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Abstract

Consider the problem of testing k hypotheses simultaneously. In this paper, we discuss

finite and large sample theory of stepdown methods that provide control of the familywise

error rate (FWE). In order to improve upon the Bonferroni method or Holm’s (1979)

stepdown method, Westfall and Young (1993) make effective use of resampling to construct

stepdown methods that implicitly estimate the dependence structure of the test statistics.

However, their methods depend on an assumption called subset pivotality. The goal of this

paper is to construct general stepdown methods that do not require such an assumption.

In order to accomplish this, we take a close look at what makes stepdown procedures

work, and a key component is a monotonicity requirement of critical values. By imposing

such monotonicity on estimated critical values (which is not an assumption on the model

but an assumption on the method), it is demonstrated that the problem of constructing

a valid multiple test procedure which controls the FWE can be reduced to the problem

of contructing a single test which controls the usual probability of a Type 1 error. This

reduction allows us to draw upon an enormous resampling literature as a general means of

test contruction.
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1 Introduction

The main point of this paper is to show how computer-intensive methods can be used to

construct asymptotically valid tests of multiple hypotheses under very weak conditions. The

treatise by Westfall and Young (1993) takes good advantage of resampling to estimate the

dependence structure of multiple test statistics in order to construct more efficient multiple

testing methods. However, their methods rely heavily on the assumption of subset pivotality.

Thus, the main goal of this paper is to show how to construct valid stepdown methods that

do not require this assumption, while still being computationally feasible.

In Section 2, we discuss stepdown methods that control the familywise error rate in finite

samples. Such methods proceed stagewise by testing an intersection hypothesis without regard

to hypotheses previously rejected. However, one cannot always achieve strong control in such

a simple manner. By understanding the limitations of this approach in finite samples, we can

then see why an asymptotic approach will be valid under fairly weak assumptions. It turns out

that a simple monotonicity condition for theoretical critical values allows for some immediate

results.

In Section 3, we show that, if we estimate critical values that have a monotonicity property,

then the basic problem of constructing a valid multiple test procedure can be reduced to the

problem of constructing a critical value for a single test. This then allows us to directly apply

what we know about tests based on permutation and randomization distributions. Similarly,

we can apply bootstrap and subsampling methods as well, which is done in Section 4.

In Sections 5 and 6, we present a small simulation study and an empirical application,

respectively. All proofs are collected in an appendix.

Thus, this work is a sustained essay designed to reduce the construction of stepdown meth-

ods that control the familywise error rate for multiple testing to the problem of construction

of single tests that control the probability of a type 1 error, which then allows us to draw upon

an enormous resampling literature.

Further work will focus on a similar treatment for stepup procedures. We also would like to

extend our results to show how resampling can be used to estimate the dependence structure of

the test statistics in order to obtain improved methods that control the false discovery rate of

Benjamini and Hochberg (1995). Some results are obtained in Benjamini and Yekutieli (2001),

but they also assume the subset pivotality condition. By extending our work, we hope to avoid

such conditions.

2 Nonasymptotic Results

Suppose data X is generated from some unknown probability distribution P . In anticipation

of asymptotic results, we may write X = X (n), where n typically refers to the sample size. A

model assumes that P belongs to a certain family of probability distributions Ω, though we
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make no rigid requirements for Ω. Indeed, Ω may be a nonparametric model, a parametric

model, or a semiparametric model.

Consider the problem of simultaneously testing a hypothesis Hj against H ′
j, for j = 1, . . . , k.

Of course, a hypothesis Hj can be viewed as a subset, ωj, of Ω, in which case the hypothesis

Hj is equivalent to P ∈ ωj and H ′
j is equivalent to P /∈ ωj . For any subset K ⊂ {1, . . . , k}, let

HK =
⋂

j∈K Hj be the hypothesis that P ∈ ⋂

j∈K ωj.

In this section, we tacitly assume that HK is not empty for any subset K of {1, . . . , k};
this is the free combinations condition of Holm (1979); that is, for any K, the intersection

hypothesis HK is not empty.

Suppose that a test of the individual hypothesis Hj is based on a test statistic Tn,j, with

large values indicating evidence against the Hj. For an individual hypothesis, numerous ap-

proaches exist to approximate a critical value, such as those based on classical likelihood theory,

bootstrap tests, Edgeworth expansions, permutation tests, etc. The main problem addressed

in the present work is to construct a procedure that controls the familywise error rate (FWE).

Recall that the familywise error rate is the probability of rejecting at least one true null hy-

pothesis. More specifically, if P is the true probability mechanism, let I = I(P ) ⊂ {1, . . . , k}
denote the indices of the set of true hypotheses; that is, i ∈ I if and only P ∈ ωi. The FWE is

the probability under P that any Hi with i ∈ I is rejected. To show its dependence on P , we

may write FWE = FWEP . We require that any procedure satisfy that the familywise error

rate be no bigger than α (at least asymptotically). Furthermore, this constraint must hold

for all possible configurations of true and null hypotheses; that is, we demand strong control

of the FWE. A procedure that only controls the FWE when all k null hypotheses are true is

said to have weak control of the FWE. As remarked by Dudoit et al. (2002), this distinction

is often ignored.

For any subset K of {1, . . . , k}, let cn,K(α, P ) denote an α-quantile of the distribution of

maxj∈K Tn,j under P . Concretely,

cn,K(α, P ) = inf{x : P{max
j∈K

Tn,j ≤ x} ≥ α} . (1)

For testing the intersection hypothesis HK , it is only required to approximate a critical value

for P ∈ ⋂

j∈K ωj. Because there may be many such P , we define

cn,K(1 − α) = sup{cn,K(1 − α, P ) : P ∈
⋂

j∈K

ωj} . (2)

At this point, we acknowledge that calculating these constants may be formidable in some

problems (which is why we later turn to approximate or asymptotic methods).

Let

Tn,r1
≥ Tn,r2

≥ · · · ≥ Tn,rk
(3)

denote the observed ordered test statistics, and let Hr1
, Hr2

, . . . ,Hrk
be the corresponding

hypotheses.
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Stepdown procedures begin by testing the joint null hypothesis H{1,...,k} that all hypotheses

are true. This hypothesis is rejected if Tn,r1
is large. If it is not large, accept all hypotheses;

otherwise, reject the hypothesis corresponding to the largest test statistic. Once a hypothesis

is rejected, remove it and test the remaining hypotheses by rejecting for large values of the

maximum of the remaining test statistics, and so on. Thus, at any step, one tests an intersection

hypothesis, and an ideal situation would be to proceed at any step without regard to previous

rejections (or not having to consider conditioning on the past). Because the Holm procedure

(discussed later in Example 2.4) works in this way, one might hope that one can generally

test the intersection hypothesis at any step without regard to hypotheses previously rejected.

Forgetting about whether or not such an approach generally yields strong control for the time

being, we consider the following conceptual algorithm, which proceeds in stages by testing

intersection hypotheses.

Algorithm 2.1 (Idealized Stepdown Method)

1. Let K1 = {1, . . . , k}. If Tn,r1
≤ cn,K1

(1 − α), then accept all hypotheses and stop;

otherwise, reject Hr1
and continue.

2. Let K2 be the indices of the hypotheses not previously rejected. If Tn,r2
≤ cn,K2

(1 − α),

then accept all remaining hypotheses and stop; otherwise, reject Hr2
and continue.

...

j. Let Kj be the indices of the hypotheses not previously rejected. If Tn,rj
≤ cn,Kj

(1 − α),

then accept all remaining hypotheses and stop; otherwise, reject Hrj
and continue.

...

k. If Tn,k ≤ cn,Kk
(1 − α), then accept Hrk

; otherwise, reject Hrk
.

The above algorithm is an idealization for two reasons: the critical values may be impossible

to compute and, without restriction, there is no general reason why such a stepwise approach

strongly controls the FWE. The determination of conditions where the algorithm leads to

strong control will help us understand the limitations of a stepdown approach as well as

understand how such a general approach can at least work approximately in large samples.

First, we present an example to show that some condition is required to exhibit strong control.

