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Abstract 
 
New location models are presented here for exploring the reduction of facilities in a 
region.  The first of these models considers firms ceding market share to competitors 
under situations of financial exigency.  The goal of this model is to cede the least 
market share, i.e., retain as much of the customer base as possible while shedding 
costly outlets.  The second model considers a firm essentially without competition that 
must shrink it services for economic reasons.  This firm is assumed to close outlets so 
that the degradation of service is limited.  An example is offered within a competitive 
environment to demonstrate the usefulness of this modeling approach. 
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Introduction 
 
Location science, with its components of theory and modeling, continues to grow 
dramatically in the disciplinary areas of geography, management, mathematics, 
economics and operations research.  In general, the purpose of this research field is to 
formulate quantitative models to site a given set of facilities in a region.  The region 
can be represented by a network, continuous space, or can be a set of discrete points.   
There are models for locating public facilities such as schools or post-offices, models 
for locating retail facilities in the presence of competition, models for locating 
emergency services such as fire stations or ambulances, and models for locating plants 
and warehouses, among others.  These quantitative models can be formulated and 
solved using linear programming, integer programming, dynamic programming or by 
heuristic or metaheuristic approaches.  Facilities may have capacity restrictions, 
experience congestion, have minimum thresholds for level of service and other 
defining characteristics.  The demand to be served may be deterministic or stochastic 
to address uncertainty issues. Thus, a myriad of formulations are available within the 
field of location science to address very different issues related to the formulation, 
solution and implementation of location problems.  An overview of the state of the art 
in this area is presented in Drezner (2003).  But most location models (if not all) have 
one thing in common:  they are proactive, in that they all seek the location of new 
facilities, or they are reactive, in that they seek to relocate and open  new locations at 
the same time.  The literature has paid little attention to the fact that sometimes it is 
necessary to close facilities (Wang et al. 2003). 
 
In the private sector, the marketplace for contemporary industrial and service goods is 
often highly competitive.  Firms map out their activities in light of market forces and 
the action of rival firms in the industry.  Changes in the competitive structure of the 
industry call for new strategies.  Strategies do not always succeed as planned, 
however; plant or store closure may occur as an integral part of strategy or in spite of 
it.  Corporate planners often fail to predict future market trends or are unable to 
maintain their market share when competitive conditions in the industry change.  
They may not perceive the gravity of market changes, or they may believe that their 
established market position leaves them immune to market dynamics.  In other cases, 
production systems do not operate as planned and products fail to meet consumer 
expectations.  As well, new products may be introduced.  All these conditions may 
lead to rivals succeeding in stealing market share.  Thus changes in the competitive 
structure of industries and services may lead to plant or store closures in two distinct 
ways:  as an integral part of the process of strategic adaptation or as a consequence of 
failure to adapt to new industry conditions. 
 
As an example, Plant Closing News, a biweekly, industry-focused newsletter (see 
www.plantclosings.com), found that only in the first week of 2003 there were more 
than 500 industrial plant closures in the U.S. and Canada, in very diverse industrial 
sectors (Table 1).  Plant closings are the most visible manifestation of market 
dynamics and corporate restructuring on the economic landscape.   
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Table 1: Plant Closure in USA and Canada, 2/1/03-7/1/03 
Industry Number of Plant Closings 
Food 
Chemical 
Cigarettes 
Refined oil products 
Textiles 
Plastics 
Wood products 
Glass, cement 
Pulp and paper 
Metal products 
Chemicals 
Electronics 
Other 
Total 

74 
40 
1 
7 
23 
48 
30 
8 
47 
163 
40 
72 
7 

520 
 
 
Another reason for plant closure is related to business cycles.  When the economy is 
in a growing period, demand for products and services is high, leading to new 
investments and the building of new facilities.  However, when the business cycle is 
in recession, some investments are no longer profitable and it becomes necessary to 
close some of the currently operating facilities in order to survive. In Figure 1, the 
growth rate for the U.S. from 1970 to 2003 clearly shows the roller-coaster ups and 
downs of the economy.  The shaded areas represent periods of economic crises, with 
plant closures, massive layoffs and demand downfall.  In these periods firms need to 
downsize their capacity and infrastructure to an appropriate size in order to cope with 
the economic situation.   
 
