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Abstract

By means of Malliavin Calculus we see that the classical Hull and
White formula for option pricing can be extended to the case where the
noise driving the volatility process is correlated with the noise driving
the stock prices. This extension will allow us to construct option pricing
approximation formulas. Numerical examples are presented.
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1 Introduction

The work of Black and Scholes (1973) and Merton (1973) assumes that the stock
prices St satisfy a stochastic differential equation of the form

dSt = µStdt+ σStdWt,

where µ and σ are constants and W is a standard Brownian motion. The
parameter σ is called the volatility of the model.
One of the main properties of this model is that it allows us to evaluate

derivative prices by the use of simple analytical formulas. For example, the
price of a call option with initial log stock price x, strike price K and time to
maturity T − t is given by the function

CBS (t, x;σ) := e
xN (d1)−Ke−r(T−t)N (d2) ,

where N denotes de standard normal distribution function, r is the interest rate
(that it is assumed to be constant) and

d1,2 :=
x− lnK +

¡
r ± 1

2σ
2
¢
(T − t)

σ
√
T − t
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It is widely recognized that the simplicity of this popular model is not longer
sufficient to capture modern market phenomena. In particular, the constant
volatility assumption is clearly not true from empirical studies. One of the
natural extensions of the Black-Scholes model that have been proposed in the
literature and in practice is to modify the specification of volatility to make it
a stochastic process. Some examples of modelling are: Hull and White (1987),
Stein and Stein (1991), Ball and Roma (1994) and Heston (1993). However,
new difficulties arise from this approach. In particular, these models are more
complex, and then it is more difficult to obtain analytic formulas for option
prices. Even when closed-form pricing solutions can be derived, the analytical
computations are usually hard.
The simplest models for the volatility process assume that the volatility and

the noise Wt are uncorrelated (see for example Hull and White (1987), Stein
and Stein (1991) and Ball and Roma (1994)). In this case, option prices are
given by the so-called Hull and White formula:

E∗

CBS
t, x :

s
1

T − t
Z T

t

σ2sds

¯̄̄̄¯̄Ft
 ,

where (Ft) denotes the σ−algebra generated by the volatility process and E∗
denotes the expectation with respect to the risk-neutral probability (see for ex-
ample Fouque, Papanicolau and Sircar (2000), Chapter 2). Nevertheless, it is
often found from financial data that there exists a negative correlation between
these two processes, and there are economic arguments that justify this negative
correlation. But the correlated case is more difficult to handle mathematically,
and the problem of deriving analytical formulas for option prices becomes more
complex . Heston (1993) presented the first closed-form option pricing solution
for a correlated model. Recently, closed-forms for other models have been ob-
tained (see for example Bakshi, Cao and Chen (1997), Bates (1996), Bakshi and
Chen (1997), Scott (1997) and Schöbel and Zhu (1999)).
As an alternative to this closed-form solutions, approximate option prices

have been constructed. Fouque, Papanicolau and Sircar (2000) and Fouque,
Papanicolau, Sircar and Solna (2003) presented a method to construct approx-
imate option pricing formulas for the case of fast-mean reverting volatilities.
The basic idea is to work in large intervals, where we can assume that the mean
reversion is fast and then the constant-volatility model (with a correction to
account for random volatility) is a good approximation.This results have been
extended recently by Alòs (2003) to the case of general volatility models, where
by means of Itô’s lemma the derivative price is decomposed as the sum of four
terms, which identify the main features of the market that affect to option
prices: the expected future volatility, the correlation between the volatility and
the noise driving the stock prices, the market price of volatility risk and the
quadratic variation of the expected volatility process.
The main goal of this paper is to generalize the Hull and White formula to

the correlated case. More precisely, we will see that the price of an european
option can be decomposed as
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• the same derivative price if there where no correlation and
• a correction due by correlation.

This result can be interpreted as a generalization of Hull and White formula
and will allow us to construct approximate option pricing formulas, similar to
the presented by Alòs (2003), but simpler. The main technique we use in order
to find this decomposition is the Itô’s formula for anticipating processes.The
anticipating stochastic calculus (or Malliavin Calculus ) is a powerfull extension
of classical Itô’s calculus that allows us to work with non-adapted processes (we
refer to Nualart (1995) for a complete introduction to this subject). For this
reason it reveals as a natural tool for our problem, where the average future
volatility 1

T−t
R T
t σ2sds is not an adapted process.

This paper is organized as follows. In Section 2 we give a brief exposition of
option pricing with equivalent measures. Section 3 is devoted to introduce some
preliminaries on Malliavin Calculus. In Section 4 we prove the decomposition
formulas for option prices and in Section 5 we use this decomposition in order to
derive our approximation formula. Finally, in Section 6 we apply this formula to
the extended Stein and Stein model presented in Schöbel and Zhu (1999). Some
numerical results are presented, and we compare our approximated results with
the exact values computed by Schöbel and Zhu (1999).

2 Preliminaries on option pricing

We will consider the following model for stock prices in a time interval [0, T ] :

dSt = µStdt+ σtStdWt, t ∈ [0, T ], (1)

where µ is a constant,Wt is a standard Brownian motion defined in a probability
space (Ω,F, P ) and σt is a square integrable process in [0, T ] × Ω. We will
assume that both Wt and σt adapted to the some filtration that we will denote
by (Ft)t∈[0,T ]. It will be convenient in the following sections to make the change
of variable

Xt = log (St) , t ∈ [0, T ].