Example 2.1 Suppose Tn,1 and Tn,2 are independent and normally distributed, with Tn,1 ∼
N(θ1, (1 + θ2)

2p) and Tn,2 ∼ N(θ2, (1 + θ2)
−2p), where θ1 ≥ 0 and θ2 ≥ 0. (The index

n plays no role here, but we retain it for consistent notation.) Here, p is a suitable positive

constant, chosen to be large. Also, let Φ(·) denote the standard normal cumulative distribution

function. The hypothesis Hi specifies θi = 0 while H ′
i specifies θi > 0. Therefore, the first
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step of Algorithm 2.1 is to reject the overall joint hypothesis θ1 = θ2 = 0 for large values of

max(Tn,1, Tn,2) when Tn,1 and Tn,2 are i.i.d. N(0, 1). Specifically, accept both hypotheses if

max(Tn,1, Tn,2) ≤ c(1 − α) ≡ Φ−1(
√

1 − α) ;

otherwise, reject the hypothesis corresponding to the larger Tn,i. Such a procedure exhibits

weak control but not strong control. For example, the probability of rejecting the H1 at the

first step when θ1 = 0 and θ2 = c(1 − α)/2 satisfies

P0,θ2
{Tn,1 > c(1 − α), Tn,1 > Tn,2} → 1/2

as p → ∞. So, if α < 1/2, for some large enough but fixed p, the probability of incorrectly

declaring H1 to be false is greater than α. Incidentally, this also provides an example of a single-

step procedure which exhibits weak control but not strong control. (Single-step procedures are

those where hypotheses are rejected on the basis of a single critical value; see Westfall and

Young (1993).)

Therefore, in order to prove strong control, some condition is required. Consider the

following monotonicity assumption: for I ⊂ K,

cn,K(1 − α) ≥ cn,I(1 − α) . (4)

The condition (4) can be expected to hold in many situations because the left hand side is

based on computing the 1−α quantile of the maximum of |K| variables, while the right hand

side is based on the maximum of |I| ≤ |K| variables (though one must be careful and realize

that the quantiles are computed under possibly different P , which is why some condition is

required).

Theorem 2.1 Let P denote the true distribution generating the data.

(i) Assume for any K containing I(P ),

cn,K(1 − α) ≥ cn,I(P )(1 − α) . (5)

Then, the probability that Algorithm 2.1 rejects any i ∈ I(P ) is ≤ α; that is, FWEP ≤ α.

(ii) Strong control persists if, in Algorithm 2.1, the critical constants cn,Kj
(1−α) are replaced

by dn,Kj
(1 − α) which satisfy

dn,Kj
(1 − α) ≥ cn,Kj

(1 − α) . (6)

(iii) Moreover, the condition (5) may be removed if the dn,Kj
(1 − α) satisfy

dn,K(1 − α) ≥ dn,I(P )(1 − α) (7)

for any K ⊃ I(P ).
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Remark 2.1 Under weak assumptions, one can show the sup over P of the probability that

Algorithm 2.1 rejects any i ∈ I(P ) is equal to α. It then follows that the critical values cannot

be made smaller, in hopes of increasing the ability to detect false hypotheses, without violating

the strong control of the FWE. (However, this does not negate the possibility of smaller random

critical values, as long as they are not smaller with probability one.)

Example 2.2 (Assumption of subset pivotality) Assumptions stronger than (5) have been

used. Suppose, for example, that for every subset K ⊂ {1, . . . , k}, there exists a distribution

PK which satisfies

cn,K(1 − α, P ) ≤ cn,K(1 − α, PK) (8)

for all P such that I(P ) ⊃ K. Such a PK may be referred to being least favorable among

distributions P such that P ∈
⋂

j∈K ωj . (For example, if Hj corresponds to a parameter θj ≤ 0,

then intuition suggests a least favorable configuration should correspond to θj = 0.)

In addition, assume the subset pivotality condition of Westfall and Young (1993); that is,

assume there exists a P0 with I(P0) = {1, . . . , k} such that the joint distribution of {Tn,i : i ∈
I(PK)} under PK is the same as the distribution of {Tn,i : i ∈ I(PK)} under P0. This condition

says the (joint) distribution of the test statistics used for testing the hypotheses Hi, i ∈ I(PK)

is unaffected by the truth or falsehood of the remaining hypotheses (and therefore we assume

all hypotheses are true by calculating the distribution of the maximum under P0). It follows

that, in step j of Algorithm 2.1,

cn,Kj
(1 − α) = cn,Kj

(1 − α, PKj
) = cn,Kj

(1 − α, P0) = cn,Kj
(1 − α) ; (9)

the outer equalities in (9) follow by the assumption (8) and the middle equality follows by

the subset pivotality condition. Therefore, in Algorithm 2.1, we can replace cn,Kj
(1 − α) by

cn,Kj
(1−α, P0), which in principle is known because it is the 1−α quantile of the distribution

of max(Tn,i : i ∈ Kj) under P0, and P0 is some fixed (least favorable) distribution. At the

very least, this quantile may be simulated.

The asymptotic behavior of stepwise procedures is considered in Finner and Roters (1998),

and they recognize the importance of monotonicity for the validity of stepwise procedures.

However, they also suppose the existence of a single least favorable P0 for all configurations of

true hypotheses, which then guarantees monotonicity of critical values for stepdown procedures.

As previously seen, such assumptions do not hold generally.

Example 2.3 To exhibit an example where condition (5) holds, but subset pivotality does not,

suppose that Tn,1 and Tn,2 are independent, normally distributed, with Tn,1 ∼ N(θ1, 1/(1+θ2
2))

and Tn,2 ∼ N(θ2, 1/(1 + θ2
1)). The hypothesis Hi specifies θi = 0 while the alternative H ′

i

specifies θi > 0. Then, it is easy to check that, with K1 = {1, 2},

cn,K1
(1 − α) = Φ−1(

√
1 − α) > Φ−1(1 − α) = cn,{i}(1 − α) .

Therefore, (5) holds, but subset pivotality fails.
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Example 2.4 (The Holm Procedure) Suppose −Tn,i ≡ p̂n,i is a p-value for testing Hi;

that is, assume the distribution of p̂n,i is Uniform on (0, 1) when Hi is true. Note that this

assumption is much weaker than subset pivotality (if k > 1) because we are only making an

assumption about the one-dimensional marginal distribution of the p-value statistic. Further-

more, we may assume the weaker condition

P{p̂n,i ≤ x} ≤ x

for any x ∈ (0, 1) and any P ∈ ωi. If I(P ) ⊃ K, the usual argument using the Bonferroni

inequality yields

cn,K(1 − α, P ) ≤ −α/|K| ,

which is independent of P , and so

cn,K(1 − α) ≤ −α/|K| . (10)

It is easy to construct joint distributions for which this is attained, and so we have equality

here if the family Ω is so large that it includes all possible joint distributions for the p-values.

In such case, we have equality in (10) and so the condition (5) is satisfied. Of course, even if

the model is not so large, this procedure has strong control. Simply, let dn,K(1−α) = −α/|K|,
and strong control follows by Theorem 2.1(iii).

Part (iii) of Theorem 2.1 points toward a more general method that has strong control even

when (5) is violated, and that can be much less conservative than the Holm procedure.

Corollary 2.1 Let

c∗n,Kj
(1 − α) = max{cn,K(1 − α) : K ⊂ Kj} . (11)

Then, if you replace cn,Kj
(1 − α) by c∗n,Kj

(1 − α) in Algorithm 2.1, strong control holds.

Corollary 2.1 is simply the closure principle of Marcus et al. (1976); also see Hommel (1986)

and Theorem 4.1 of Hochberg and Tamhane (1987). Thus, in order to have a valid stepdown

procedure, one must not only consider the critical value cn,K(1−α) when testing an intersection

hypothesis HK , one must also compute all cn,I(1 − α) for I ⊂ K.