Another argument for plant closures is based on the fact that some economic sectors 
and industries are in decline. A declining industry is defined as an industry group’s 
employment level decreasing for two quarters by five percent or more over the year In 
fact, a significant fraction of U.S. manufacturing output is accounted for by declining 
industries. In these industries, the important competitive moves pertain to 
disinvestments rather than investment. Capacity must be reduced in order to restore 
profitability Capacity reduction is, however, like a public good; each firm would 
prefer that its competitors shoulder the reduction.  
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Figure 1. U.S. business for 1970 to 2003 

(Source: www.businesscycle.com) 
 
Some plant location models have been developed to address the issue of plant closure 
in a multiperiod setting.  Klincewicz et al. (1988) formulated a large-scale 
multilocation capacity-planning model. The model chooses a multiperiod schedule of 
openings, expansions, and closings of facilities and assigns demand locations to these 
facilities.  Although generic in nature, this model was developed to plan the evolution 
of material logistics systems over time. In order to have a truly practical tool, 
numerous features are considered including existing configuration, arbitrary demand 
patterns, concave operating costs, single-source assignments, demand location 
reassignment costs, and others.  

A real-world application involving the relocation and phase-out of a combined 
manufacturing plant and warehousing facility was presented by Melachrinoudis and 
Min (2000). The relocation and phase-out decision was called for to adapt to dynamic 
changes in business environments surrounding the firm's supply chain operations. 
Such changes included changes in supplier and customer bases, distribution networks, 
corporate re-engineering, business climate, and government legislation. To aid 
management in formulating a more effective relocation strategy, Melachrinoudis and 
Min (2000) assess the viability of a proposed site from multi-echelon supply chain 
perspectives and determine the optimal timing of relocation and phase-out in the 
planning horizon using a dynamic, multiple objective, mixed-integer programming 
model.  

Wang et al. (2003) studied a budget constrained location problem in which they 
simultaneously consider opening some new facilities and closing some existing 
facilities. The objective is to minimize the total weighted travel distance for customers 
subject to a constraint on the budget for opening and/or closing facilities and a 
constraint on the total number of open facilities desired. Their application focused on 
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locating/relocating bank branches in Amherst, New York. They also discuss the 
situation where operating costs are part of the objective function.  
 
The retailing sector is also affected by business downturns that can cause the closure 
of many (even hundreds of) retail stores. For example, a serious economic crisis at K-
Mart Corporation forced the company to close many of their stores across U.S. after 
years of struggling against more powerful and successful rivals Wal-Mart Stores Inc. 
and Target Corp.  One chain, Ames, closed all of its stores.  In order to ensure a more 
competitive position and to exit from bankruptcy, K-Mart closed more than 30% of its 
stores across the United States (Schenke 2002).   
 
Facility closing is also a common feature in the public sector.  For example, on April 
14, 1993 the Minister of Health of the Province of Saskatchewan announced the 
closure of 52 of the 112 small hospitals in the Province based on: size, utilization for 
two consecutive years and distance to the nearest-neighboring hospital (Lepnurm and 
Lepnurm 2003). 

Frederick and Weston (1982) formulated a model to find the optimal location of 
telephone answering sites for a non-competitive service organization within the public 
sector. The methodological approach taken to addressing the telephone site location 
problem was integer programming.  The modelling effort resulted in several 
organization changes including opening and closing of individual offices, domain 
realignments of new or existing offices, and significant cost savings primarily due to 
telecommunication cost reductions and increased utilization of telephone answering 
manpower. 

Perhaps the most significant modelling work in the public sector has been for school 
system consolidation as a result of declining enrolments. Noteworthy initial efforts in 
this area were Bruno and Anderson (1982) and Diamond and Wright (1987). The 
work of Diamond and Wright (1987) was unique in that balancing utilization was also 
a goal. Church and Murray (1993) also examine consolidation combined with 
balancing utilization. 

Other instances where it may be necessary to close facilities are related to public 
transport.  For example, in urban bus transportation it may be necessary to eliminate 
some stops and relocate others due to changes in population density and network 
changes.  There is, on the one hand, a trade off between number of stops and 
geographical coverage, with more stops providing greater coverage.  On the other 
hand, more stops along a route translate to greater service interruption and longer 
travel times.  Murray and Wu (2002) study some modelling approaches for addressing 
accessibility concerns in an integrated fashion.  They illustrate the models using bus-
based transit in Columbus, Ohio. 

In this paper we formulate the Planned Shrinkage Problem, a general model to close 
facilities.  We present the general model in the next section.  In the third section,  
computational experience is recounted in the context of a specific example.  Finally, 
some conclusions are offered. 

2.  Problem formulation 
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A. Firm with competition 

The Planned Shrinkage Problem can be formulated in a competitive setting. Let us 
consider a spatial market that is represented by discrete points in a connected network.  
Each node can represent a local market and has a parameter that can represent 
population or local demand for the product that is being offered.  On the other hand, 
some – but not all- of the nodes in the network have servers that offer the product.  
These servers belong to different firms that compete for consumers.  Each of these 
firms can have more than one server located somewhere in the system.  As a condition 
of the problem statement, the product that is sold is homogeneous, and its price is the 
same everywhere in the market.  Further, it is assumed that all firms bear the same 
unit costs.  Consumers will travel to their closest facility to obtain the desired product.  
A firm captures a consumer node if one of its servers is closer to that node than any of 
its competitors’ servers.   