An European option is a contract that pays atmaturity time T a nonnegative
payoff function h(XT ) of he log stock priceXT at time T.As particular examples
we can consider:

• An European call option: gives its holder the right, but not the obligation,
to buy one unit of an underlying asset for a predetermined strike price K
on the maturity time T . The asset is assumed not to pay dividends and
ther are not transaction costs. In this case the payoff function is given by
h(XT ) = (e

XT −K)+.
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• An European put option: gives its holder the right, but not the obligation,
to sell one unit of the asset for a predetermined strike price K on the
maturity time T . Then h(XT ) = (K − eXT )+.

At time t < T this kind of contracts hve a value, known as the derivative
price Vt, which will vary with t and the observed stock prices until time t.
in the next subsection we present the general methodology for option pricing

based in the Girsanov transformation. We will denote by r the interest rate,
that we will assume constant.

2.1 Pricing with equivalent measures

Suppose that there exists a probability distribution P∗ equivalent to the orig-
inal one P under which the discounted stock price process S̃t = e−rtSt is a
martingale. It is well-known that if we price an European call by the formula

Vt = e
−r(T−t)E∗ [h (XT )| Ft] , (2)

where E∗ denotes the expectation with respect to P ∗, there is no arbitrage
oportunity. Thus Vt is a possible price for this derivative.
Let us now construct equivalent martingale measures. As the process S̃t

satisfies the equation

dS̃t = (µ− r)S̃tdt+ σtS̃tdWt

we need, in order to absorb the drift term of S̃t in is martingale term, to set

W ∗t =Wt +

Z t

0

(µ− r)
σs

ds.

On the other hand, if we assume that σt depend on a second independent
Brownian motion Z, any transformation of the form

Z∗t = Zt +
Z t

0

γsds,

where γs is a process such that the integral
R t
0
γsds is well defined, will not

change the drift of X̃t. By Girsanov’s theorem we know that, if (µ−r)σs
and γs

are adapted and bounded processes there exists a probability distribution P ∗

equivalent to the original one under whichW ∗t and Z∗t are independent standard
Browian motions. Notice that any alloable choice of γ leads then to an equivalent
martingale measure and to a different no arbitrage price. This process γ is called
the risk premium factor or the market price of volatility risk.
Much research has investigated the range of possible prices in general set-

tings. The approach that we will follows here is the same as used by Fouque,
Papanicolau and Sircar (2000), where it is assumed that the market selects
a unique equivalent martingale measure under which derivative contracts are
priced. Notice that the value of the market’s price of volatility risk γ can be
seen only in derivative prices, since γ does not feature in the real world for the
stock price.
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3 Preliminaries on Malliavin Calculus

Let us consider a standard Bronwian motion W = {Wt,t ∈ [0, T ]} defined in a
complete probability space (Ω,F , P ) .We will assume that W is adapted with
respecto to some filtration (Ft)t∈[0,T ] . Set H = L2 ([0, T ] ,B ([0, T ]) , µ) , where
µ denotes the Lebesgue measure on [0, T ] and denote W (h) =

R T
0 h (s) dWs the

Wiener integral of a deterministic function h ∈ H.Notice thatE (W (h)W (h0)) =
hh, h0iH .
In the sequel we introduce the basic notation and results of the stochastic

calculus of variations with respect to W. For a complete exposition we refer to
Nualart (1995).
Let S be the set of smooth and cylindrical random variables of the form

F = f (W (h1) , ...,W (hn)) , (3)

where n ≥ 1, f ∈ C∞b (Rn) (f and all its derivatives are bounded), and h1, .., hn ∈
H. Given a random variable F of the form, we define its derivative with respect
to the Brownian motion W as the stochastic process

©
DWt F, t ∈ [0, T ]

ª
given

by

DWt F =
nX
i=1

∂f

∂xi
(W (h1) , ...,W (hn))hi (x) , t ∈ [0, T ] .

The operatorDW is a closable unbounded operator fromL2 (Ω) into L2 ([0, T ]×Ω) .
We denote by D1,2 the clousure of S with respect to the norm defined by

kFk21,2 = kFk2L2(Ω) +
°°DWF°°2

L2([0,T ]×Ω) .

More generally, we can define the iterated derivative of a random variable in S
by

DW,nt1,...,tnF = D
W
t1 · · ·DWtnF.

The iterated derivative operator DW,n is a closable unbounded operator from
L2 (Ω) into L2 ([0, T ]n ×Ω) . We denote by Dn,2 the clousure of S with respect
to the norm defined by

kFk2n,2 = kFk2L2(Ω) +
nX
k=1

°°DW,kF°°2
L2([0,T ]k×Ω) .

We denote by δW the adjoint of the derivative operator DW . That is, the
domain of δW (denoted by DomδW ) is the set of elements u ∈ L2 ([0, T ]×Ω)
such that there exists a constant c satisfying¯̄̄̄

¯E
Z T

0

DWt Futdt

¯̄̄̄
¯ ≤ c kFkL2(Ω) ,
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for all F ∈ S. If u ∈DomδW , δW (u) is the element of L2 (Ω) characterized by

E
³
δW (u)F

´
= E

Z T

0

DWt Futdt, F ∈ S.

