
 
Ignoring information in binary choice with continuous variables:   

When is less “more”?  

  
 

 
Robin M. Hogarth & Natalia Karelaia∗ 

ICREA & Universitat Pompeu Fabra, Barcelona 

 

 

robin.hogarth@upf.edu 

natalia.karelaia@upf.edu 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

October 2004 

                                                 
∗ Robin M. Hogarth is ICREA Research Professor, and Natalia Karelaia is a graduate student at 

Universitat Pompeu Fabra, Barcelona, Spain. This research was financed partially by a grant from 
the Spanish Ministerio de Ciencia y Tecnología.  We gratefully acknowledge the constructive 
comments of  Manel Baucells, Konstantinos Katsikopoulos, Daniel Goldstein, two anonymous 
reviewers, and the editors. 

 
  

 1

mailto:robin.hogarth@upf.edu
mailto:natalia.karelaia@upf.edu


 
Abstract 

 
 
  When can a single variable be more accurate in binary choice than multiple 

sources of information? We derive analytically the probability that a single variable 

(SV) will correctly predict one of two choices when both criterion and predictor are 

continuous variables. We further provide analogous derivations for multiple 

regression (MR) and equal weighting (EW) and specify the conditions under which 

the models differ in expected predictive ability.  Key factors include variability in cue 

validities, intercorrelation between predictors, and the ratio of predictors to 

observations in MR. Theory and simulations are used to illustrate the differential 

effects of these factors.  Results directly address why and when “one-reason” decision 

making can be more effective than analyses that use more information.  We thus 

provide analytical backing to intriguing empirical results that, to date, have lacked 

theoretical justification.  There are predictable conditions for which one should expect 

“less to be more.”  

 

 
Keywords:  Decision making, Bounded rationality, Lexicographic rules, Choice 

theory 

JEL classification: D81, M10. 
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Ignoring information in binary choice with continuous variables:   

When is less “more”?  

 

 Many choices in life are binary in nature.  You decide, for example, to hire one 

of two candidates; you choose one of two vacation sites or automobiles or movies; 

and so on.  Normative theories recommend evaluating alternatives by multi-attribute 

models that specify both the attributes of choice as well as their relative importance 

(cf., Keeney & Raiffa, 1993). Thus, for example, the value or utility of an alternative 

yi = (xi1, xi2, …, xik) is determined by the function. 

∑
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 If experienced in a particular domain, a person’s choice process might be 

accurately portrayed by models like equation (1). However, in many situations, people 

lack the experience necessary to perform analogous cognitive operations and resort to 

simpler mechanisms.  This paper explores implications of such simpler mechanisms.  

 Our starting point is a remarkable set of studies by Gigerenzer and Goldstein 

(1996; Gigerenzer, Todd, & the ABC Group, 1999) in which a simple lexicographic 

model named “take-the-best” (TTB) proved to be highly predictive in binary choice. 

Across 20 datasets, cross-validated predictive accuracies were 71% for TTB, 69% for 

“equal weighting,” and 68% for multiple regression.  

TTB works as follows.  First, it is assumed that attributes or cues can be 

ordered by their ability to predict the criterion. Second, choice is made by the most 

predictive cue that can discriminate between options. Finally, if no cues discriminate, 
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choice is made at random.  This model is “fast and frugal” in that it typically decides 

on the basis of a few or even a single cue (Gigerenzer et al., 1999).    

A possible limitation of these findings is that the attributes or cues were binary 

in nature (i.e., could only take values of 0 or 1). Perhaps, it could be argued, if 

variables had been continuous, TTB would not have been so successful in relative 

terms.  Gigerenzer et al. (1999) tested this hypothesis on their datasets. In making 

TTB operational with what they called “exact quantitative values,” they adopted a 

strict interpretation of discrimination.  A cue discriminates if its value on one 

alternative exceeds that of the other by any amount.  In effect, this means that, with 

continuous variables, TTB is based on the single most important variable.  With 

“exact quantitative values” as opposed to binary variables, multiple regression did in 

fact improve performance – to 76%.  But so did TTB which also achieved 76%.1 

These findings raise the important issues of why and when single-variable 

models can predict as well as or better than models that use more information. In 

other words, when is less “more”?  In related work, we have analyzed this question 

theoretically for binary cues and identified several factors including types of 

weighting functions (e.g., the distribution of weights, , in equation 1) and specific 

characteristics of distributions of alternatives (Hogarth & Karelaia, 2004).  See also 

