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Abstract

In this paper we develop two models for an inventory system in
which the distributor manages the inventory at the retailers location.
These type of systems correspond to the Vendor Managed Inven-
tory(VMI) systems described in the literature. These systems are
very common in many different types of industries, such as retailing
and manufacturing, although assuming different characteristics.

The objective of our model is to minimize total inventory cost for
the distributor in a multi-period multi-retailer setting. The inventory
system includes holding and stock-out costs and we study the case
where an additional fixed setup cost is charged per delivery.

We construct a numerical experiment to analyze the model behav-
ior and observe the impact of the characteristics of the model on the
solutions.
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1 Introduction

Inventory systems vary throughout many dimensions, such as: the activities
involved, parts studied, degrees of structural complexity, flows (information
flows versus product flows) and the time horizon of the problem (one pe-
riod, and finite and infinite horizons). See Zipkin (2000) for an overview of
inventory systems

We can make a distinction between models with deterministic elements
and stochastic elements. There are also some studies on how the introduction
of inventory management technologies affects the inventory movements in
some sectors, an example is the study by Worthington (1998).

The VMI system is a particular type of inventory management system
that can be defined as a production /distribution and inventory control system
where the manufacturer or the retailer makes the replenishment decisions for
the consuming organization. This means the vendor monitors the buyers
inventory levels (physically or via electronic messaging) and makes periodic
resupply decisions regarding order quantities shipping and timing, Waller
(1999).

Examples of industries where VMI policies are being used include: the
petrochemical industry (gas stations), the grocery industry (supermarkets),
the soft drink industry (vending machines) and the automotive industry
(parts and components). There are several firm that have been adopting
a type of a VMI system: Wal-Mart, Kmart, Dillard department stores,
JCPenny are among the early adopters of VMI. But also in Hospital Mate-
rials Management, VMI achieved higher penetration, Dong (2002). Another
example of a VMI system is the Campbell Soup continuous replenishment
program, Cachon (1997).

Many advantages have been pointed out by several authors on the use of
VMI systems: with VMI, greater coordination supports the supplier’s need
for smoother production without sacrificing the buyers service and stock ob-
jectives. Transportation costs are reduced, as well as truckload management,
since the distributors do not respond automatically to orders as they are re-
ceived, they can hold orders and decide when to execute them. Another
attractive option pointed to VMI is a more efficient route planning.

Improving coordination of replenishment orders and deliveries across mul-
tiple customers helps to improve service by, for example, changing critical de-
liveries. Most of the inventory reduction achieved with VMI can be attributed
to the more frequent inventory reviews, order intervals and deliveries.



In our particular case, we are studying an inventory management system,
with multiple and finite periods. The demand is stochastic, and the sys-
tem has a single product and multiple-retailers. There is one warehouse or
distributor that delivers a single product to multiple-retailers. A particular
element is the week planning period, with no possibility of observing stock
levels during that period, and at least one delivery during the planning pe-
riod. The objective is to decide the delivery quantities and the delivery days
for a set of vendor managed points such that the total inventory costs are
minimized.

The organization of this paper is the following: In Section 2 a litera-
ture review on VMI will be briefly summarized. Then, on Section 3, we will
present two Multi-Period Vendor Managed Inventory (MPVMI) models. The
first model does not consider any setup cost and the second model includes
this additional cost. In Section 4, we will perform a computational experi-
ment on some examples. Finally, some conclusions and further research are
drawn in Section 5.

2 Literature review

There exists a considerable amount of literature regarding inventory manage-
ment problems and control systems. However, in this section we will focus
our literature review on the work that has been done about VMI system:s.

The VMI systems affect the Supply Chain (SC), Dong (2000) evaluates
this effect and states that VMI always leads to a higher buyer’s profit, but
the supplier’s profit varies. And, these benefits are obtainable only in a fully
integrated SC.

Many references study the benefits of a VMI system over other inventory
management systems. Waller (1999) studies the effect of the VMI in several
environments. He states that, in this relationship, buyers relinquish control
of key re-supply decisions and sometimes even transfer financial responsibility
for the inventory to the supplier. The arrangement transfers the burden of
asset management from the consuming organization to the vendor, who, may
be obliged to meet specific customer service goal (usually some sort of in stock
target). Some advantages of VMI are pointed, for example, reducing costs for
each partner, reducing demand volatility, mitigating uncertainty of demand
and solving the dilemma of conflicting performance measures. With VMI the
frequency of replenishment is usually increased from monthly to weekly (or



even daily), which benefits both sides. The vendor can make replenishment
decisions and the buyer transfer inventory responsibilities.

Emigh (1999) presents an overview of VMI and its growing use throughout
the retail industry. The author states that VMI is popular throughout the
SC because it lets companies shift responsibility for inventory management
to vendor in order to reduce overhead. Typically the manufacturer takes
a daily review of inventory by pulling down EDI files from the distributor.
The manufacturer then uses the inventory data to put together an anticipated
order for the distributor. The apparel industry and hospital supplies, have
been using non-automated VMI for decades, supermarkets have taken longer
than department stores. VMI practitioners range from food manufacturers
like Kraft Inc. to chain stores such as Wal-Mart stores to industries that use
VMI automation like car and paper manufacturing industries.