The operator δ is an extension of the Itô integral (see Skorohod (1975)), in the
sense that the set L2a ([0, T ]×Ω) of square integrable and adapted processes is
included in Domδ and the operator δ restricted to L2a ([0, T ]×Ω) coincides with
the Itô stochastic integral). We will make use of the notation δW (u) =

R T
0 utdWt

for any u ∈DomδW .
We recall that Ln,2 := L2

¡
[0, T ] ;Dn,2

¢
is included in the domain of δ for all

n ≥ 1, and for a process u ∈ L1,2 we can compute the variance of the Skorohod
integral of u as follows:

E
³
δW (u)

´2
= E

Z T

0

u2tdt+E

Z T

0

Z T

0

DWs utD
W
t usdtds.

We will need the following results on the Skorohod integral (see Nualart (1995).

Proposition 1 Let u ∈DomδW δ and consider a random variable F ∈ D1,2 such
that E

³
F 2
R T
0 u

2
tdt
´
<∞. Then

Z T

0

FutdWt = F

Z T

0

utdWt −
Z T

0

(DtF )utdt, (4)

in the sense that Fu ∈Domδ if and only if the right-hand side of (4) is square
integrable.

Proposition 2 Let u ∈ L2a ([0, t]×Ω) . Then, for all 0 ≤ t ≤ s ≤ T

DWs ut = 0.

3.1 Itô’s formula

Here we will prove the following version of Itô’s formula for anticipating pro-
cesses.

Theorem 3 Let us consider a process of the formXt = X0+
R t
0
usdWs+

R t
0
vsds,

where X0 is a F0−measurable random variable and u, v ∈ L2a ([0, T ]×Ω) . Con-
sider also a process Yt =

R T
t
θsds, for some θ ∈ L1,2.Let F : R3 → R a twice

continuously differentiable function such that there exists a positive constant C
such that, for all t ∈ [0, T ] , F and its derivatives evaluated in (t,Xt, Yt) are
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bounded by C. Then it follows that

F (t,Xt, Yt) = F (0,X0, Y0) +

Z t

0

∂F

∂s
(s,Xs, Ys) ds

+

Z t

0

∂F

∂x
(s,Xs, Ys) dXs +

Z t

0

∂F

∂y
(s,Xs, Ys) dYs

+

Z t

0

∂2F

∂x∂y
(s,Xs, Ys)

¡
D−Y

¢
s
usds

+
1

2

Z t

0

∂2F

∂x2
(s,Xs, Ys)u

2
sds, (5)

where (D−Y )s :=
R T
s
DWs Yrdr.

Proof. This proof is similar to the proof of Theorem 3 in Alòs and Nualart
(1998). Here we will give only a skech of this proof. Fix n ≥ 1 and take ti = it/n.
Applying Taylor development up to the second order we obtain that

F (t,Xt, Yt) = F (0,X0, Y0) +
nX
i=0

∂F

∂t
(ti,Xti , Yti) (ti+1 − ti)

+
nX
i=0

∂F

∂x
(ti,Xti , Yti)

¡
Xti+1 −Xti

¢
+

nX
i=0

∂F

∂y
(ti,Xti , Yti)

¡
Yti+1 − Yti

¢
+

nX
i=0

∂2F

∂t2
¡
t̄i, X̄ti , Ȳti

¢
(ti+1 − ti)2

+
nX
i=0

∂2F

∂t∂x

¡
t̄i, X̄ti , Ȳti

¢
(ti+1 − ti)

¡
Xti+1 −Xti

¢
+

nX
i=0

∂2F

∂t∂y

¡
t̄i, X̄ti , Ȳti

¢
(ti+1 − ti)

¡
Yti+1 − Yti

¢
+

nX
i=0

∂2F

∂x2
¡
t̄i, X̄ti , Ȳti

¢ ¡
Xti+1 −Xti

¢2
+

nX
i=0

∂2F

∂x∂y

¡
t̄i, X̄ti , Ȳti

¢ ¡
Xti+1 −Xti

¢ ¡
Yti+1 − Yti

¢
+

nX
i=0

∂2F

∂y2
¡
t̄i, X̄ti , Ȳti

¢ ¡
Yti+1 − Yti

¢2
= F (0,X0, Y0)

+T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9.

for some intermediate point
¡
t̄i, X̄ti , Ȳti

¢
between (ti,Xti , Yti) and

¡
ti+1,Xti+1 , Yti+1

¢
.

Now the proof will be decomposed into several steps.
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Step 1. It is clear, by classical arguments, that

T1 →
Z t

0

∂F

∂s
(s,Xs, Ys) ds

and

T3 →
Z t

0

∂F

∂y
(s,Xs, Ys) θsds

in L1 (Ω) .
Step 2. We can write

T2 =
nX
i=0

∂F

∂x
(ti,Xti , Yti)

µZ ti+1

ti

vsds

¶

+
nX
i=0

∂F

∂x
(ti,Xti , Yti)

µZ ti+1

ti

usdWs

¶
.

Again from classical arguments, it is easy to see that

nX
i=0

∂F

∂x
(ti,Xti , Yti)

µZ ti+1

ti

vsds

¶
→

L1(Ω)

Z t

0

∂F

∂x
(s,Xs, Ys) vsds.

