.14) to get
(3.27) [e/yl/leryl = (1/0) [BAk'“'B)—p—a) -B (Ak'“'B)(l-c/y) - é—n).

The c/y=0 schedule is given by

(3.28) c/y = -(1-0)/c + (1/AB)k1—B[(p+6)/¢ - B(n+6)].

Note that the c)y=0 schedule is upward sloping if (p+8)/c > B(n+8), it 1is
downward sloping if (p+8)/¢ < B(n+s8), and it is horizontal if (p+d)/¢ =
B(n+s8). The three cases are depicted in Figures 12a, b, and c,
respectively. The k=0 schedule requires c/y = 1—(n+6)k1-B/A, which is an
unambiguously downward sloping curve. The dynamics depicted in Figure 12
suggest that the system is saddle-path stable in all three
parameterizations. The key difference among the three cases is in the slope
of the stable arm. Note that it is upward-sloping when (p+d8)/¢ > B(n+d), it
is downward-sloping when (p+8)/¢ < B(n+8), and it is horizontal when (p+8)/c
= B(n+3). In this last case, the ratio c/y is constant at the level (o-1)/¢
along the transition. Since the saving rate is equal to s=1-c/y, it follows
that the saving rate is constant at the value s*=1/¢. In other words, the
saving rate is optimally chosen to be constant when the parameters are such
that (p+8)/c = B(n+d).

When (p+3)/¢ > B(n+d), then c/y monotonically rises along a transition
from low capital stocks, and as a result, the saving rate unambiguously
falls. The opposite is true when (p+8)/c < B(n+3).

Even though the optimizing Ramsey model is consistent with a constant
saving rate, there is an important difference between this case and the
exogenously-given saving rate of the Solow-Swan model. The level of the

saving rate in the Ramsey model is dictated by the parameters of the model

and cannot be chosen arbitrarily. In particular, it cannot be chosen to be
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in the dynamically inefficlient region. The same 1is not true 1in the
Solow-Swan model where saving rates can be chosen to be arbitrarily large so

that they can generate steady-state capital stocks above the golden rule.

Convergence and Convergence Regressions

Like the constant saving-rate neoclassical model described in Sections
1 and 2, the Ramsey model with optimal consumption predicts that, if all
countries share the same production and utility parameters, then poor
countries tend to grow at a faster rate than rich ones. In other words,
income or output levels will converge over time. Following Sala-i-Martin
(1990), we can show this important implication by log-linearizing the two
key differential equations (3.14) and (3.5) around the steady state. In the
appendix we show that, by doing so, we can express the growth rate of output

per capita as a negative function of the initial level of output per capita:

(3.29) [in(y,)-In(y )]/t = [(1-e MY /1) [In(y*)-1n(yy))linly,).

(1/2)
] , and u=(1-8)(p+3)/e¢>0.

where -A1=(1/2) p—n—{(p—n)2+4u(p+6(1~B)-Bn)/B
Equation (3.29) says that if a set of economies have the same deep
parameters (discount rate, coefficient of intertemporal elasticity of
substitution, capital share, depreciation and population growth rates, etc)
so that they converge to the same steady state, then the cross section
regression of growth on the log of initial income should display a negative
coefficlent. In other words, poor countries should tend to grow faster.
The reason for this is that countries with low initial capital stocks would
have high initial marginal product of capital. That would lead them to
save, Invest, and therefore, grow fast.

If countries converge to different steady states, however, there should
be no relation between growth and initial income, unless we hold constant
the determinants of the steady state. Sala-i-Martin (1990) and Barro and
Sala-i-Martin (1992) use a slightly more complicated26 version of (3.29) to
show that the states of the U.S. (which we may think of as described by

26 It is a slightly more complicated version because they include

exogenous productivity growth.
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similar production and utility parameters) converge to each other exactly
the way equation (3.29) predicts. They also show that, once they hold
constant the determinants of the steady state, a large sample of countries

also converges to each other the way equation (3.29) predicts.

(4) EXOGENOUS PRODUCTIVITY GROWTH
Classification of Technological Innovations

We just mentioned that the simple neoclassical model predicts that the
long-run rate of growth is =zero. In order to explain observed long-run
growth neoclassical economists amended the model and incorporated exogenous
productivity growth. In Section 1 we saw that, in the context of a fixed
saving rate, the introduction of productivity growth led to long-run
economic growth. The question is what kind of technological progress should
we introduce in our models. Some inventions save capital relative to labor
(capltal saving technological progress), some save labor relative to capital
(labor saving technological progress), and some do not save either input
relative to the other (neutral or unbiased technological progress).