3 Random Critical Values and Randomization Tests

3.1 Preliminaries and a Basic Inequality

In general, the critical values used in Algorithm 2.1 are the smallest constants possible without

violating the FWE. As a simple example, suppose Xi, i = 1, . . . , k, are independent N(θi, 1),

with the θi varying freely. The null hypothesis Hi specifies θi ≤ 0. Then,

cn,K(1 − α) = Φ−1[(1 − α)(1/|K|)] .
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Suppose c is a constant and c < cn,K(1 − α) for some subset K. As θi → ∞ for i /∈ K and

θi = 0 for i ∈ K, the probability of a type 1 error tends to

P0{max
i∈K

Xi > c} > P0{max
i∈K

Xi > cn,K(1 − α)} = α .

Of course, if the θi are bounded, the argument fails, but typically such assumptions are not

made.

However, the above only applies to nonrandom critical values and leaves open the possibility

that critical values can be estimated, and therefore be random. That is, if we replace cn,K(1−α)

by some estimate ĉn,K(1 − α), it can sometimes be smaller than cn,K(1 − α) as long as it is

not with probability one. Of course, this is the typical case where critical values need to be

estimated, such as by the bootstrap in the next section. In this section, we focus on the use

of permutation and randomization tests that replace the idealized critical values by estimated

ones, while still retaining finite sample control of the FWE.

One simple way to deal with permutation and randomization tests is to define critical values

conditional on an appropriate σ-field, and then the monotonicity assumptions of the previous

section would then turn into monotonicity assumptions for the conditional critical values. (For

example, in the context of comparing two samples, everything would be conditional on the

values of the combined sample, and this would directly lead to permutation tests.)

For the sake of increased generality, we instead proceed as follows. Suppose the cn,K(1−α)

in Algorithm 2.1 are replaced by estimates ĉn,K(1 − α). These could be obtained by a permu-

tation test if it applies, but for the moment their construction is left unspecified. However, we

will assume two things. First, we will replace the monotonicity assumption (5) by montonicity

of the estimated critical values; that is, for any K ⊃ I(P ),

ĉn,K(1 − α) ≥ ĉn,I(P )(1 − α) . (12)

We then also require that, if ĉn,K(1 − α) is used to test the intersection hypothesis HK , then

it is level α when K = I(P ); that is,

P{max(Tn,i : i ∈ I(P )) > ĉn,I(P )(1 − α)} ≤ α . (13)

We will show the basic inequality that the FWEP is bounded above by left side of (13). So,

if we can construct monotone critical values which also satisfy each one yields a level α for

testing a single intersection hypothesis, then the next result says the stepdown procedure

controls the FWE. Thus, the construction of a stepdown procedure is essentially reduced to

construction of single tests, as long as the monotonicity assumption holds. (Also, note the

monotonicity assumption for the critical values, which is something we can essentially enforce

because they only depend on the data, can hold even if the corresponding nonrandom ones are

not monotone.)

Theorem 3.1 Let P denote the true distribution generating the data. Consider Algorithm 2.1

with cn,K(1 − α) replaced by estimates ĉn,K(1 − α) satisfying (12).
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(i) Then,

FWEP ≤ P{max(Tn,j : j ∈ I(P )) > ĉn,I(P )(1 − α)} . (14)

(ii) Therefore, if the critical values also satisfy (13), then FWEP ≤ α.

3.2 Permutation and Randomization Tests

Before applying Theorem 3.1, we first review a general construction of a randomization test in

the context of a single test. Our setup is framed in terms of a population model, but similar

results are possible in terms of a randomization model (as in Section 3.1.7 of Westfall and

Young (1993)).

Based on data X taking values in a sample space X , it is desired to test the null hypothesis

H that the underlying probability law P generating X belongs to a certain family ω of distribu-

tions. Let G be a finite group of transformations g of X onto itself. The following assumption,

which we will call the randomization hypothesis, allows for a general test construction.

The Randomization Hypothesis The null hypothesis implies that the distribution of X is

invariant under the transformations in G; that is, for every g in G, gX and X have the same

distribution whenever X has distribution P in ω.

As an example, consider testing the equality of distributions based on two independent

samples (Y1, . . . , Ym) and (Z1, . . . , Zn). Under the null hypothesis that the samples are gener-

ated from the same probability law, the observations can be permuted or assigned at random

to either of the two groups, and the distribution of the permuted samples is the same as the dis-

tribution of the original samples. In this example, and more generally when the randomization

hypothesis holds, the following construction of a randomization test applies.

Let T (X) be any real-valued test statistic for testing H. Suppose the group G has M

elements. Given X = x, let

T (1)(x) ≤ T (2)(x) ≤ · · · ≤ T (M)(x)

be the ordered values of T (gx) as g varies in G. Fix a nominal level α, 0 < α < 1, and let m

be defined by

m = M − [Mα] , (15)

where [Mα] denotes the largest integer less than or equal to Mα. Let M +(x) and M 0(x)

be the number of values T (j)(x) (j = 1, . . . ,M) which are greater than T (m)(x) and equal to

T (m)(x), respectively. Set

a(x) =
Mα − M+(x)

M0(x)
.

Define the randomization test function φ(X) to be equal to 1, a(X), or 0 according to

whether T (X) > T (m)(X), T (X) = T (m)(X), or T (X) < T (m)(X), respectively.
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Under the randomization hypothesis, Hoeffding (1952) shows this construction produces a

test that is exact level α, and this result is true for any choice of test statistic T . Note that this

test is possibly a randomized test if Mα is not an integer of there are ties in the ordered values.

Alternatively, if one prefers not to randomize, the slightly conservative but nonrandomized test

that rejects if T (X) > T m(X) is level α.

For any x ∈ X , let Gx denote the G-orbit of x; that is,

Gx = {gx : g ∈ G} .

These orbits partition the sample space. Then, under the randomization hypothesis, it can be

shown that the conditional distribution of X given X ∈ Gx is uniform on Gx.

In general, one can define a p-value p̂ of a randomization test by

p̂ =
1

M

∑

g

I{T (gX) ≥ T (X)} . (16)

It is easily shown that p̂ satisfies, under the null hypothesis,

P{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (17)

Therefore, the nonrandomized test that rejects when p̂ ≤ α is level α.

Because G may be large, one may resort to a stochastic approximation to construct the

randomization test, for example, by randomly sampling transformations g from G with or

without replacement. In the former case, for example, suppose g1, . . . , gB−1 are i.i.d. and

uniformly distributed on G. Let

p̃ =
1

B

[

1 +

B−1
∑

i=1

I{T (giX) ≥ T (X)}
]

. (18)

Then, it can be shown that, under the randomization hypothesis,

P{p̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1 , (19)

where this probability reflects variation in both X and the sampling of the gi. Note that (19)

holds for any B, and so the test that rejects when p̃ ≤ α is level α even when a stochastic

approximation is employed. Of course, the larger the value of B, the closer p̂ and p̃ are to each

other; in fact, p̂ − p̃ → 0 in probability as B → ∞. The argument for (18) is based on the

following simple fact.

Lemma 3.1 Suppose Y1, . . . , YB are exchangeable real-valued random variables; that is, their

joint distribution is invariant under permutations. Let q̃ be defined by

q̃ =
1

B

[

1 +

B−1
∑

i=1

I{Yi ≥ YB}
]

.

Then, P{q̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1.
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We now return to the multiple testing problem. Assume GK is a group of transforma-

tions for which the randomization hypothesis holds for HK . Then, we can apply the above

construction to test the single intersection hypothesis HK based on the test statistic

Tn,K = max(Tn,i : i ∈ K) (20)

and reject HK when

Tn,K(X) > T
(|GK |−[|GK |α])
n,K (X) .

If we further specialize to the case where GK = G, so that the same G applies to all

intersection hypotheses, then we can verify the monotonicity assumption for the critical values.

Set mα = |G| − [|G|α]. Then, for any g ∈ G and I ⊂ K,

max(Tn,i(gX) : i ∈ K) ≥ max(Tn,i(gX) : i ∈ I) , (21)

and so as g varies, the mαth largest value of the left side of (21) is at least as large as the mαth

largest value of the right side.

Consequently, the critical values

ĉn,K(1 − α) = T
(mα)
n,K , (22)

satisfy the monotonicity requirement of Theorem 3.1. Moreover, by the general randomization

construction of a single test, the test that rejects HK when TK ≥ T
(mα)
n,K is level α. Therefore,

the following is true.