On the other hand, by Proposition 1 we it follows that

nX
i=0

∂F

∂x
(ti,Xti , Yti)

µZ ti+1

ti

usdWs

¶

=
nX
i=0

Z ti+1

ti

∂F

∂x
(ti,Xti , Yti)usdWs

+
nX
i=0

Z ti+1

ti

DWs

µ
∂F

∂x
(ti,Xti , Yti)

¶
usds

By the chain rule for the derivative operator (see Nualart (1995) and Proposition
2 we deduce thatZ ti+1

ti

DWs

µ
∂F

∂x
(ti,Xti , Yti)

¶
usds =

Z ti+1

ti

∂2F

∂x∂y
(ti,Xti , Yti)

¡
DWs Yti

¢
usds.

Now, by the same arguments as in Alòs and Nualart ( 1998) we can see that

nX
i=0

Z ti+1

ti

∂2F

∂x∂y
(ti,Xti , Yti)

¡
DWs Yti

¢
us →

L1(Ω)

Z t

0

∂2F

∂x∂y
(s,Xs, Ys)

¡
D−Y

¢
s
usds.
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Step 4. Using again the same arguments as in Alòs and Nualart ( 1998) we
can see that

T7 →
L1(Ω)

1

2

Z t

0

∂2F

∂x2
(s,Xs, Ys)u

2
sds.

Step 5. From the facts that F and its derivatives are bounded,
R T
0
Ev2sds <

∞ and
R T
0
Eθ2sds it follows that T4+T5+T6+T8+T9 tends to zero in L

1 (Ω) .
Step 6. Finally, we will prove that for all t ∈ [0, T ] , the process

∂F

∂x
(ti,Xti , Yti)us1[0,t] (s)

belongs to the domain of δ and thatZ t

0

∂F

∂x
(s,Xs, Ys)usdWs

= F (t,Xt, Yt)− F (0,X0, Y0)−
Z t

0

∂F

∂s
(s,Xs, Ys) ds

−
Z t

0

∂F

∂x
(s,Xs, Ys) vsds−

Z t

0

∂F

∂y
(s,Xs, Ys) dYs

−
Z t

0

∂2F

∂x∂y
(s,Xs, Ys)

¡
D−Y

¢
s
usds

−1
2

Z t

0

∂2F

∂x2
(s,Xs, Ys)u

2
sds. (6)

In order to obtain this result we will apply Lemma 1 in Alòs and Nualart (1998)
to the sequence of processes

Φns = us

2n−1X
i=0

∂F

∂x
(ti,Xti , Yti)1[ti,ti+1] (s) .

We have that Φn converges in L2 ([0, T ]×Ω) to Φ as n teds to infinity. From
the previous steps we obtain that

δ (Φn) =
nX
i=0

Z ti+1

ti

∂F

∂x
(ti,Xti , Yti)usdWs

converges in L1 (Ω) to a random variable equal to the right-hand side of Equation
(6). Then, in order to complete the proof it suffices to prove that the right-hand
side of Equation (6) belongs to L2 (Ω) . This follows easily from the hypotheses
of the theorem.

4 An extension of Hull and White formula

Consider the stock prices model (1) presented in Section 2. We will also use the
following notation:
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• v2t = 1
T−t

R T
t
E∗
¡
σ2s
¯̄Ft¢ ds. That is, v2t denotes the expected average

volatility under the risk-neutral probability P ∗.

• CBS (t, x;σ) will denote the price of a call option for a model with constant
volatility equal to σ, current log stock price x, time to maturity T − t,
strike price K and interest rate r. That is (see for example Lamberton and
Lapeyre (1991), Section 3.2):

CBS (t, x;σ) = e
xN (d1)−Ke−r(T−t)N (d2) , (7)

where

d1,2 :=
x− logK + (r ± σ2

2 )(T − t)
σ
√
T − t

and

N (d) =
1√
2π

Z d

−∞
e−y

2/2dy.

• LBS (σ) will denote the Black-Scholes differential operator (in the log vari-
able) with volatility σ :

LBS (σ) = ∂

∂t
+
1

2
σ2

∂2

∂x2
+

µ
r − 1

2
σ2
¶

∂

∂x
− r ·

It is well known that LBS (σ)CBS (·, ·;σ) = 0.
We will consider also the following hypotheses:
(H1) There exist a positive real constant a such that a ≤ ν2t for all t ∈ [0, T ] .
(H2) σ2 ∈ L1,2 ([0, T ])
(H3) For all t ∈ [0, T ] there exists a positive and Ft−measurable random

variable At such that for all s ∈ [t, T ] ,¯̄̄̄
¯E∗

ÃÃZ T

s

DWs σ2rdr

!
σs

¯̄̄̄
¯Ft

!¯̄̄̄
¯ ≤ At,

where E∗ denotes the expectation with respect to the risk-neutral probability
P ∗.
We will make also use of the following lemma, similar to Lemma 5 in Fouque,

Papanicolau, Sircar and Solna (1993)

Lemma 4 Assume that Hypothesis (H1) holds. Then, for all n ≥ 2 and 0 ≤
t ≤ s ≤ T

E∗
µ¯̄̄̄

∂nCBS
∂xn

(s,Xs, νs)

¯̄̄̄¯̄̄̄
σu, u ∈ [t, s]

¶
≤ C (T − s)1−n/2 ,

for some positive constant C.
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Proof. An easy calculation gives us that

∂CBS
∂x

(s, x,σ) = exN (d1) ,

from where we deduce that, for all n ≥ 2
∂nCBS
∂xn

(s, x,σ) = ex
nX
i=0

µ
n
i

¶
∂i

∂xi
(N (d1))

= ex
n−1X
i=0

µ
n
i

¶
N (i)(d1)

σi i
√
T − s .