Martignon and Hoffrage (1999; 2002). 

jw

Recently, Fasolo, McClelland, and Todd (2004) conducted an intriguing set of 

simulations of multi-attribute choice using continuous variables (involving 21 options 

characterized by 6 attributes).  Their goal was to assess how well choices by models 

with differing numbers of attributes could predict total utility and, in doing so, they 

                                                 
1 Gigerenzer et al. (1999) do not report the equivalent statistics for equal weighting.  In addition, some 
of their datasets included categorical variables (e.g., presence or absence of a Bundesliga football team 
in a German city) that could not have taken continuous values.   
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varied levels of average intercorrelations among the attributes (positive, zero, and 

negative) and types of weighting  functions (equal and differential).  Their results 

showed important effects for both average intercorrelations and weighting functions.  

With differential weighting, one attribute was sufficient to capture at least 90% of 

total utility. With positive intercorrelation among attributes, there was not much 

difference between the results of equal and differential weighting.  When 

intercorrelation was negative, however, equal weighting was sensitive to the number 

of attributes used (the more, the better). 

The goal of this paper is to provide a theoretical analysis – for the case of 

continuous variables – of why and when single-variable models can be more effective 

in binary choice than models that use more variables (including the same single 

variable). The paper is structured as follows. 

We first derive analytical expressions for the probability that a single variable 

(SV) will correctly discriminate between two specific alternatives on a given criterion.  

We show this to be an increasing function of the variable’s predictive validity as well 

as the difference between the values of the variable exhibited by the alternatives.  We 

further derive an analytical expression for the overall predictive ability of SV for 

populations of observations. Analogous expressions are then derived for equal 

weighting (EW) and multiple regression (MR).  Comparisons of the expressions for 

SV, EW, and MR lead to expectations as to when particular models are likely to be 

more or less effective.  The key factors are: (1) variance in cue validities; (2) 

intercorrelation between predictor variables; and (3) numbers of observations, n, and 

variables, k, used in estimating coefficients for MR.  We illustrate the effects of these 

factors by both theoretical calculations and simulations. In brief, we find that SV is 

surprisingly effective relative to models that use more variables and this is especially 
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the case when predictor variables are positively intercorrelated.   Finally, we discuss 

implications of our findings. 

 

How accurate is a single variable for binary choice? 

 To assess expected accuracy of a single variable (SV) in binary choice, 

consider choosing between alternatives from a distribution characterized by two 

correlated random variables, one of which is a criterion, Y, and the other an attribute, 

X.  Furthermore, assume that alternative A is preferred over alternative B if   ya > yb.2  

Now, imagine that the only information about A and B are the values that they exhibit 

on X.  Denote these specific values by xa and xb, respectively. Without loss of 

generality, assume that xa > xb.   Whether A or B should be chosen can be 

characterized by the probability that Ya > Yb , given that xa > xb. In other words, what 

is P{Ya > Yb | Xa= xa > Xb= xb}? 

 To answer this question, assume that Y and X are both standardized normal 

variables, i.e., both are N(0,1).3   Moreover, the two variables are positively correlated 

(if they are negatively correlated, simply multiply one by -1). Denote the correlation 

by the parameter ρyx, (ρyx > 0).  Given these facts, it is possible to represent Ya and Yb 

by the equations: 

aayxa XY ερ +=          (2) 

and  bbyxb XY ερ +=          (3) 

where εa and εb are normally distributed error terms, each with mean of 0 and   

variance of  (1 - ρ2
yx), independent of each other and of Xa and Xb. 

                                                 
2 In what follows, we denote random variables by upper case letters, e.g., Y and X, and specific values 
or realizations by lower case letters, e.g., y and x.  As an exception to this practice, we use lower case 
Greek letters to denote random error variables, e.g., ε.  