Corollary 3.1 Suppose the randomization hypothesis holds for a group G when testing any

intersection hypothesis HK. Then, the stepdown method with critical values given by (22)

controls the FWE.

Equivalently, in analogy with (16), we can compute p-values for testing HK via

p̂n,K =
1

M

∑

g

I{Tn,K(gX) ≥ Tn,K(X)} , (23)

and at stage j where we are testing an intersection hypothesis, say HK , reject if p̂n,K ≤ α.

Alternatively, we can approximate these p-values and still retain the level of the test. In

analogy with (18), randomly sample g1, . . . , gB−1 from G and let

p̃n,K =
1

B

[

1 +

B−1
∑

i=1

I{Tn,K(giX) ≥ Tn,K(X)}
]

. (24)

By an almost identical argument, we have the following.

Corollary 3.2 Suppose the randomization hypothesis holds for a group G when testing any

intersection hypothesis HK. Consider the stepdown method which rejects Kj at stage j if

p̃n,Kj
≤ α. Then, FWEP ≤ α.
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Remark 3.1 In the above corollaries, we have worked with the randomization construction

using nonrandomized tests. A similar result would hold if we permit randomization.

Example 3.1 (Two Sample Problem With k Variables) Suppose Y1, · · · , YnY
is a sam-

ple of nY independent observations from a probability distribution PY and Z1, · · · , ZnZ
is a

sample of nZ observations from PZ . Here, PY and PZ are probability distributions on Rk, with

jth components denoted PY,j and PZ,j, respectively. The hypothesis Hj asserts PY,j = PZ,j

and we wish to test these k hypotheses based on X = (Y1, · · · , YnY
, Z1, · · · , ZnZ

). Also, let

Yi,j denote the jth component of Yi and Zi,j denote the jth component of Zi. As in Troendle

(1995), we assume a semiparametric model. In particular, assume PY and PZ are governed by

a family of probability distributions Qθ indexed by θ = (θ1, . . . , θk) ∈ Rk (and assumed iden-

tifiable), so that PY has law Q(θY ) and PZ has law Q(θZ). For concreteness, one may think of

θ as being the mean vector, though this assumption is not necessary. Now, Hj can be viewed

as testing θY,j = θZ,j. Note that the randomization construction does not need to assume

knowledge of the form of Q (just as a single two-sample permutation test in a shift model does

not need to know the form of the underlying distribution under the null hypothesis).

Let n = nY +nZ , and for x = (x1, · · · , xn) ∈ Rn, let gx ∈ RN be defined by (xπ(1), · · · , xπ(n)),

where (π(1), · · · , π(n)) is a permutation of (1, 2, · · · , n). Let G be the collection of all such g

so that M = n!. Under the hypothesis PY = PZ , gX and X have the same distribution for

any g in G.

Unfortunately, this G does not apply to any subset of the hypotheses. However, we just

need a slight generalization to cover the example. Suppose that the test statistic Tn,j used to

test Hj only depends on the jth components of the observations, namely Yi,j, i = 1, . . . , nY and

Zi,j, i = 1, . . . , nZ ; this is a weak assumption indeed. In fact, let XK be the data set consisting

of the the components Yi,j and Zi,j as j varies only in K. The simple but important point here

is that, for this reduced data set, the randomization hypothesis holds. Specifically, under the

null hypothesis θY,j = θZ,j for j ∈ K, XK and gXK have the same distribution (though X and

gX need not). Also, for any g ∈ G, Tn,j(gX) and Tn,j(X) have the same distribution under

Hj, and similarly for any K ⊂ {1, . . . , k}, Tn,K(gX) and Tn,K(X) have the same distribution

under HK .

Then, because the same G applies in this manner for all K, the critical values from the

randomization test are monotone, just as in (21). Moreover, each intersection hypothesis can

be tested by an exact level α randomization test (since inference for HK is based only on

XK). Therefore, essentially the same argument leading to Corollaries 3.1 and 3.2 applies. In

particular, even if we need to resort to approximate randomization tests at each stage, but

as long as we sample the same set of gi from G, the resulting procedure retains its finite

sample property of controlling the FWE. In contrast, Troendle (1995) uses lengthy arguments

to conclude only asymptotic control.

Remark 3.2 It is interesting to study the behavior of randomization procedures if the model

is such that the randomization hypothesis does not hold. For example, in Example 3.1, suppose
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we are just interested in testing the hypothesis H ′
j that the mean of PY,j is the mean of PZ,j

(assumed to exist). Then, the randomization test construction of this section fails because

the randomization hypothesis need not hold. However, since the randomization procedure has

monotone critical values (as this is only a property of how the data is used), Theorem 3.1(i)

applies. Therefore, one can again reduce the problem of studying control of the FWE to that

of controlling the level of a single intersection hypothesis. But the problem of controlling the

level of a single test when the randomization hypothesis fails is studied in Romano (1990) and

so similar methods can be used here, with the hope of at least proving asymptotic control.

Alternatively, the more general resampling approaches of Section 4 can be employed; the

comparison of randomization and bootstrap tests has been studied in Romano (1989) and it

is shown they are often quite close, at least when the randomization hypothesis holds.

Example 3.2 (Problem of Multiple Treatments) Consider the one-way anova model. We

are given k + 1 independent samples, with the jth sample having nj i.i.d. observations Xi,j ,

i = 1, . . . , nj. Suppose Xi,j has distribution Pj. The problem is to test the hypotheses of k

treatments with a control; that is, Hi : Pi = Pk+1. (Alternatively, we can test all pairs of

distributions, but the issues are much the same, so we illustrate them with the slightly easier

setup.) Under the joint null hypothesis, we can randomly assign all n =
∑

j nj observations

to any of the groups; that is, the group G consists of all permutations of the data. However,

if only a subset of the hypotheses are true, this group is not valid. A simple remedy is to

permute only within subsets; that is, to test any subset hypothesis HK , only consider those

permutations that permute observations within the sample Xi,k+1 and the samples Xi,j with

j ∈ K. Therefore, one computes a critical value by ĉn,K(1 − α) by the randomization test

with the group GK of permutations within samples j ∈ K and j = k + 1. Unfortunately, this

does not lead to monotonicity of critical values, and the previous results do not apply. But,

there is an analogue of Corollary 2.1, if one is willing to compute critical values for all subset

hypotheses; that is, replace ĉn,Kj
(1 − α) by

ĉ∗n,Kj
(1 − α) = max{ĉn,K(1 − α) : K ⊂ Kj} .

On the other hand, this can be computationally prohibitive. Such issues were raised by Petron-

das and Gabriel (1983) (although the problem was not framed in terms of a montonicity re-

quirement). Using the critical value ĉ∗n,Kj
(1 − α) is based on the closure principle of Marcus

et al. (1976) and is also similar to (2.13) of Westfall and Young (1993). However, we will

shortly see that the lack of monotonicity of critical values is only a finite sample concern; see

Example 4.2.

4 Asymptotic Results

The main goal of this section is to construct asymptotically valid stepdown procedures that

hold under very weak assumptions, even when the monotonicity condition of Theorem 2.1

fails. The assumptions are identical to the weakest assumptions available for the contruction
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of asymptotically valid tests of a single hypothesis, which are used in many resampling schemes,

and so one cannot expect to improve them without improving the now well-developed theory

of resampling methods for testing a single hypothesis.

Of course, Corollary 2.1 reminds us that it may be possible to construct a test that controls

the FWE if we are willing and able to compute critical values for all possible 2k − 1 nontrivial

intersection hypotheses. If each such test is computed by a bootstrap or resampling method,

the number of computations could get quite large for even moderate k. Not only will we

provide weak conditions, but we will consider a method that only requires one set of bootstrap

resamples, as well as a method based on one set of subsamples.

In order to accomplish this without having to invoke an assumption like subset pivotality,

we will consider resampling schemes that do not obey the constraints of the null hypothesis.