Suppose that a firm (say firm A) is operating in the market with q outlets.  Due to 
market conditions (for example, increase in competition and/or decline in demand), 
Firm A wishes to retain p of its q outlets with the objective of minimizing the impact 
on demand loss to competitors.  The model can be reformulated as follows: 

Parameters: 

i = index of nodal areas to be served 
j = index of existing facilities from all firms operating in the market 

ia  = user population or demand in nodal area i 

ijd = shortest distance or travel time from area i to outlet j 

id = distance from area i to closest competitor = ij
j

dmin  

{ }iiji ddjM <= |  = the set of servers that are closer to i than A’s nearest competitor 
n = number of demand nodes 
p = number of facilities retained 
 
Decision variables: 
 





=
otherwise.0

scompetitor lost to is that at  demand if1 i
y i   

 





=
otherwise.0

retained is outlet  if1 j
x j  

  
The mathematical formulation of the problem is as follows: 
 
Minimize  ∑=

i
ii yaZ

 (1) 
Subject to 
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 ixy
iMj

ji ∀−≥ ∑
∈

1  

 (2) 
 px

j
j =∑

 (3) 
 ( ) iy i ∀= 1,0
 (4) 
 ( ) jx j ∀= 1,0   

The model minimizes the demand lost to competitors due to the closing of some of its 
existing outlets.  Constraint set (2) works as follows:  if there is a Firm A facility 
closer to node i than the closest competitor, the node is not lost to the competitor.  On 
the other hand, if 0=∑

∈ iMj
jx  then yi = 1 and the demand at i is lost to the competitor, 

since there is no outlet of Firm A that is closer to i than any other competitor outlet.  
Observe that the set Mi is defined so that, if there is a tie in distance between Firm A 
and the competitors to a given node, the demand is not lost, since we only consider 
Firm A outlets that are closer to i than the closest competitor.  If previous to the model 
we assume that in case of ties, demand is split among competitors, the use of the  
Planned Shrinkage Model as formulated will not affect these ties.  

This model may be regarded as an inverse formulation of the Maximum Capture 
Location Problem formulated by ReVelle (1986).  In the Maximum Capture model, a 
new firm wants to enter a market with a given set of outlets.  In the above developed 
(NAME ?) model, a firm is decreasing its presence but wants to do this with the least 
loss of market share. 

The formulation may also be written as follows. Besides all the original variables and 
parameters, we introduce: 
 
yi= 1,0; 1 if demand node i is retained by the firm, and 0 otherwise.   
 
Therefore,  yi = 1 - yi     
 
The objective (1) may be rewritten as: 
 
       Minimize ∑∑ −==

∈

1(aiyaz
Ii

ii  yi  ) 

This is equivalent to: 
 
       Maximize ∑=  aiz yi   

That is, maximizing demand retained when eliminating facilities. Constraint (2) 
would then be: 
 
 
                           1 -   yi   >  1 -  ∑

∈Mij

jx  
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This simplifies to: 
                                   
                                  yi   <    ∑

∈Mij

jx             i = 1,2,…,m 

  
These derived constraints, combined with the above objective, are equivalent to 
maximizing the demand retained when closing facilities, where demand is retained 
only if one or more facilities are maintained in the set Mi,.  That is, one or more 
facilities are maintained in positions closer than the nearest competitor to i.  Given 
this, the new formulation is equivalent to the Maximal Covering Location Problem 
(MCLP) detailed in Church and ReVelle (1974). 
 

B.  Firm without competition 

Suppose now a firm that is operating in that market essentially without competition 
(perhaps it is a public service such as the post office) with several retail or service 
outlets.  The firm wishes to close some of these outlets to decrease costs.  The 
objective is to minimize the number of people made worse-off or to minimize some 
system measure of deterioration of service.  