As

N 0(d1) =
e−d

2
1

2
√
π

it is easy to see that, for all i ≥ 1

N (i)(d1) = N
0(d1)

n−1X
j=1

cjd
j
1,

for some positive constants cj . Notice that for all a < 1

e−θ
2

θ2 = e−aθ
2

e−(1−a)θ
2

θ2 ≤ ke−aθ2 ,
for some k > 0. Then

N(i)(d1) ≤ ce−c0d21

for some positive constants c and c0,which implies that¯̄̄̄
∂nCBS
∂xn

(s, x,σ)

¯̄̄̄
≤ cexe−c

0d21¡
σ
√
T − s¢n−1 .

Then we can write

E∗
µ¯̄̄̄

∂nCBS
∂xn

(s,Xs, νs)

¯̄̄̄¯̄̄̄
σu, u ∈ [t, s]

¶
≤ c¡√

T − s¢n−1E∗
Ã
eXs exp

Ã
−c0

µ
Xs − logK
νs
√
T − t

¶2!¯̄̄̄¯σu, u ∈ [t, s]
!
.(8)

Denote

u = x− lnK
and

τ = νs
√
T − t.
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Then expression (8) can be rewritten as

cK

(T − s)n−12
Z
R
eue−c

0(uτ )
2
/2p(u)du

=
cK

(T − s)n2−1
Z
R
eτue−c

0u2/2p(τu)du,

where p denotes the conditional expectation of u ≡ Xs− lnK.This allows us to
complete the proof.
We will need to use the following corollary of this result.

Corollary 5 Consider a process σ = {σt, t ∈ [0, T ]}satisfying hypotheses (H1),
(H2) and (H3). Then, for all n ≥ 1 and for all 0 ≤ t ≤ T

E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS (s,Xs, vs)

×
ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!
≤ CAt(T − t) 12 .

Proof. In fact, using Lemma 4 and hypotheses (H1), (H2) and (H3) we can
write

E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS (s,Xs, vs)

×
ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!

= E∗
ÃZ T

t

e−r(s−t)E∗
·µ

∂3

∂x3
− ∂2

∂x2

¶
CBS (s,Xs, vs)

¯̄̄̄
σu, u ∈ [t, s]

¸

×
ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!

≤ C

Z T

t

e−r(s−t) (T − s)1− 3
2 E∗

ÃÃZ T

s

DWs σ2rdr

!
σs

¯̄̄̄
¯Ft

!
ds

≤ C0At.

as we wanted to prove.
Now we are in a position to prove the main result of this paper.

Theorem 6 (Decomposition formula) Assume the model (1), where

σ = {σs,s ∈ [0, T ]}

12



is an adapted and square integrable process such that hypotheses (H1), (H2) and
(H3) hold. Then, for all t ∈ [0, T ]

Vt = E
∗ (CBS (t,Xt; vt)| Ft)

+
1

2
E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS (s,Xs, vs)

×
ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!
Proof. Notice that CBS (T,XT ; vT ) = VT . As e−rtVt is a P ∗−martingale

we can write

e−rtVt = E∗
¡
e−rTVT

¯̄Ft¢ = E∗ ¡e−rTCBS (T,XT ; vT )¯̄Ft¢ . (9)

Now our idea is to apply Itô’s formula (5) to the process e−rtCBS (t,Xt; vt). As
the derivatives of CBS (t, x; y) are not bounded we will make use of an approx-
imating argument. Take δ > 0 and consider the process

e−rtCBS
¡
t− δ,Xt; v

δ
t

¢
,

where vδt :=
q

1
T−t+δ

R T+δ
t

σ2sds.Applying Itô’s formula (5) with Yt =
R T+δ
t

σ2θdθ

(notice that vδt :=
q

1
T−t+δYt) we deduce that

e−rTCBS
¡
T − δ,XT ; v

δ
T

¢
= e−rtCBS

¡
t− δ,Xt; v

δ
t

¢
+

Z T

t

e−rs
µ
LBS (vs) + 1

2

³
σ2s −

¡
vδs
¢2´µ ∂2

∂x2
− ∂

∂x

¶¶
×CBS

¡
s− δ,Xs, v

δ
s

¢
ds

+

Z T

t

e−rs
µ
∂CBS
∂x

¶¡
s− δ,Xs, v

δ
s

¢
σsdW

∗
s

+
1

2

Z T

t

e−rs
µ
∂2CBS
∂x∂σ

¶¡
s− δ,Xs, v

δ
s

¢ (D−s Ys)σs
vδs (T − s+ δ)

ds

−1
2

Z T

t

e−rs
∂CBS
∂σ

¡
s− δ,Xs, v

δ
s

¢ ³σ2s − ¡vδs¢2´
vδs (T − s+ δ)