Such schemes, as discussed in Beran (1986) and Romano (1988), are based on the idea that the

critical value should be obtained under the null hypothesis and so the resampling scheme should

reflect the constraints of the null hypothesis. This idea is even advocated as a principle in Hall

and Wilson (1991), and it is enforced throughout Westfall and Young (1993). While appealing,

it is by no means the only approach toward inference in hypothesis testing. Indeed, the well-

known explicit duality between tests and confidence intervals means that if you can construct

good or valid confidence intervals, then you can construct good or valid tests, and conversely.

But, there is no dispute that resampling the empirical distribution to construct a confidence

interval for a single parameter can indeed produce very desirable intervals, which then translate

into desirable tests. The same holds for simultaneous confidence sets and multiple tests.

That is not to say that the approach of obeying the null constraints is less appealing. It

is, however, often more difficult to apply, and it is implausible that one resampling scheme

obeying the constraints of all hypotheses would work in the multiple testing framework. An

alternative approach would be to resample from a different distribution at each step, obeying

the constraints of the null hypotheses imposed at each step. This approach would probably

succeed in a fair amount of generality, but even so, two problems would remain. First, it may

be difficult to determine the appropriate resampling sheme for testing each subset hypothesis.

Second, even if one knew how to resample at each stage, there is increased computation. Our

approach avoids these complications.

Before embarking on the general theory, a motivating example is presented to fix ideas.

Example 4.1 (Testing Correlations) Suppose X1, . . . , Xn are i.i.d. random vectors in RI s,

so that Xi = (Xi,1, . . . , Xi,s). Assume E|Xi,j |2 < ∞ and V ar(Xi,j) > 0, so that the correlation

between X1,i and X1,j, namely ρi,j is well-defined. Let Hi,j denote the hypothesis that ρi,j = 0,

so that the multiple testing problem consists in testing all k =
(s
2

)

pairwise correlations. Also

let Tn,i,j denote the ordinary sample correlation between variables i and j. (Note that we

are indexing hypotheses and test statistics now by 2 indices i and j.) As noted by Westfall

and Young (1993), Example 2.2, p.43, subset pivotality fails here. For example, using results

of Aitken (1969) Aitken (1971), if s = 3, H1,2 and H1,3 are true but H2,3 is false, the joint
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limiting distribution of n1/2(Tn,1,2, Tn,1,3) is bivariate normal with means zero, variances one,

and correlation ρ2,3. As acknowledged by Westfall and Young (1993), their methods fail to

address this problem (even asymptotically).

4.1 General Results.

We now develop some asymptotic theory. For any K ⊂ {1, . . . , k}, let Gn,K(P ) be the joint

distribution of Tn,i, i ∈ K under P , with corresponding joint c.d.f. Gn,K(x, P ), x ∈ RI |K|.

Also, let Hn,K(P ) denote the distribution of max{Tn,i : i ∈ K} under P . As in the previous

section, its 1 − α quantile is denoted cn,K(1 − α, P ). Also, the symbols
L→ and

P→ will denote

convergence in law (or distribution) and convergence in probability, respectively.

Typically, the asymptotic behavior of Gn,I(P )(P ) is governed by one of the following two

possibilities. Either it has a nondegenerate limiting distribution, or it converges weakly to

a nondegenerate constant vector (possibly with some components −∞). Actually, this has

nothing to do with the fact that we are studying joint distributions of multiple test statistics.

For example, suppose we are testing a population mean µ(P ) is ≤ 0 versus > 0 based on an

i.i.d. sample X1, . . . , Xn from P , assumed to have a finite nonzero variance σ2(P ). Consider

the test statistic Tn = n−1/2
∑

i Xi. If µ(P ) = 0, then Tn
L→ N(0, σ2(P )). On the other

hand, if µ(P ) < 0, then Tn converges in probability to −∞. Alternatively, if the test statistic

is T ′
n = max(0, Tn), then if µ(P ) = 0, T ′

n converges in distribution to max(0, σ(P )Z), where

Z ∼ N(0, 1). But, under µ(P ) < 0, T ′
n converges in probability to 0. Note, the two cases

exhaust all possibilities under the null hypothesis. On the other hand, for the two-sided

problem of testing µ(P ) = 0 versus µ(P ) 6= 0 based on |n−1/2
∑

i Xi|, a nondegenerate limit

law exists under the null hypothesis, and this exhausts all possibilities under the null hypothesis

(under the assumption of a finite positive variance).

Formally, we will distinguish between the following assumptions, which are only imposed

when K = I(P ) is the set of true hypotheses.

Assumption A1 Under P , the joint distribution of the test statistics Tn,i, i ∈ I(P ), has a

limiting distribution; that is,

Gn,I(P )(P )
L→ GI(P )(P ) . (25)

This implies that, under P , max{Tn,i : i ∈ I(P )} has a limiting distribution, say HI(P )(P ),

with limiting c.d.f. HI(P )(x, P ). We will assume further that

HI(P )(x, P ) is continuous and strictly increasing at x = cI(P )(1 − α, P ) . (26)

Note that the continuity condition in (26) is satisfied if the |I(P )| univariate marginal

distributions of JI(P )(P ) are continuous. Also, the strictly increasing assumption can be weak-

ened as well, but it holds in all known examples where the continuity assumption holds, as

typical limit distributions are of the Gaussian, Chi-squared, etc. type. Actually, the strictly

increasing assumption can be removed entirely (see Remark 1.2.1 of Politis et al. (1999)).
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Assumption A2 Under P , Gn,I(P )(P ) converges weakly to a point mass at d = d(P ), where

d = (d1(P ), . . . , d|I(P )|(P )) is a vector of |I(P )| components. (In the case where di(P ) = −∞,

we mean Tn,i converges in probability under P to −∞.)

Now, we prove a basic result that can be applied to several resampling or asymptotic meth-

ods to approximate critical values. Consider the stepdown method presented in Algorithm 2.1

with cn,K(1 − α) replaced by some estimates ĉn,K(1 − α). We will consider some concrete

choices later.

Theorem 4.1 (i) Fix P and suppose Assumption A1 holds, so that (25) and (26) hold.

Assume the estimated critical values ĉn,K(1 − α) satisfy: for any K ⊃ I(P ), the estimates

ĉn,K(1 − α) are bounded below by cI(P )(1 − α); by this we mean, for any ε > 0

ĉn,K(1 − α) ≥ cI(P )(1 − α) − ε with probability → 1 . (27)

Then, lim supn FWEP ≤ α.

(ii) Fix P and suppose Assumption A1 holds. Assume the estimated critical values are mono-

tone in the sense that

ĉn,K(1 − α) ≥ ĉn,I(1 − α) whenever I ⊂ K . (28)

Then, (27) holds for all K ⊃ I(P ) if it holds in the special case K = I(P ). Therefore, if

Assumption A1 and the montonicity condition (28) hold, and

ĉn,I(P )(1 − α) ≥ cI(P )(1 − α) with probability → 1 , (29)

then lim supn FWEP ≤ α.

(iii) Fix P and suppose Assumption A2 holds. Also, assume the monotonicity condition (28).

If, for some ε > 0,

ĉn,I(P )(1 − α) > max{di(P ) : i ∈ I(P )} + ε with probability → 1, (30)

then lim supn FWEP = 0.

Note that Assumption A1 implies

cn,I(P )(1 − α) → cI(P )(1 − α) as n → ∞ .

In part (i) of Theorem 4.1, we replace the monotonicity requirement of Theorem 3.1 by a weak

asymptotic monotonicty requirement (27).

In general, the point of Theorem 4.1 is that lim supn FWEP ≤ α regardless of whether the

convergence of the null hypotheses satisifies Assumption A1 or Assumption A2, at least under

reasonable behavior of the estimated critical values. Moreover, the monotonicity condition

(28) assumed in parts (ii) and (iii) will be shown to hold generally for some construction based
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on the bootstrap and subsampling. Therefore, the crux of proving strong control requires that

the estimated critical values satisfy (29); that is, the critical value for testing the intersection

hypothesis HI(P ) is consistent in that it leads to a test that asymptotically controls the prob-

ability of a Type 1 error. In other words, the problem is essentially reduced to the problem of

estimating the critical value for a single (intersection) test without having to worry about the

multiple testing issue of controlling the FWE. Thus, the problem of controlloing the FWE is

reduced to the problem of controlling the Type 1 error of a single test. This will be further

clarified for specific choices of estimates of the critical values.