  3 We discuss the normality assumption in the discussion section below. 
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 Using equations (2) and (3), the difference between Ya and Yb can be written as 

( ) ( )babayxba XXYY εερ −+−=−                (4) 

Thus,  Ya >Yb  if 

( ) abbayx XX εερ −>−           (5) 

 The question of determining P{Ya > Yb | Xa= xa > Xb= xb} can now be reframed 

as determining the probability that the right hand side of (5) is smaller than              

ρyx (Xa - Xb).   As can be seen, this latter term is the product of ρyx , the correlation 

between Y and X, and (Xa - Xb) or the difference between Xa and Xb.  In other words, 

the larger the correlation between Y and X, and the larger the difference between Xa 

and Xb, the greater P{Ya > Yb | Xa= xa > Xb= xb}.   

 To determine this probability, we make use of the fact that the difference           

(εb - εa) is normally distributed with mean of 0 and variance of 2(1 - ρ2
yx). The 

properties of the normal distribution can therefore be used to calculate 

{ } ( ) ( ){ }=−<−==>=> bayxabbbaaba xxPxXxXYYP ρεε    

   dzzs

∫
∞−
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−
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π
       (6) 
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( )2

*
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ρ

ρ
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−
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Figure 1 illustrates probabilities for different levels of correlation between Y 

and X and different sizes of differences between Xa and Xb that are denoted D.  As can 

be seen, when both ρyx and d are small (the lower left corner of Figure 1), the 

probability of correctly identifying the correct alternative is close to 0.50, i.e., no 

better than random choice. However, as both the correlation and difference increase in 

size, the probability of correct choice also increases.     
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------------------------------------------------------- 
Insert Figure 1 about here 

------------------------------------------------------ 

Above we considered probabilities associated with particular observations, i.e., 

that A is larger than B given that a specific value, xa, exceeds a specific value, xb.  

However, it is also instructive to consider the overall expected accuracy of SV in a 

given environment or population. To do this, it is necessary to consider the cases 

where both Xa > Xb   and  Xb > Xa such that the overall probability is given by  

( ) ({ ababbaba XXYYXXYYP >>∪>> )} which, since both its components are equal, 

can be simplified as     

( ) ( ){ ababbaba XXYYXXYYP >>∪>> }  = 2 ( )baba XXYYP >>     (7) 

To derive analytically the overall probability of correct choice by SV, consider 

first the integration of ( baba XXYYP >> ) across all possible values that can be taken 

by D = Xa -  Xb  > 0. Second, since D is normally distributed with mean of zero and 

variance of two, the overall probability of success (7) can be re-expressed as:  
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Equal weighting (EW) and multiple regression (MR) 

What are the predictive accuracies of models that make use of several, k, cues 

or variables, k > 1?  We consider two models that have often been used in the 

literature. One is equal weighting (EW – see Dawes & Corrigan, 1974; Einhorn & 

Hogarth, 1975). The other is multiple regression (MR).  To analyze these models, 

assume that the criterion variable, Y, can be expressed as a function  
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Y = f(X1, X2,…., Xk)             (9) 

where the k explanatory variables are multivariate normal, each with mean of 0 and 

standard deviation of 1. For EW, the predicted Y value associated with any vector of 

observed x’s is equal to ∑
=

k

j
jx

k 1

1 or x  where it is assumed that all variables have been 

scaled to have positive correlations with the criterion.4  Similarly, the analogous 

prediction in MR is given by or ŷ where the b∑
=

k

j
jxjb

1
j’s are estimated regression 

coefficients. In using these models, therefore, the decision rules are to choose A over 

B if  ba xx >  for EW and if    for MR (and vice-versa). bŷ>aŷ

 How well are EW and MR likely to choose correctly between A and B?     

Following the same rationale as the single variable (SV) case, we show in Table 1 the 

formulas used in deriving the analogous probabilities for EW and MR. (We also 

repeat those for SV.) These are the initial equations (corresponding to equations 2 and 

3), the accuracy conditions (corresponding to equation 5), the relevant error variances, 

and finally  used to calculate probabilities – labeled SVs*s *, EWs*, and MRs*, 

respectively.   

---------------------------------------------- 
Insert Table 1 about here 

---------------------------------------------- 

 As might be expected, all the formulas contain similar terms involving both 

the size of the difference between observations characterizing A and B, and the extent 

to which the criterion variable, Y, can be predicted on the basis of the explanatory 

variables, the X’s. There are, however, differences. 