ds,

which implies that

e−rTCBS
¡
T − δ,XT ; v

δ
T

¢
= e−rtCBS

¡
t− δ,Xt; v

δ
t

¢
+

Z T

t

e−rs
µ
∂CBS
∂x

¶
CBS

¡
s− δ,Xs, v

δ
s

¢
σsdW

∗
s

+
1

2

Z T

t

e−rs
µ
∂2CBS
∂x∂σ

¶¡
s− δ,Xs, v

δ
s

¢ (D−s Ys)σs
vδs (T − s+ δ)

ds

13



Taking conditional expectations and multiplying by ert we obtain that

E∗
£
CBS

¡
T − δ,XT ; v

δ
T

¢¯̄Ft¤
= CBS

¡
t− δ,Xt; v

δ
t

¢
+E∗

ÃZ T

t

e−r(s−t)
µ
∂2CBS
∂x∂σ

¶¡
s− δ,Xs, v

δ
s

¢ (D−s Ys)σs
vδs (T − s+ δ)

¯̄̄̄
¯Ft

!
Moreover, from the classical relationship (see for example Fouque, Papanicolau,
Sircar and Solna (2003), pg. 8) between the Gamma (derivative with respect
to the stock price) and the Vega (derivative with respect to the volatility) we
deduce that

∂CBS
∂σ

(s, x,σ)
1

σ (T − s) =
µ

∂2

∂x2
− ∂

∂x

¶
CBS (s, x,σ) , (10)

which allows us to write

E∗
£
CBS

¡
T − δ,XT ; v

δ
T

¢¯̄Ft¤
= CBS

¡
t− δ,Xt; v

δ
t

¢
+
1

2
E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS

¡
s− δ,Xs, v

δ
s

¢ ¡
D−s Ys

¢
σs

¯̄̄̄
¯Ft

!
= CBS

¡
t− δ,Xt; v

δ
t

¢
+
1

2
E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS

¡
s− δ,Xs, v

δ
s

¢
×
ÃZ T

s

DWs σ2rdr

!
σs

¯̄̄̄
¯Ft

!
Letting now δ → 0 and using (H1), (H3), Corollary 5 and the dominated con-
vergence theorem we obtain that

Vt = E∗ (CBS (t,Xt; vt)| Ft)

+
1

2
E∗
ÃZ T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
CBS (s,Xs, vs)

×
ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!
,

and now the proof is complete.

5 Option pricing approximation formulas

In this section we will use the decomposition formula proved in the last section
in order to construct approximate option pricing formulas. Let us introduce

14



some preliminary notation in order to simplify the exposition. We will denote

H (t,Xt, vt) =

µ
∂3

∂x3
− ∂2

∂x2

¶
CBS (t,Xt, vt) ,

and

Ut =

Z T

t

ÃZ T

s

DWs σ2rdr

!
σsds.

We remark that the decomposition formula can then be rewritten as

Vt = E
∗ (CBS (t,Xt; vt)| Ft) + 1

2
E∗
ÃZ T

t

e−r(s−t)H (s,Xs, vs) dUs

¯̄̄̄
¯Ft

!
In order to prove our approximation result we need to introduce the following
hypotheses:

(H4) σ2 ∈ L2,2 ([0, T ])
(H5) For all t ∈ [0, T ] there exists a positive and Ft−measurable random

variable At and some γ > 1 such that for all s ∈ [t, T ] ,
|E∗ (UsdUs| Ft)| ≤ At(T − s)γ ,

and ¯̄
E∗
¡
D−s Us

¯̄Ft¢¯̄ ≤ At,
where E∗ denotes the expectation with respect to the risk-neutral probability
P ∗

Theorem 7 (Price expansion) Assume the model (1), where σ = {σs,s ∈ [0, T ]}
is an adapted and square integrable process such that hypotheses (H1) to (H5)
hold. Then, for all t ∈ [0, T ]

Vt = E∗
µ
CBS (t,Xt; vt) +

1

2
H (t,Xt, vt)Ut

¯̄̄̄
Ft
¶

+E∗
(
1

4

Z T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
H (s,Xs, vs)UsdUsds

+
1

2

Z T

t

e−r(s−t)H (s,Xs, vs)D−s Usds

¯̄̄̄
¯Ft

)
Proof. In Theorem 1 we have proved that

Vt = E∗ (CBS (t,Xt; vt)| Ft)

+
1

2
E∗
ÃZ T

t

e−r(s−t)H (s,Xs, vs) dUs

¯̄̄̄
¯Ft

!
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Consider now the process e−rtH (t,Xt; vt)Ut. It is easy to check that

e−rTH (T,XT ; vT )UT = 0.

Then, by the same arguments as in the proof of Theorem 1 it follows that

0 = E∗ {H (t,Xt; vt)Ut

−1
2

Z T

t

e−r(s−t)H (s,Xs, vs)

ÃZ T

s

DWs σ2rdr

!
σsds

+
1

4

Z T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
H (s,Xs, vs)UsdUs

+
1

2

Z T

t

e−r(s−t)H (s,Xs, vs)D−s Usds

¯̄̄̄
¯Ft

)
,

from where we deduce the desired result.

Remark 8 This result suggests that the quantity

E∗
µ
CBS (t,Xt; vt) +

1

2
H (t,Xt, vt)Ut

¯̄̄̄
Ft
¶

(11)

can be shown as a ’first order approximation’ to option prices.