Before applying Theorem 4.1 (ii), (iii), which assumes monotonicity of critical values, we

demonstrate consistency without the assumption of monotonicity. In this regard, a simple

alternative to Theorem 4.1 (i) is the following.

Theorem 4.2 Fix P and suppose Assumption A1 holds. Suppose the test is consistent in the

sense that, for any hypothesis Hj with j /∈ I(P ), the probability of rejecting Hj by the stepdown

procedure tends to one. This happens, for example, if the critical values ĉn,K are bounded in

probability while Tn,j → ∞ if j /∈ I(P ). Then, lim supn FWE ≤ α.

Example 4.2 (Example 3.2, revisited) In the setup of Example 3.2, suppose the observa-

tions are real-valued, and consider a test of Hj based on

Tn,j = n1/2|X̄j − X̄k+1| ,

where X̄j = n−1
j

∑

i Xi,j . Suppose we use the permutation test where at stage j for testing

HKj
, only permutations of observations Xi,j with j ∈ K and Xi,k+1 are used. Assume ni/n →

λi ∈ (0, 1). Let µ(Pi) denote the true mean of Pi, assumed to exist; also assume the variance

of Pi is finite. Then, Theorem 4.2 applies to any P for which, if j /∈ I(P ), µ(Pi) 6= µ(Pk+1)

(which, of course, is not the same as Pi 6= Pk+1). Indeed, Tn,i → ∞ in probability. Also, using

arguments as in Romano (1990), ĉn,K(1 − α) is bounded in probability for any K, because

asymptotically it behaves like the 1 − α quantile of the maximum of |K| normal variables.

Therefore, asymptotic control of the FWE persists. However, if the distributions differ but the

means are the same, the test statistic should be designed to capture arbitrary differences in

distribution, such as a two-sample Kolmogorov Smirnov test statistic (unless one really wants

to pick up just differences in the mean, but then the null hypothesis should reflect this.)

4.2 A Bootstrap Construction

We now specialize a bit and will develop a concrete construction based on the bootstrap.

For now, we suppose hypothesis Hi is specified by {P : θi(P ) ≤ 0} for some real-valued

parameter θi. Suppose θ̂n,i is an estimate of θi. Also, let Tn,i = τnθ̂n,i for some nonnegative

(nonrandom) sequence τn → ∞. The sequence τn is introduced for asymptotic purposes so

that a limiting distribution for τnθ̂n,i exists when θi(P ) = 0.
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Remark 4.1 Typically, τn = n1/2. Also, it is possible to let τn vary with the hypothesis i.

Extensions to cases where τn depends on P are also possible, using ideas in Bertail et al. (1999).

The bootstrap method relies on its ability to approximate the joint distribution of {τn[θ̂n,i−
θi(P )] : i ∈ K}, whose distribution we denote by Jn,K(P ). We will assume the normalized

estimates satisfy the following.

Assumption B1(i) Jn,I(P )(P )
L→ JI(P )(P ), a nondegenerate limit law.

Let Ln,K(P ) denote the distribution under P of max{τn[θ̂n,i − θi(P )] : i ∈ K}, with

corresponding distribution function Ln,K(x, P ) and α-quantile

bn,K(α, P ) = inf{x : Ln,K(x, P ) ≥ α} .

Assumption B1 implies Ln,K(P ) has a limiting distribution LK(P ).

We will further assume

Assumption B1(ii) LK(P ) is continuous and strictly increasing on its support.

Under Assumption B1, it follows that

bn,K(1 − α, P ) → bK(1 − α, P ) , (31)

where bK(α, P ) is the α-quantile of the limiting distribution LK(P ).

Assume B1 holds. If P satisfies at least one θi(P ) is exactly 0, then A1 holds. On the other

hand, if P satisfies all θi(P ) < 0 among the θi(P ) which are ≤ 0, then A2 holds. Indeed, if

τn(θ̂n,i− θi(P )) converges to a limit law and τnθi(P ) → −∞, then τnθ̂n,i → −∞ in probability.

Let Q̂n be some estimate of P . Then, a nominal 1 − α level bootstrap confidence region

for the subset of parameters {θi(P ) : i ∈ K} is given by

{(θi : i ∈ K) : max
i∈K

τn[θ̂n,i − θi] ≤ bn,K(1 − α, Q̂n)}

= {(θi : i ∈ K) : θi ≥ θ̂n,i − τ−1
n bn,K(1 − α, Q̂n)} .

So a value of 0 for θi(P ) falls outside the region iff τnθ̂n,i > bn,K(1 − α, Q̂n). By the usual

duality of confidence sets and hypothesis tests, this suggests the use of the critical value

ĉn,K(1 − α) = bn,K(1 − α, Q̂n) , (32)

at least if the bootstrap is a valid asymptotic approach for confidence region construction.

Note that, regardless of asymptotic behavior, the monotonicity assumption (28) is always

satisfied for the choice (32). Indeed, for any Q and if I ⊂ K, bn,I(1−α,Q) is the 1−α quantile

under Q of the maximum of |I| variables, while bn,K(1 − α,Q) is the 1 − α quantile of these

same |I| variables together with |K| − |I| variables.

Therefore, in order to apply Theorem 4.1 to conclude lim supn FWEP ≤ α, it is now only

necessary to study the asymptotic behavior of bn,K(1 − α, Q̂n) in the case K = I(P ). For
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this, we further assume the usual conditions for bootstrap consistency when testing the single

hypothesis that θi(P ) ≤ 0 for all i ∈ I(P ); that is, we assume the bootstrap consistently

estimates the joint distribution of τn[θ̂n,i − θi(P )] for i ∈ I(P ). Specifically, consider the

following.

Assumption B2 For any metric ρ metrizing weak convergence on RI |I(P )|,

ρ
(

Jn,I(P )(P ), Jn,I(P )(Q̂n)
)

P→ 0 .

Theorem 4.3 Fix P satisfying assumption B1. Let Q̂n be an estimate of P satisfying B2.

Consider the stepdown method in Algorithm 2.1 with cn,K(1 − α) replaced by bn,K(1 − α, Q̂n).

Then, lim supn FWEP ≤ α.

Example 4.3 (Continuation of Example 4.1) The analysis of sample correlations is a

special case of the smooth function model studied in Hall (1992), and the bootstrap approach

is valid for such models.

Remark 4.2 The above analysis extends to the two-sided case. Simply change assumption

B1(ii) to reflect the distribution of max{τn|θ̂n,i − θi(P )| : i ∈ K}, and the theorem holds.

Remark 4.3 The main reason why the bootstrap works here can be traced to the simple result

Theorem 3.1. The bootstrap approach, by resampling from a fixed distribution, generates

monotone critical values. Therefore, since we know how to construct valid bootstrap tests

for each intersection hypothesis, this leads to valid multiple tests. But we learn more. If we

use a bootstrap approach such that each intersection test has a rejection probability equal to

α + O(εn), then we also can deduce lim supn FWEP ≤ α + O(εn), so that efficient bootstrap

methods for single tests then translate into efficient bootstrap methods for multiple tests.

Remark 4.4 Typically, the asymptotic behavior of a test procedure when P is true will satisfy

that it is consistent in the sense that all false hypotheses will be rejected with probability

tending to one. However, one can also study the behavior of our procedures against contiguous

alternatives so that not all false hypotheses are rejected with probability tending to one under

such sequences. But, of course, if alternative hypotheses are in some sense close to their

respective null hypotheses, then the procedures will typically reject even fewer hypotheses, and

so the limiting probability of any false rejection under a sequence of contiguous alternatives

will be bounded by α.

Remark 4.5 The construction developed in this subsection can be extended to the case of

studentized test statistics. The details are straightforward and left to the reader.
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4.3 A Subsampling Construction.