                                                 
4 We return to discuss this point when presenting the simulation below. 
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 For SV, the key factor for correct prediction across a set of cases, with 

different d values, is the size of ρyx (as illustrated in Figure 1) – the larger this 

correlation, the more accurate SV. 

 In EW, the size of  (and hence the probability of correctly discriminating 

between A and B), is a decreasing function of the average intercorrelation between the 

X variables – see the formulas in Notes 1 and 2.  Holding other values constant, the 

correlation between Y and 

*s

X  increases with k, the number of explanatory variables. 

However, there are decreasing returns.  Whether a variable adds to predictability 

depends on how it affects both the average correlation with the criterion, i.e., yxρ , and 

the level of average intercorrelation among the predictors, i.e.,
ji xxρ (for a complete 

analysis see Hogarth, 1978. For empirical evidence, see Ashton, 1986). 

 As to MR, it is well known that intercorrelation among predictors reduces 

predictability relative to situations where the explanatory variables are orthogonal. In 

addition, and particularly when the ratio of observations (n) to explanatory variables 

(k) is small, MR tends to “overfit” in estimating regression coefficients such that 

predictability falls short of the R2 achieved on estimation.  For this reason, the error 

variance and  for MR have been derived using  (i.e., adjusted R*s 2
adjR 2) instead of R2 

– see Note 3.   

 The term s  in Table 1 can be used in different ways.  One is to calculate the 

probabilities that, given differences on the X variables, the models will discriminate 

between A and B as shown for SV in Figure 1.  Another is to predict which model is 

more likely to make the correct discrimination by comparing the sizes of their 

statistics. As an example, imagine having to choose between SV and EW. Clearly, 

SV will have a higher probability of correct prediction than EW if SVs

*

*s

* > EWs*.  
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Conceptually, one can think of each  as being a ratio of “predicted difference” or 

pd over “prediction error” or pe.  Thus, SV should be preferred over EW if   

*s

yxρ

ρ

  
)(
)(

)(
)(

EWpe
SVpe

EWpd
SVpd

>         (10) 

in other words, if the ratio of “predicted differences” of SV to EW exceeds the ratio of 

“predicted errors” of SV to EW.  Note that this approach neatly takes into account 

both the actual values of the explanatory variables on which predictions are made in 

particular cases and the general predictive accuracies of the models.   Moreover, the 

logic used in developing inequality (10) can be extended to all pair-wise comparisons 

of the three models.  

 In Table 2, we compare the relative predictive abilities of the different models: 

SV vs. EW; SV vs. MR; and MR vs. EW.  For each comparison, we state, first, the 

condition (e.g., for SV vs. EW that 
1
 > xyρ  where we have expanded the latter 

term using Note 1 of Table 1).5  Next, using definitions and rearranging terms we re-

express the conditions to highlight different factors. 

------------------------------------------------ 
Insert Table 2 about here 

------------------------------------------------ 

 Inequality (2.2) shows that, ceteris paribus, SV will be more effective than 

EW when:  (1) the ratio of the single variable’s cue validity (i.e.,
1yxρ ) to the sum of 

all cue validities is large. Assuming that 
1yxρ is the largest of the cue validities, this 

will occur when cue validities vary in size; and (2) the average intercorrelation 

between the explanatory variables (i.e.,
ji xx ) is large (and positive).   

                                                 
5  Henceforth we denote by 

1yxρ the correlation between the criterion and cue of the SV model to 
distinguish this correlation from the correlations of the criterion with the other x variables. 
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 Inequality (2.4) compares SV with MR and emphasizes that SV will be more 

predictive when: (1)  is, at least, not much smaller than R2
1yxρ 2; and (2) (n-k) is small 

relative to (n-1), i.e., the ratio of variables (cues) to observations is large.  Two factors 

play a role in the first condition: variability in cue validities and positive 

intercorrelation among the explanatory variables. Both are favorable to SV. 

Comparing MR with EW in (2.6), it can be shown that MR is more likely to 

outperform EW when: (1) there is variability in cue validities; and (2) the ratio of 

observations to cues is large.  An alternative and more complete analysis of the 

comparison can be found in Einhorn and Hogarth (1975). 