Notice that the definition of neutral innovations depends on what we
mean by "saving”. The two most popular definitions of unbiased or neutral
technological progress are due to Hicks and Harrod respectively.

Hicks argues that a technological innovation is neutral (Hicks-neutral)
with respect to capital and labor if and only if the ratio of marginal
products remains unchanged for a given capital-labor ratio. Consequently, a
technological innovation is labor (capital) saving if the marginal product
of capital (labor) increases by more than the marginal product of labor
{capital) at a given capital-labor ratio. Notice that Hicks neutrality
amounts to renumbering the isoquants. Production functions with
Hicks-neutral technological progress can be written as:

(4.1) Yt = A(t)F(Kt'Lt)'

where A(t) is an index of the state of technology at moment t, evolving

according to At= Aoegt (that is A/A=g), and where F() is still homogeneous
of degree one.

The second definition of technological unbiasedness is due to Harrod.
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He says that a technical innovation is neutral (Harrod-neutral) if the
relative shares (KFk/LFL) remain unchanged for *a given capital-output ratio.
Robinson (1938) and Uzawa (1961) showed that this implies a production
function of the form
(4.2) Yt = F(Kt’ A(t)Lt).

where, again, A(t) is an index of technology at time t, A/A=g and F() 1is
homogeneous of degree one. Notice that this production function says that,
with the same amount of capital, we need less and less labor to produce the
same amount of output. Therefore, this function 1is also known as
labor-augmenting technological progress. By symmetry we could have thought
of technological change as being "“"capital augmenting", ie Y=F(Bth.Lt). This
would mean that, for a given number of hours of work (Lt). we need
decreasing amounts of capital to achieve the same isoquant.

The reason why we care about what kind of technological progress we
should postulate is that, as Phelps (1962, 1966) showed, a necessary and
sufficient condition for the existence of a steady state in an economy with
exogenous technological progress 1is for this technological progress to be
Harrod-neutral or labor-augmenting (see Barro and Sala-i-Martin (1994,
Chapter 2) for a detaliled and easy derivation of this result).

Note, however, that when we work with Cobb Douglas utility functions

the two types of technological progress are identical since
Y(K,AL) = KB(aL) 1B = kB 8(1-RIt 1B _ eg“'B)t(xBLl'B] = BY(K,L)

The Irrelevance of Embodiment

All types of technological change we have discussed up to now are
disembodied in the sense that, when a technological innovation occurs, all
existing machines become more productive. An example of this would be
improvements in computer software: it makes all existing computers better.
There are many inventions, however, that are not of this type. When one
invention occurs, only the NEW machines are more productive (as is the case
with computer hardware). Economists call this embodied technological

progress.
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In the 1960s, when the neoclassical model of exogenous productivity
growth was being developed, there was a debate on the importance of
embodiment in economic growth. Proponents of what at the time was called
“New Investment Theory" (embodied technological progress) said that
investment in new machines had the usual effect of increasing the capital
stock and the additional effect of modernizing the average capital stock.
Proponents of the "unimportance of the embodiment question" argued that this
new effect was a level effect but that it did not affect the steady state
rate of growth. In a couple of important papers Solow (1969) and Phelps
(1962) showed the following:

(1) The neoclassical model with embodied technological progress and
perfect competition (so the marginal product of labor is equal for all
workers no matter what the vintage of the machine they are using is) can be
rewritten in a way that is equivalent to the neoclassical model with
disembodied progress (Solow [1969]).

(11) The steady-state rate of growth is independent of the fraction of
progress that is embodied although it is dependent on the total rate of
technical progress (Phelps (1962]).

(111) The speed of convergence is larger the larger is the fraction of
embodied progress, (Phelps [1962]).