In this section, we present an alternative construction that applies under weaker conditions

than the bootstrap. We now assume that we have available an i.i.d. sample X1, . . . , Xn from

P , and Tn,i = Tn,i(X1, . . . , Xn) is the test statistic we wish to use for testing Hi. To describe

the test construction, fix a positive integer b ≤ n let Y1, . . . , YNn be equal to the Nn =
(

n
b

)

subsets of {X1, . . . , Xn}, ordered in any fashion. Let T
(j)
b,i be equal to the statistic Tb,i evaluated

at the data set Yj. Then, for any subset K ⊂ {1, . . . , k}, the joint distribution of (Tn,i : i ∈ K)

can be approximated by the empirical distribution of the
(n

b

)

values (T
(j)
b,i : i ∈ K). In other

words, for x ∈ Rk, the true joint c.d.f. of the test statistics evaluated at x,

Gn,{1,...,k}(x, P ) = P{Tn,1 ≤ x1, . . . , Tn,k ≤ xk}

is estimated by the subsampling distribution

Ĝn,{1,...,k}(x) =

(

n

b

)−1
∑

j

I{T (j)
b,1 ≤ x1, . . . , T

(j)
b,k ≤ xk} . (33)

Note that the marginal distribution of any subset K ⊂ {1, . . . , k}, Gn,K(P ), is then approx-

imated by the marginal distribution induced by (33) on that subset of variables. So, Ĝn,K

refers to the empirical distribution of the values (T
(j)
n,i : i ∈ K). (In essence, one only has

to estimate one joint sampling distribution for all the test statistics because this then induces

that of any subset, even though we are not assuming anything like subset pivotality).

Similarly, the estimate of the whole joint distribution of test statistics induces an estimate

for the distribution of the maximum of test statistics. Specifically, Hn,K(P ) is estimated by

the empirical distribution Ĥn,K(x) of the values max(T
(j)
n,i : i ∈ K); that is,

Ĥn,K(x) =

(

n

b

)−1
∑

j

I{max(T
(j)
b,i : i ∈ K) ≤ x} .

Also, let

ĉn,K(1 − α) = inf{x : Ĥn,K(x) ≥ 1 − α}

denote the estimated 1 − α quantile of the maximum of test statistics Tn,i with i ∈ K.

Note the monotonicity of the critical values: for I ⊂ K

ĉn,K(1 − α) ≥ ĉn,I(1 − α) ; (34)

and so the monotonicity assumption in Theorem 4.1 holds (and also compare with (4)).

This leads us to consider the idealized stepdown algorithm with cn,K(1−α, P ) replaced by

the estimates ĉn,K(1 − α). The following result proves consistency and strong control of this

subsampling approach. Note, in particular, that Assumption B2 is not needed here at all, a

reflection of the fact that the bootstrap requires much stronger conditions for consistency; see

Politis et al. (1999). Also notice that we do not even need to assume that there exists a P for

which all hypotheses are true.
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Theorem 4.4 Suppose Assumption A1 holds. Let b/n → 0 and b → ∞.

(i). The subsampling approximation satisfies

ρ
(

Ĝn,I(P ), Gn,I(P )(P )
)

P→ 0 . (35)

(ii) The subsampling critical values satisfy

ĉn,I(P )(1 − α)
P→ cI(P )(1 − α) . (36)

(iii). Therefore, using Algorithm 2.1 with cn,K(1−α, P ) replaced by the estimates ĉn,K(1−α)

results in lim supn FWE ≤ α.

Example 4.4 (Cube root asymptotics) Kim and Pollard (1990) show that a general class

of M -estimators converge at rate τn = n1/3 to a non-normal limiting distribution. As result,

inconsistency of the bootstrap typically follows. Rodŕıguez-Poo et al. (2001) demonstrate

the consistency of the subsampling method for constructing hypothesis tests for a single null

hypothesis. By similar arguments, the validity of the subsampling construction of Theorem 4.4

in the context of cube root asymptotics can be established.

The above approach can be extended to dependent data. For example, if the data form a

stationary sequence, we would only consider the n−b+1 subsamples of the form (Xi, Xi+1, . . . , Xi+b−1).

Generalizations for nonstationary time series, random fields, and point processes are further

treated in Politis et al. (1999).

5 Simulation Study

This section presents a small simulation study in the context of Example 4.1. We generate

random vectors X1, . . . , X100 from a 10-dimensional multivariate normal distribution. Hence,

there are a total of k =
(10

2

)

= 45 pairwise correlations to test. Each individual null hypothesis

is Hi,j: ρi,j = 0; and each individual alternative hypothesis is two-sided. We apply the

stepdown bootstrap construction of Subsection 4.2, resampling from the empirical distribution.

As a special case, we also look at the single-step method based on K = {1, . . . , k} only. The

nominal FWE levels are α = 0.05 and α = 0.1. Performance criteria are the empirical FWE

and the (average) number of false hypotheses that are rejected.

We consider three scenarios. In the first scenario, all correlations are equal to 0. In the

second scenario, all ρ1,j are equal to 0.3, for j = 2, . . . , 10, and the remaining correlations are

equal to 0. In the third scenario, all correlations are equal to 0.3.

Table 1 reports the results based on 5,000 repetitions. The number of bootstrap resamples

is B = 500 always. The results demonstrate the good control of the FWE in finite sample and

the increased power of the stepdown method compared to the single-step method.
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6 Empirical Application

Westfall and Young (1993, Example 6.4) apply a multiple testing method for 10 pairwise corre-

lations. Each individual null hypothesis is that corresponding pairwise population correlation

is equal to zero; and each individual alternative hypothesis is two-sided. The reader is referred

to their Example 6.4 for the details of the real data set. Westfall and Young (1993) carry out a

bootstrap multiple test under the assumption of complete independence. As they admit, this

is a conservative approach in general. Instead we apply the stepdown bootstrap construction

of Subsection 4.2, resampling from the empirical distribution.

Table 2 compares the adjusted P -values of Westfall and Young (1993) to ours. The con-

servativeness of the Westfall and Young (1993) method can be clearly appreciated.

A Proofs

Proof of Theorem 2.1

Consider the event that a true hypothesis is rejected, so that for some i ∈ I(P ), hypothe-

sis Hi is rejected. Let ĵ be the (random) smallest index j in the algorithm where this occurs,

so that

Tn,r
ĵ

> cn,K
ĵ
(1 − α) . (37)

Since Kĵ ⊃ I(P ), assumption (5) implies

cn,K
ĵ
(1 − α) ≥ cn,I(P )(1 − α) ≥ cn,I(P )(1 − α, P )

and so

Tn,r
ĵ

> cn,I(P )(1 − α, P ) .

Furthermore, by definition of ĵ,

Tn,r
ĵ

= max(Tn,j, j ∈ Kĵ) = max(Tn,j , j ∈ I(P )) ,

and so the event that a false rejection occurs under P implies the event

max(Tn,j, j ∈ I(P )) > cn,I(P )(1 − α, P ) . (38)

Therefore, the probability of a Type 1 error is bounded above by the probability of the event

(38), which be definition has probability bounded above by α. The proof of (ii) is obvious

because the procedure becomes more conservative. The proof of (iii) holds by the proof of (i)

upon replacing the constants cn,K
ĵ
(1 − α) by dn,K

ĵ
(1 − α).

Proof of Corollary 2.1

We verify the conditions for dn,Kj
(1−α) when dn,Kj

(1−α) = c∗n,Kj
(1−α) in Theorem 2.1

(ii) and (iii). Clearly,

c∗n,K(1 − α) ≥ cn,I(1 − α) .
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Also, for K ⊃ I(P ),

c∗n,K(1 − α) = max{cn,J(1 − α) : J ⊂ K} ≥ max{cn,J(1 − α) : J ⊂ I(P )} = c∗n,I(P )(1 − α) ,

and so (7) holds.

Proof of Theorem 3.1

As in the argument of Theorem 2.1, the event a false rejection occurs is the event

max{Tn,j : j ∈ I(P )} > ĉn,K
ĵ
(1 − α) , (39)

where ĵ is the smallest (random) index where a false rejection occurs. Since K ĵ ⊃ I(P ),

ĉn,K
ĵ
(1 − α) ≥ ĉn,I(P )(1 − α) (40)

and so (i) follows. Part (ii) follows immediately from (i).