 These model comparisons can be further illuminated by considering the 

formulas for overall predictive accuracy such as that for SV derived above (equation 

9).  This and the analogous formulas for EW and MR are presented in Table 3.  

Furthermore, the four panels of Figure 2 illustrate the theoretical predicted 

performance of SV and EW across several scenarios involving three explanatory 

variables.  In each panel, expected percentage correct is plotted as a function of  
1yxρ  

and the predictive ability of the other variables is varied by panel.  In panel (a), both 

X2 and X3 have low predictive ability whereas in panel (d) this is much higher.  Panels 

(b) and (c) represent intermediate values. The panels also show the effects of 

intercorrelation of the explanatory variables – from almost nothing to 0.8. 

----------------------------------------------------- 
Insert Table 3 and Figure 2 about here 

----------------------------------------------------- 

  As can be seen, the expected performance of SV is – of course – unaffected by 

characteristics of X2 and X3.  Moreover, and echoing the preceding discussion, 

whether the expected performance of EW is better than that of SV depends on the 
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predictive ability of X2 and X3 and the level of average intercorrelation among the 

predictors, i.e., the effects of yxρ  and 
ji xxρ (see Note 1 in  Table 1).  

  

Illustration 

 We simulated several datasets to illustrate the theoretical approach taken 

above.  Our procedure involved seven steps.   

(1) We generated datasets with multivariate normal distributions where all 

variables were standardized and we could specify the covariances between all 

variables.  Each dataset contained 20 observations on a criterion variable and three to 

five associated explanatory variables.   

(2) We sampled half of the observations (i.e., 10) from each dataset at random 

without replacement thereby creating “fitting” and “holdout” samples.   

(3) We considered the 45 possible pairings of observations in the fitting 

samples (i.e., 10(10-1)/2) and, using the formulas in Table 1 to estimate parameters 

from the samples, we made theoretical predictions for all 45 pairings for all three 

models, that is, SV, EW, and MR. Averaging across the 45 probabilistic predictions, 

we established overall theoretical predictions per model per dataset.  For several 

datasets, these theoretical predictions are detailed in lines 1, 3, and 5 of Table 4 – see 

also below.   

---------------------------------------------- 
Insert Table 4 about here 

---------------------------------------------- 

(4) We then tested how well these theoretical predictions matched the actual 

criterion. For example, if the overall theoretical prediction of a model for a particular 

dataset was, say, 75%, we would expect to find, across the dataset, that the model had 
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in fact classified 75% of cases correctly. These tests of “fit” are shown in lines 2, 4, 

and 6 of Table 4. 

  (5) Using the parameters estimated from the fitting samples, we made 

theoretical predictions for the 45 pairings in each of the holdout samples – lines 7, 9, 

and 11 of Table 4.  

(6) We then tested these predictions.  Results are shown in lines 8, 10, and 12 

of Table 4. 

(7)  Step (1) – the initial creation of datasets – was done 50 times for each set 

of factors investigated (see below).  For each of the resulting datasets, Steps (2) 

through (6) were carried out 20 times such that the outcomes presented in lines 1 

through 14 of Table 4 represent averages of 1,000 simulations. 

 Before commenting on Table 4, we draw attention to lines 13 and 14 which 

report “fitting” and “realization” statistics for DR or DOMRAN, a strategy based 

simply on dominance.  That is, if one alternative dominates the other, it is chosen. If 

there is no dominance, choice is made at random. We include DOMRAN because, it 

has proven to be remarkably effective when cues are binary and provides a useful, 

naïve baseline with which to compare performance of other simple strategies 

(Hogarth & Karelaia, 2004).  Since DOMRAN has no parameters, we simply show 

how it performed in the fitting (line 13) and holdout (line 14) samples. 

 In Table 4, we provide results of some of our simulations which we have   

classified by four cases: A, B, C, and D. In constructing these datasets, we varied 

factors identified in Table 2 that affect the relative predictive abilities of the models. 

These are detailed at the foot of Table 4 and are: (1) the ratio (n-1)/(n-k) that captures 

the effects of variables to observations. For cases A and B, the ratio is 1.3 (9/7), 
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whereas for cases C and D, it is 1.8 (9/5);6 (2) the R2 on initial fit for each dataset. 