The additional notation is as follows:     

id = distance from area i to closest facility = ij
j

dmin  

β  = threshold for nearest facilities (e.g., 25%) 
{ }iiji ddjM β≤= |  = the set of servers j that are within a factor 1.25 times the 

current distance from i to its closest facility 
S = maximum service distance or travel time (a level of service that will not be 
violated) 
 

{ }SdjN iji ≤= |  
 
Decision variables: 
 





=
otherwise.0

closuresfacility by  off  worsemade is at  demand if1 i
y i   

 





=
otherwise.0

retained is facilty  if1 j
x j  

  
 
 
The mathematical formulation of the problem is as follows: 
 
Minimize  ∑=

i
ii yaZ

 (5) 
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Subject to 
 ix

iNj
j ∀≥∑

∈

1  

 (6) 
 ixy

iMj
ji ∀−≥ ∑

∈

1  

 (7) 
 px

j
j =∑

 (8) 
 ( ) iy i ∀= 1,0
 (9) 
 ( ) jx j ∀= 1,0   
 
The objective minimizes the population that will be uncovered within a thresho ld 
level   after the closing of p facilities.   Thus, the first constraint guarantees that all the 
population will be covered within that distance standard. In order to limit how much 
worse off an area becomes, constraint (7) is utilized to prevent coverage deterioration 
beyond a threshold level S.  The second constraint accounts for population loss at 
node i if there is no facility within β id . The use of β  allows for a range of “nearest” 

facilities to be modeled. If β=1, then the set iM  will consist of the nearest facility j to 
area i or the nearest facilities if there is a tie. Alternatively if β=1.25, as an example, 
then the nearest set will consist of those facilities at most 25% farther than the closest 
facility.  Finally, the last constraint sets the number of outlets to be retained. 

Application Results 

The competitive version of the shrinkage problem was tested using the well-known 
55-node network of Swain, see appendix.  The demand at each node is indicated in the 
appendix.  The total amount of demand to be captured is equal to 3,575.  The model 
was solved using LINGO version 6.   

In this example, eight outlets are being operated by two firms (say Firm A and Firm 
B), 4 outlets each.    Firm A wants to reduce the number of outlets and therefore wants 
to know which ones have to be removed so as to minimize the impact on capture 
reduction. 

In order to proceed, the initial locations for Firm A were found using the Maximum 
Covering Location Problem (Church and ReVelle 1974)  with a maximum coverage 
distance set to 100.  Then, the location of the 4 outlets for Firm B were determined 
using the Maximum Capture Location Problem (ReVelle 1986).  

 

Table 1:  Results, 55-node network 

 
Number of outlets 

 
Firm A 

 
% 

 
Firm B 
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Firm A 

 
Firm B 

Capture  Loss Capture  

 

4 

3 

2 

1 

 

4 

4 

4 

4 

 

1267 

1062 

852 

461 

 

35% 

30% 

24% 

13% 

 

0% 

16% 

33% 

64% 

 

2308 

2513 

2723 

3114 

 

65% 

70% 

76% 

87% 

 

Initially, before any of its outlets are to be closed, Firm A has 35% of the market 
share.  If the number of Firm A’s outlets n reduced to 3, Firm A looses 16% of its 
market share to the competitor.  If two outlets are eliminated, the loss is 33%, and  if 
three outlets are eliminated, Firm A owns only 13% of the market share.  Results are 
presented graphically in Figure 1. 

Conclusions  

Models of facility closing are not well developed in the literature. We have proposed 
in this paper two new models that address facility closing. One of these investigates 
facility closing in a competitive environment, and the other examines closing in the 
situation of financial exigency without competitors. Application results for closing 
facilities in a competitive environment were presented to demonstrate the power of 
these models in such situations. 
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Table A.1: 55-node network data 

 
NODE POPN COORD X COORD Y NODE POPN COORD X COORD Y 
1 710 32 31 29 60 19 38 
2 620 29 32 30 60 27 41 
3 560 27 36 31 60 21 35 
4 390 29 29 32 50 32 45 
5 350 32 29 33 50 27 45 
6 210 26 25 34 50 32 38 
7 200 24 33 35 50 8 22 
8 190 30 35 36 50 15 25 
9 170 29 27 37 50 35 16 
10 170 29 21 38 40 36 47 
11 160 33 28 39 40 46 51 
12 150 17 53 40 40 50 40 
13 140 34 30 41 40 23 22 
14 120 25 60 42 40 27 30 
15 120 21 28 43 40 38 39 
16 110 30 51 44 40 36 32 
17 100 19 47 45 30 32 41 
18 100 17 33 46 30 42 36 
19 90 22 40 47 30 36 26 
20 90 25 14 48 30 15 19 
21 90 29 12 49 30 19 14 
22 80 24 48 50 30 45 19 
23 80 17 42 51 30 27 5 
24 80 6 26 52 20 52 24 
25 80 19 21 53 20 40 22 
26 70 10 32 54 20 40 52 
27 60 34 56 55 20 42 42 
28 60 12 47     

 

 



 

P=4    Q=4 P=3    Q=4 

P=1    Q=4 P=2    Q=4 

Figure 1:  results, 55-node network 