Remark 9 As shown in Hull and White (1987) as well as in Ball and Roma
(1994) or Alòs (2003), the term

E∗ (CBS (t,Xt; vt)| Ft)
(corresponding to the non-correlated case) can be approximated very accurately
by replacing v2t by

¡
E∗ v2t

¯̄Ft¢ . In the same sense, the term H (t,Xt, vt) would
be approximated in a natural way by

H

µ
t,Xt,

q
E∗ (v2t | Ft)

¶
.

This means that expression (11) can be approximated by

Vaprox = CBS

µ
t,Xt;

q
E∗ (v2t | Ft)

¶
+
1

2
H

µ
t,Xt,

q
E∗ (v2t | Ft)

¶
E∗ (Ut| Ft) . (12)

Obviously the goodness of this approximation will depend on several factors:
we will need the remaining term in Theorem 2

+
1

4

Z T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
H (s,Xs, vs)UsdUs

+
1

2

Z T

t

e−r(s−t)H (s,Xs, vs)D−s Usds

¯̄̄̄
¯Ft

)
,

to be small enought, as well as the variability of v2t . In order to see how to apply
this formulas in practice, we will present an example in the next section.
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6 An Example

6.1 The generalized Stein and Stein model

In this section we consider that the volatility follows a mean-reverting OU pro-
cess. As assumed by Stein and Stein (1991), the volatility process can be de-
scribed, under the risk-neutralized probability, by

dσt = −α (m− σt) dt+ cdBt, (13)

where α,m and c are positive real constants and Bt is a standard Brownian
motion. Here we will assume, as in Schöbel and Zhu (1999), that Bt = ρBt +p
1− ρ2Zt, for some ρ ∈ [−1, 1] and for some standard Brownian motion Z

independent of W,which extends the S&S classical model. Analytic formulas for
option prices in this context have been obtained in Schöbel and Zhu (1999).
It is easy to see that for all 0 ≤ t ≤ s ≤ T,

σs = m+ (σt −m) e−α(s−t) + c
Z s

t

e−α(s−u)dBu. (14)

From this expression it is clear that hypothesis (H1) does not hold. Nevertheless,
for every ε > 0 we can consider the process (σε)2 := ε+σ2, which satisfies (H1).
On the other hand, it is clear that σ2 (and then (σε)2) ∈ L1,2 (H2). Moreover,
using the chain rule for the derivative operator (see Nualart (1995)) it follows
that

DWs (σεr)
2 = DWs σ2r
= 2σrDsσr

= 2cρσre
−α(r−s),

from where we deduce that

E∗
ÃÃZ T

s

DWs σ2rdr

!
σs

¯̄̄̄
¯Ft

!

= 2cρ

Z T

s

e−α(r−s)E∗ (σrσs| Ft) dr

= 2cρ

(
Mt (s)

Z T

s

e−α(r−s)Mt (r) dr

+c2
Z T

s

e−α(r−s)
µZ s

t

e−α(s−u)e−α(r−u)
¶
dr

)
,

which implies that hypothesis (H3) holds.
We can see also that σ2 (and then (σε)2)∈ L2,2 (H4), and that

DWθ D
W
s (σεr)

2 = DWθ D
W
s σ2r

= 2cρe−α(r−s)DWθ σr

= 2c2ρ2e−α(r−s)e−α(r−θ).
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Then we can deduce that

E∗ (UsdUs| Ft)

= E∗
ÃÃZ T

s

ÃZ T

r

DWr σ2θdθ

!
σrdr

!ÃZ T

s

DWs σ2udu

!
σs

¯̄̄̄
¯Ft

!

= 4c2ρ2E∗
ÃÃZ T

s

σr

Z T

r

e−α(θ−r)σθdθdr

!ÃZ T

s

e−α(u−s)σudu

!
σs

¯̄̄̄
¯Ft

!
,

and

E∗
¡
D−s Us

¯̄Ft¢ = E∗
ÃZ T

s

ÃZ T

r

DWs D
W
r σ2θdθ

!
σrdr

¯̄̄̄
¯Ft

!

= 2c2ρ2E∗
ÃZ T

s

ÃZ T

r

e−α(θ−r)e−α(θ−s)dθ

!
σrdr

¯̄̄̄
¯Ft

!
,

from where hypothesis (H5) follows. It the coefficients c and ρ as well as the time
interval are small enought, it seems reasonable to assume that the remaining
term

+
1

4

Z T

t

e−r(s−t)
µ

∂3

∂x3
− ∂2

∂x2

¶
H (s,Xs, vs)UsdUs

+
1

2

Z T

t

e−r(s−t)H (s,Xs, vs)D−s Usds

¯̄̄̄
¯Ft

)
,

as well as the variance of ν2t is small. Then we can try apply formula (12). The
next Proposition is devoted to evaluate the quantities E∗

¡
v2t
¯̄Ft¢ and Ut for

our particular volatility model.

Proposition 10 Consider the stock model (1), where, under the risk-neutral
probability, the volatility process is given by the extended Stein and Stein model
(13). Then

E∗
¡
v2t
¯̄Ft¢ = 1

T − t
Z T

t

¡
Mt (s) + c

2F (s− t)¢ ds, (15)

and

E∗
ÃZ T

t

ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!