Within cases, we have varied R2 from low (medium) to high, e.g., from 0.4 to 0.8; (3) 

average intercorrelation of the explanatory variables or cues.  These are varied from 

low (cases A and C) to moderately high (cases B and D); (4) variability of cue 

validities – also varied from low to high but within all cases.  Low (high) variability 

corresponds approximately to what Martignon and Hoffrage (1999; 2002) call   

compensatory (non-compensatory) weighting functions and what Payne, Bettman, and 

Johnson (1993) refer to as low (high) dispersion.  

Ideally, one would like to conduct a complete experimental design in which all 

factors are manipulated systematically.  However, covariation matrices impose 

restrictions such that one cannot always hold some variables constant.  Thus, for 

example, increasing variability of cue validities also implies increasing the size of 

1yxρ compared to the other cue validities. 

 Parenthetically, we stress that the average intercorrelations of the cues are 

calculated for variables that are all positively correlated with the criterion.  As noted 

previously, this specification is required by EW (as well as DR). It leads to the 

criticism, however, that we have reduced the possibility of negatively intercorrelated 

explanatory variables and, as such, omitted a potentially important segment of the 

sample space.  Fortunately, this is not the case. First, the scaling of variables makes 

no difference to the predictive abilities of two models, SV and MR.  (SV only uses the 

most valid variable and ignores the others; in MR, R2 does not depend on how 

variables have been scaled.)  Second, the mean intercorrelations we use are equal to 
                                                 
6  An anonymous reviewer correctly commented that MR should not really be used unless this ratio is 
much closer to 1. We agree (cf., the analysis of regression versus equal weights in Einhorn & Hogarth, 
1975). However, we explicitly chose larger ratios in our simulations because we wished to approximate 
the conditions of Gigerenzer et al.’s (1999) 20 datasets which were characterized by similar large ratios 
(mean of 2.0, median of 1.4).     
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the average of absolute intercorrelations (i.e., independent of sign) before any 

rescaling.  Thus, the implication of using mean intercorrelations (after rescaling) is 

that we are effectively sampling situations where, prior to rescaling, inter-cue 

correlations were both positive and negative.  

  Consider, first, lines 1 through 6 of Table 4 that deal only with theoretical 

predictions of percentage correct classifications and their match with the fitting 

samples. (Note, in making the theoretical predictions for MR here, we have used R2 

and not .)  For all three models, there is an almost perfect match between theory 

and fit.  Second, examine the data for the holdout samples – lines 7 through 12.  For 

SV and EW, there are almost no differences between theoretical predictions (using 

fitting sample parameters) and realizations in the holdout samples.  For MR, on the 

other hand, predictions are systematically higher than realizations even though we 

used  in our theoretical calculations.

2
adjR

adj
2R 7 This is especially the case for k = 5 (i.e., C 

and D) and reflects the common experience of “overfitting” by regression models – a 

situation for which the adjustment by  is inadequate – see footnote 5.  (Bold 

figures in Table 4, e.g., 66, are used to indicate the largest figure in relevant 

comparisons, i.e., which model has the best performance on “prediction” or 

“realization” for particular datasets.) 

2
adjR

To illuminate relative model performance in the holdout samples, we provide 

graphs in the four panels of Figure 3 of trends that are difficult to discern from lines 8, 

10, and 12 of Table 4.  In Case A, where 
ji xxρ = 0, all three models have similar 

performance when variability in cue validities is low ([max – min] < 0.5). However, 

                                                 
7 Additional and illuminating comparisons are between lines 1 and 8, 3 and 10, and 5 and 12 
(theoretical calculations based on statistics observed in the fitting samples versus realizations in the 
holdout samples). For SV and EW, the matches between predictions and realizations are almost perfect. 
MR, however, exhibits considerable “shrinkage.” 
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as variability increases, EW performs less well in a relative sense.  In Case B, 
ji xxρ = 

0.5, and this affects MR negatively relative to Case A.  SV, on the other hand, 

dominates all other models under the conditions illustrated here.  Comparing Cases A 

and B, note also how high intercorrelation among predictors has a negative impact on 

EW. 