Proof of Theorem 4.1

As in the proofs of Theorems 2.1 and 3.1, namely (39), it suffices to show

lim sup
n

P{max{Tn,j : j ∈ I(P )} > ĉn,K
ĵ
(1 − α)} ≤ α .

But assumption (27) implies

ĉn,K
ĵ
(1 − α) ≥ cI(P )(1 − α) − ε with probability → 1 .

Therefore, using Assumption A1, the limit superior of the probability of a false rejection is

bounded above by

lim sup
n

FWEP ≤ P{max(Tj , j ∈ I(P )) > cI(P )(1 − α) − ε} ,

where (Tj , j ∈ I(P )) denote variables whose joint distribution is GI(P )(P ). But letting ε → 0,

the right side of the last expression becomes

1 − HI(P )(cI(P )(1 − α), P ) = 1 − (1 − α) = α .

To prove (ii), since (27) holds when K = I(P ), then it must hold for any K containing

I(P ), by assumption (28).

To prove (iii), the probability of false rejection, i.e. the event (39), is again bounded by

the probability of the event

max{Tn,j : j ∈ I(P )} > ĉn,I(P )(1 − α) ,

which converges to 0 by Assumption A2 and (30).
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Proof of Theorem 4.2

Following the proof of Theorem 4.1 (i), the random index ĵ is equal to k − |I(P )| + 1

with probability tending to one, and this index is no longer random; that is, with probability

tending to one, we first reject all false hypotheses and then commit a false rejection when we

get to the stage where we are testing the |I(P )| true hypotheses. But then, Assumption A1

allows us to conclude control of the FWE.

Proof of Theorem 4.3

Fix P and assume θi(P ) = 0 for at least one i ∈ I(P ). Then, by the comments leading

up to the statement of the theorem, the conditions of Theorem 4.1 (ii) are satisfied if we can

verify

bn,I(P )(1 − α, Q̂n)
P→ cI(P )(1 − α) .

But by the Continuous Mapping Theorem, the assumption B2 implies

ρ1

(

Ln,I(P )(P ), Ln,I(P )(Q̂n)
)

P→ 0 ,

where ρ1 is any metric metrizing weak convergence on RI . Furthermore, Ln,I(P )(P ) converges

weakly to a continuous limit law by Assumption B1, and so

bn,I(P )(1 − α, Q̂n) → bI(P )(1 − α, P )

and

bn,I(P )(1 − α, P )
P→ bI(P )(1 − α, P ) .

So it suffices to show

lim inf bn,I(P )(1 − α, P ) → cI(P )(1 − α, P ) . (41)

But, for θi(P ) ≤ 0,

τn[θ̂n,i − θi(P )] ≥ τnθ̂n,i = Tn ,

which implies

bn,I(P )(1 − α, P ) ≥ cn,I(P )(1 − α, P ) .

But, the right term converges to cI(P )(1 − α, P ), and so (41) follows.

Next, assume P has θi(P ) < 0 for all i ∈ I(P ). Then, we just need to verify the conditions

of Theorem 4.1 (iii). All that is left to verify is, for some ε > 0,

bn,I(P )(1 − α, Q̂n) > max{di(P ) : i ∈ I(P )} + ε

with probability tending to one. But, the right side here is −∞ (for any finite ε), so it just

suffices to verify the left side is OP (1). But, by B2, it suffices to show bn,I(P )(1 − α, P ) is

bounded away from −∞, which follows by (31).

Proof of Theorem 4.4
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The proof of (i) is the essential subsampling argument, which derives from (33) being a

U-statistic; see Politis et al. (1999), Theorem 2.6.1, where one statistic is treated, but the

argument is extendable to the simultaneous estimation of the joint distribution. The result (ii)

follows as well. To verify (iii), apply Theorem 4.1 (ii). The monotonicity requirement follows

by (34) and (29) follows by (ii).

References

Aitken, M. (1969). Some tests for correlation matrices. Biometrika, 56:443–446.

Aitken, M. (1971). Correction to ‘some tests for correlation matrices’. Biometrika, 58:245.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society Series B,

57(1):289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple

testing under dependency. Annals of Statistics, 29(4):1165–1188.

Beran, R. (1986). Simulated power functions. Annals of Statistics, 14:151–173.

Bertail, P., Politis, D., and Romano, J. (1999). On subsampling estimators with unknown rate

of convergence. Journal of the American Statistical Association, 94:569–579.

Dudoit, S., Shaffer, J., and Boldrick, J. (2002). Multiple hypothesis testing in microar-

ray experiments. Technical report, Division of Biostatistics, U.C. Berkeley. Available at

http://www.bepress.com/ucbbiostat/paper110/.

Finner, H. and Roters, M. (1998). Asymptotic comparison of step-down and step-up multiple

test procedures based on exchangeable test statistics. Annals of Statistics, 26:505–524.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

Hall, P. and Wilson, S. (1991). Two guidelines for bootstrap hypothesis testing. Biometrics,

47:757–762.

Hochberg, Y. and Tamhane, A. (1987). Multple Comparison Procedures. Wiley, New York.

Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations.

Annals of Mathematical Statistics, 23:169–192.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics, 6:65–70.

Hommel, G. (1986). Multiple test procedures for arbitrary dependence structures. Metrika,

33:321–336.

Kim, J. and Pollard, D. B. (1990). Cube root asymptotics. Annals of Statistics, 18:191–219.

25



Marcus, R., Peritz, E., and Gabriel, K. (1976). On closed testing procedures with special

reference to ordered analysis of variance. Biometrika, 63:655–660.

Petrondas, D. and Gabriel, K. (1983). Multiple comparisons by rerandomization tests. Journal

of the American Statistical Association, 78(384):949–957.

Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling. Springer, New York.
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B Tables

Table 1: Empirical FWEs and average number of false hypotheses rejected for both the single-

step construction and general stepdown construction of Subsection 4.2. The nominal levels are

α = 5% and α = 10%. Observations are i.i.d. multivariate normal, the number of observations

is n = 100, and the number of pairwise correlations is k = 45. The number of repetitions is

5,000 per scenario and the number of bootstrap resamples is B = 500.

All ρi,j = 0

Level α FWE (single-step) FWE (stepdown) Rejected (single-step) Rejected (stepdown)

5 4.6 4.6 0.0 0.0

10 9.8 9.8 0.0 0.0

All ρ1,j = 0.3 and remaining ρi,j = 0

Level α FWE (single-step) FWE (stepdown) Rejected (single-step) Rejected (stepdown)

5 4.0 4.2 3.7 3.8

10 8.5 8.8 4.5 4.6

All ρi,j = 0.3

Level α FWE (single-step) FWE (stepdown) Rejected (single-step) Rejected (stepdown)

5 0.0 0.0 21.1 25.4

10 0.0 0.0 26.4 30.9
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Table 2: Sample correlations and P -values for the data of Example 6.4 of Westfall and Young

(1993). ‘W-Y P -value’ denotes the adjusted P -value of Westfall and Young; ‘Step P -value’

denotes the adjusted bootstrap P -value of Subsection 4.2 (based on B = 5, 000 bootstrap

resamples).

Variables Sample correlation Raw P -value W-Y P -value Step P -value

(SATdev, % Black) −0.5089 .0002 .0019 .0016

(Salary, Crime) 0.4902 .0003 .0030 .0028

(% Black, Crime) 0.4844 .0004 .0036 .0034

(SATdev, S/T Ratio) −0.3864 .0061 .0404 .0346

(SATdev, Crime) −0.3033 .0341 .1843 .1483

(S/T Ratio, Crime) 0.2290 .1135 .4485 .3921

(S/T Ratio, % Black) 0.1732 .2341 .6474 .5986

(SATdev, Salary) 0.0980 .5030 .8753 .8572

(Salary, % Black) −0.0354 .8090 .9641 .9645

(S/T Ratio, Salary) 0.0045 .9754 .9759 .9761
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