= 2cρ

ÃZ T

t

Mt(s)

Z T

s

e−α(r−s)Mt(r)dr + c
2

Z T

t

F (T − s)F (s)ds
!
,(16)

where Mt (s) = m+ (σt −m) e−α(s−t) and F (u) =
R u
0
e−2αθdθ.
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Proof. We can write

E∗
¡
v2t
¯̄Ft¢ = 1

T − t
Z T

t

E∗
¡
σ2s
¯̄Ft¢ ds.

From (14) it follows easily that

E∗
¡
σ2s
¯̄Ft¢ = ³m+ (σt −m) e−α(s−t)´2 + c2 Z s

t

e−2α(s−u)du,

from where (15) follows. On the other hand,

E∗
ÃZ T

t

ÃZ T

s

DWs σ2rdr

!
σsds

¯̄̄̄
¯Ft

!

= 2cρ

Z T

t

Z T

s

e−α(r−s)E∗ (σrσs| Ft) drds

= 2cρ

(Z T

t

Mt (s)

Z T

s

e−α(r−s)Mt (r) drds

+c2
Z T

t

Z T

s

e−α(r−s)
µZ s

t

e−α(s−u)e−α(r−u)
¶
dr

)

= 2cρ

(Z T

t

Mt (s)

Z T

s

e−α(r−s)Mt (r) dr

+c2
Z T

t

ÃZ T

s

e−2α(r−s)dr

!µZ s

t

e−2α(s−u)du
¶
ds

)
,

which gives us (16). Now the proof is complete
Formula (12) and Proposition 1 give us a tool to approximate option prices.

In the following tables we show some numerical applications of this approxima-
tion and we compare them with the exact values (into parentheses) calculated
by analytical computations by Schöbel and Zhu (1999).

ρ\K 90 100 110 120

-1 15. 444 (15.416) 8. 338 (8.307) 3. 503 (3.468) 1. 033 (0.995)

-0.75 15. 371 (15.355) 8. 304 (8.275) 3. 558(3.525) 1. 130 (1.110)

-0.5 15. 298 (15.292) 8. 270 (8.243) 3. 613 (3.582) 1. 228 (1.218)

-0.25 15. 225 (15.225) 8. 236 (8.210) 3. 667 (3.638) 1. 325 (1.321)

0 15. 152 (15.155) 8. 203 (8.176) 3. 722 (3.694) 1. 422 (1.420)

0.25 15. 079 (15.081) 8. 169 (8.141) 3. 777 (3.749) 1. 519 (1.514)

0.5 15. 006 (15.003) 8. 135 (8.106) 3. 832 (3.803) 1. 617 (1.605)

0.75 14. 933 (14.919) 8. 101 (8.070) 3. 887 (3.856) 1. 714 (1.693)

1 14. 860 (14.828) 8. 067 (8.034) 3. 942 (3.909) 1. 811 (1.777)

Xt = ln 100, r = 0.0953, T = 0.5,m = 0.2,σ0 = 0.2,α = 4, c = 0.1
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ρ\K 90 100 110 120

-1 14. 745 (14.730) 7.021 (6.976) 2.029 (1.977) 0.190 (0.179)

-0.75 14. 684 (14.679) 6.973 (6.936) 2.092 (2.051) 0.275 (0.279)

-0.5 14. 623 (14.626) 6.925 (6.894) 2.155 (2.121) 0.360 (0.371)

-0.25 14. 562 (14.576) 6.877 (6.849) 2.21 9 (2.189) 0.445 (0.458)

0 14.501 (14.515) 6.830 (6.803) 2.282 (2.254) 0.530 (0.542)

0.25 14.441 (14.456) 6.781 (6.753) 2.345 (2.316) 0.615 (0.621)

0.5 14.380 (14.395) 6.734 (6.701) 2.409 (2.376) 0.700 (0.698)

0.75 14. 319 (14.330) 6.686 (6.645) 2.472 (2.433) 0.784 (0.773)

1 14. 258 (14.261) 6.638 (6.587) 2.535 (2.489) 0.870 (0.845)

Xt = ln 100, r = 0.0953, T = 0.5,m = 0.1,σ0 = 0.2,α = 4, c = 0.1

ρ\K 90 100 110 120

-1 16.383 (16.357) 9.800 (9.777) 5.110 (5.084) 2.268 (2.235)

-0.75 16.315 (16.298) 9.778 (9.755) 5.158 (5.133) 2.362 (2.340)

-0.5 16.247 (16.236) 9.756 (9.732) 5.207 (5.182) 2.457 (2.441)

-0.25 16.179 (16.172) 9.734 (9.710) 5.259 (5.230) 2.551 (2.540)

0 16.111 (16.172) 9.711 (9.687) 5.305 (5.279) 2.646 (2.635)

0.25 16.043 (16.037) 9.689 (9.665) 5.353 (5.328) 2.740 (2.728)

0.5 15.975 (15.964) 9.667 (9.642) 5.402 (5.377) 2.834 (2.819)

0.75 15.907 (15.889) 9.645 (9.620) 5.451 (5.426) 2.929 (2.908)

1 15.840 (15.810) 9.623 (9.598) 5.499 (5.475) 3.023 (2.994)

Xt = ln 100, r = 0.0953, T = 0.5,m = 0.3,σ0 = 0.2,α = 4, c = 0.1
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