-------------------------------------- 
Insert Figure 3 about here 

-------------------------------------- 

 Case C illustrates conditions where SV is dominated by both MR and EW, i.e., 

low 
ji xxρ (= 0.1); high R2 on initial fit (0.5 to 0.9); and low variability of cue validities 

([max – min] ≤ 0.5).  Note too that in this panel EW generally performs better than 

MR. Here the latter is penalized by the number of variables relative to observations. 

Finally, the relative efficacy of SV is demonstrated in Case D where SV predicts as 

well or better than the other models. In these conditions, 
ji xxρ is high (= 0.6) – 

compare with Case B. 

 

Discussion 

Throughout this paper we assumed normally distributed variables.  However, 

it should be noted from the derivations for SV in equations (2) through (5) that we do 

not need to assume that Y and X are normally distributed.  The only normality 

assumptions required concern the error terms, εa and εb. This also applies to the EW 

and MR models (see Table 1).  Thus, the results presented here are more general than 

might at first appear. On the other hand, our equations for the overall predictive 

abilities of the models (see equation 8 and Table 3) do require the normality 
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assumption and it is for this reason that we have put less weight on these derivations 

in our simulations. 

  Predictive models can have many criteria. In this work, we have limited 

attention to percentage correct because this criterion has been extensively used in 

binary choice (cf., Gigerenzer et al., 1999).  In addition, since the properties of SV, 

MR, and EW are well-established for squared-error loss functions, the use of 

percentage correct represents a methodological innovation.  Similarly, one can think 

of extending the current work to situations where choice involves many alternatives 

(greater than two) and, indeed, we have already made progress on this extension 

(Hogarth & Karelaia, in preparation). 

We return to our starting point.  Gigerenzer et al. (1999) found, across 20 

datasets, that – with data having “exact quantitative values” – their TTB model and 

MR shared the same level of cross-validated predictive accuracy of 76% in binary 

choice.  In light of the theoretical results provided above, is this surprising?   

First, note that our SV model is not quite the same as TTB in that the latter has 

a mechanism to resolve “ties” when xa= xb.  In other words, SV is more “frugal” than 

TTB.  And yet, as illustrated by Table 4 and Figure 3, we can predict and observe 

situations where the predictive accuracy of SV is greater than that of MR.8 As 

observed, the main factors that determine the relative predictive accuracies of SV and 

MR center on the level of intercorrelations between predictors and the ratio of 

predictors to observations.9 Clearly, one can define environments that are more or less 

“friendly” to SV and MR (cf., Payne et al., 1993; Shanteau & Stewart, 2000). 

                                                 
8 We can, of course, also predict when SV will perform at the same level or worse than MR. 
9 Unfortunately, we do not have access to the quantitative version of the data of Gigerenzer et al. 
(1999) and thus cannot estimate the relevant predictive factors. The binary cue versions of the datasets 
are available at the website, http://www-abc.mpib-berlin.mpg.de/sim/Heuristica/environments/ 
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The comparisons made above between SV and MR involved averaging the 

results of all possible pairings of observations in the fitting and holdout samples (i.e., 

45 pairs on each occasion).  However, a person choosing between SV and MR on a 

particular occasion would not be obliged to choose the model that was generally 

better (as also formalized by comparing equation 8 for SV with its analog for MR in 

Table 3). Instead, as indicated by inequality (10) and the equations in Table 1, 

predictions of which model to use for particular cases can be tailored to the 

characteristics of each case.  For example, conditional on a particular observation, one 

model could predict, say, alternative A with probability 0.7 whereas the other could 

predict alternative B with, say, probability 0.6.  In this case, the better solution would 

be to use the model with the greater probability of being correct even if, in general, 

the factors outlined above favor the other model. 

This paper adds to the growing literature suggesting that, in many cases, “less 

is more” (see, e.g., Hertwig & Todd, 2003). But to what extent are these phenomena 

unusual?  One way of conceptualizing this issue is to recall the insights of Coombs 

and Avrunin (1977) concerning why certain functions are single-peaked across 

dimensions such as time or amount of information.  Simply put, assume we are 

dealing with phenomena that are a mix of both “good” and “bad” dimensions (e.g., 

information and cost). Furthermore, assume that “goods satiate” whereas “bads 

escalate” in either physical or psychological terms.  The net effect is a single-peaked 

function over the dimension of interest.  Thus, it can be argued, many phenomena in 

the environment do produce “less is more” effects over relevant dimensions (e.g., 

time, information, etc).  Our purpose in this paper, however, is not to advocate the use 

of single or multiple variables in decision making. It is to illuminate the conditions 

under which one or the other is preferable. 
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Finally, is it possible to reconcile the apparent efficacy of single-variable 

models (or “one reason decision making”) with common sense?  Perhaps it is a case 

of heeding the often repeated injunction – “Keep your eye on the ball!” – but also 

knowing when this is appropriate.    
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Table 1 – Key formulas for different models 
       