Thus, the distinction between embodied and disembodied progress seems
unimportant when studying long-run issues but might be crucial when studying
short-run dynamlcs.27 The modeling of embodied technological progress 1is
quite complicated because one has to keep track of all old vintages of
capital and associated labor. Yet a simple way to think about it is to

postulate a technology-free production function Y=F(K,L), and an

accumulation function of the form K=A(t)(Yt—Ct), where A(t)/A(t)=g and K(t)
is a measure of aggregate capital. This function reflects the fact that a

unit of saving (Y-C) in a later period generates a larger increase in

27 The importance of embodiment in modeling business cycles can be seen

from the fact that an embodied shock affects the marginal product of capital
but does NOT affect the marginal product of labor or current output supply.
This is a key difference with respect to a disembodied shock, especially in
as far as the implications for the procyclicality of real wages and real
interest rates is concerned.
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capital than a unit of saving in an earlier period. This is like saying

that later vintages of capital are more productive.

The Neoclassical Model with Technological Progress

Let us go back to the labor augmenting form  as depicted in equation
{(4.2). Note that output depends on K and on the factor A(t)L. This factor
Is sometimes called the effective labor input. Agents maximize utility
(3.1) subject to a constraint like (3.5), except that output is now given by
(4.2). In order to solve the model, we will express it in units of
effective labor, much in the same way we solved the Ramsey model in Section
3 by expressing all equations in per capita terms. Let variables with
"hats’ be in effective units (so ;=c/(LA), §=K/(LA), and ;=Y/(LA)). We can
write the utility function as

«
(4.3) u(o) = J e P (e BN Ty L at,
0 - l1-c¢
and the budget constraint as
(4.4) k = f(k) - (n+g+8)k - c.

Agents maximize (4.3) subject to (4.4), given k0>0. The model s
exactly the same as the Ramsey model of the previous section with two small
differences. First, the effective discount rate in the utility function is
p-n-(1-¢)g rather than p-n. Second, the effective depreciation rate |is
d+n+g rather than &+n. Leaving these two trivial differences aside, the
model exactly parallels that of the previous section so we will not
reproduce its solution here. Let us just mention that the bounded utility

condition is now
(4.5) p > n+ (1-0)g,

while the differential equation describing consumption growth is now

A A

(4.6) c/c = (1/6)[f’(£) -8 -p - cg].
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The transversality condition requires 1lim k

tvt = 0, where v 1is the

k-+o
shadow price of capital. Equations (4.4) and (4.6) determine the dynamics
of ¢ and k. Their behavior parallels that of ¢ and k in Figure 9. The

steady-state growth rate for all per capita variables is g.

APPENDIX: Derivation of the Convergence Regression (3.29)
If we express all variables in logarithms,

the two key differential
equations (3.5) and (3.14) can be written as

)]

(1/0)(38-(1—8)1n(k )

lnict) t -(p+s))

(A.1)
ln(kt) - e—(l—B)ln(kt) _ e(ln(ct)—ln(kt)) - (n+8).
In steady state the two equations are equal to zero so:

o (I-BIInk™) o o

(A-2) (ntem)=1n(k*)) _ _-(1-B)In(k*)

(n+d) = h > 0,

where h=(p+8(1-8)-8n)/B.

We can now Taylor-expand the system (A.1) around
(A.2) and get

ln(ct) —u[ln(kt)-ln(k‘)]

(A.3)

1nikt) ~hlln(e)-1n(c*)] + (p=n) [In(k,)~1n(k*)],

where u=(1-B8)(p+8)/0>0. Alternatively, we have:
ln(ct) 0 -u ln(ct)-ln(c')
(A.4) =

1nikt) ~h(p-m)] [In(k,)~1n(k*)

Notice that the determinant of the matrix is detA=-hu<0, which implies that
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the system is saddle-path stable. The eigenvalues of the system are

(1/2)
-Al = (1/72)(p-n - [(p-n) +4uh] ) <0
(A.5) , (1/2)
Az = (1/2)(p-n + [(p-n) +4uh] ) >0.
The solution for ln(kt) has the usual form
(A.6) In(k,) - In(k*) = y,e 1" + y 2,

where wl and wz are two arbitrary constants. To determine them, we notice
that since AZ is positive, the capital stock will violate the transversality
condition unless w2=0. The initial conditions help us determine the other
constant since at time 0 the solution implies
(A.7) In(ky) - In(k*) = y e’
Hence, the final solution for the log of the capital stock has the form
(A.8) In(k,) - In(k*) = [In(k,) - In(k*)le 1",

If we realize that ln(kt)=ln(yt)/a, and we subtract 1n(y0) from both

sides of equation (A.8) we get equation (3.26) in the text:

(3.24) [1n(y,)-In(y )1/t = ((1-e MYt (1n(y*)-In(y )] lniy,).
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