Single variable (SV)     Accuracy condition       Error variance              s*   
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=      where k = number of x variables, yxρ = average correlation between Y and the X’s, and 
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111 22           where n = number of observations 
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Table 2 – Comparison of predictability of models 

SV vs. EW 
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1yxρ  > 
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MR vs. EW∗ 
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∗ See also Einhorn and Hogarth (1975). 
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Table 3 –  Formulas for overall predictive accuracy of models 
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Table 4 -- Model fits and predictions (%) 

Case A (k=3) Case B (k=3) Case C (k=5) Case D (k=5)
 

SV 1.Theory 63 65 72 75 80 66 69 71 76 80 62 66 69 69 73 61 62 71 75 80
2. Fitting 62 64 71 75 80 65 69 70 76 80 62 65 69 69 72 60 62 70 75 80

 
EW 3. Theory 66 69 71 73 75 63 63 63 67 68 66 71 73 77 83 61 63 65 68 69

4. Fitting 64 68 70 73 74 62 63 63 66 67 66 70 72 76 81 61 63 65 68 67

MR 5. Theory1 72 75 78 81 85 69 71 72 77 80 75 80 81 85 90 66 68 73 76 80
6. Fitting 71 74 77 81 85 69 71 71 77 80 75 80 81 84 90 67 69 72 77 80

 ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——
SV 7. Prediction 62 64 71 74 80 65 68 71 76 80 62 65 68 69 73 60 62 71 75 80

8. Realization 62 64 71 75 79 64 68 71 76 80 62 65 68 68 72 60 60 70 76 80

EW 9. Prediction 65 68 70 73 75 62 63 63 66 67 66 71 72 77 83 61 63 65 68 69
10.Realization 64 68 71 73 74 62 62 64 66 67 66 71 71 76 82 60 62 65 68 67

MR 11.Prediction2 70 73 77 79 83 68 69 71 75 79 72 76 77 82 87 63 65 69 73 77
12.Realization 62 66 72 76 80 63 66 69 75 79 62 69 69 75 84 59 61 67 73 78

 ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——
DR 13.Fitting 56 57 58 59 60 60 60 60 63 64 53 54 54 55 55 57 59 60 61 62

14.Realization 56 57 59 59 60 59 59 60 63 63 53 54 54 55 55 57 58 60 61 62
 ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——  ——

Variability of cue
validities: max - min 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.3 0.4 0.5 0.0 0.1 0.3 0.4 0.5

Average intercorrel-
ation of x's 0.0 0.0 0.0 0.0 0.0 0.5 0.4 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6

    
R2 (MR) -- fit 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.4 0.6 0.7 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.5 0.7

(n-1)/(n-k) 1.3 1.3 1.3 1.3 1.3  1.3 1.3 1.3 1.3 1.3 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

1 Initial fit used R2 

2 Predic n made using adjusted R2   tio
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Figure 1:   Probability of SV making correct prediction/choice as a function of yxρ  
and d (= xa – xb). 
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Figure 2:   The theoretical performance of SV and EW (percentage correct 
predictions/choices) as a function of 

1yxρ  in 3-cue environments.  

a)   corr(Y, X2 )=0.1, corr(Y, X3)=0.1 

 

b)    corr(Y, X2 )=0.5, corr(Y, X3)=0.1 

 
 

c)    corr(Y, X2 )=0.5, corr(Y, X3)=0.3 

 

d)        corr(Y, X2 )=0.5, corr(Y, X3)=0.5 

 
 

The performance of EW is represented for different levels of 
ji xxρ . 
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Figure 3: Percentage correct predictions by SV, MR, EW, and DR for conditions 
specified in Table 4 (cases A, B, C, and D). 
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