Harrington (1996) describes the difference between VMI and consign-
ment selling. Consignment selling allows manufacturers to place inventory
at retailer’s location, with the retailer never actually owning the product.
Consignment selling is similar to VMI but differs in one key area. In tra-
ditional VMI, the retailer still owns the inventory; the manufacturer simply
manages it. Consignment selling is the next step, the manufacturer owns the
inventory and the retailer takes a percentage for providing shelf space and
customers. In our work will refer our model as a VMI system although we
will not make any distinction between who owns the inventory.

Andel (1996), suggests that many manufacturers are more adept to han-
dling inventory than the retailers they supply. In a VMI relationship, vendors
receive withdrawal and current balance information from the retailer and the
vendor can arrange their shipments, build their loads, and cut their purchase
orders to optimize their transportation and inventory requirements.

Dong (2002) evaluates how VMI affects a supply channel. VMI always
leads to higher buyer’s profit, but the supplier’s profit varies. VMI is an
effective SC strategy that can realize many of the benefits obtainable only in
a fully integrated supply chain.

Aichlymayr (2000) shows some benefits of VMI and collaborative plan-
ning, forecasting and replenishment.

Other authors have studied the information sharing issue at VMI sys-
tems. Chueng (2002), considers a supply serving multiple retailers located
in a close proximity, in his paper he examines the benefit of using customer
demand information. Two types of SCs are considered that are often linked
to VMI programs: the first uses information on the retailers’ inventory posi-
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tion to coordinate shipments from the supplier to enjoy economies of scale;
the second uses information for unloading the shipments to the retailers to
rebalance their stocking positions.

Finally, some authors have worked on modeling VMI and optimizing re-
plenishment policies. Disney (2002) defines VMI has a production/distribution
and inventory control system where stock positions and demand rates are
known across more than l-echelon of the supply chain. VMI comes in
many different forms described by terms such as Synchronized Consumer Re-
sponse, Continuous Replenishment Programs, Efficient Consumer Response,
and Rapid Replenishment, Collaborative Planning, Forecasting and Replen-
ishment, Centralized Inventory Management. In his paper, the system is
designed to minimize inventory-holding costs and adaptation related costs
covering the need to ramp production up and down to meet perceived needs.
In this work the system is designed for various different ratios of production
adaptation costs and inventory holding costs and presents a decision support
system that allows tuning the VMI system.

Fry (2001) models a type of VMI agreement where optimal replenish-
ment and production policies for a supplier are found to be up-to-policies.
The conclusion is that VMI performs better than a Retailer Managed Inven-
tory (RMI) system (where the retailer managed inventory), in many settings
but can perform worse in others, depending on the scenario and the con-
tract parameters. For example, VMI performs better if outsourcing is very
expensive or variance is high).

The VMI can also provide benefits by allowing the vendor to coordinate
production and delivery, particularly in the case of multiple retailers, the fol-
lowing authors have studied this situation: Cheung and Lee (2002); Campbell
(1999) studied a VMI policy where the objective was to minimize the average
daily distribution cost during the planning period without causing stock-outs
at any of the customers’ location; Kleywest (2000), formulates an inventory
routing problem for a VMI system where the supplier can measure the in-
ventory level and decisions are made daily; Cetinkaya and Lee (2000) present
an analytical model for coordinating inventory and transportation decisions
in a VMI system where the vendor can hold the orders.

Our work can be included in this last group of literature. The basic idea
is to develop a model for a VMI system with the characteristics of a week
planning period, stochastic demand, unobservable stock levels and with a
minimum of one visit per week.

The motivation of this paper is to respond to a strategic need and a



growing tendency for planning deliveries and coordinating strategies within
an integrated SC. Given a set of inventory managing costs we want to design
the best delivery strategy taking into consideration the entire planning hori-
zon. Even if, in practice, you may adapt your deliveries to customers and
orders, you can obtain substantial gains by planning your inventory needs
in advance. Another motivation for this work was based on the advantages
that seem to exist when using a VMI system, in the coordination of the in-
ventory management area with other management areas at the operational
and strategic level, such as distribution, scheduling or location.
In the next section we will present the two models of VMI system.

3 The MPVMI Models

Our model consists of a VMI system with one supplier and multiple retailers.
The distributor has the responsibility to decide when to visit the retailer’s
locations and how much to deliver. This particular model has the objective of
designing the deliveries for a planning period, for a five day week period. One
of the characteristics of the VMI systems is that the distributor is responsible
for managing the inventory at the retailer point. He would like to minimize
inventory handling costs while avoiding stock-out situations.

In a stock-out situation, a customer arrives at the selling point and there is
no unit of product available at the site. This situation leads the distributor
to incur a stock-out cost. These costs can be seen in two different ways:
the cost of an emergency delivery to be able to serve the customer or an
opportunity cost of a lost sale (in this case, assuming the customer leaves
the retailers point and goes elsewhere). In both cases there is a strong cost,
higher than the cost of handling an item on the shelves. So, one assumption
of the model is that stock-out cost is always bigger than the holding cost and
both are costs applicable per unit of product per day.

Next, we will list other assumptions of the model.

3.1 Assumptions of the model

e A week planning period is considered. We want to analyze a delivery
strategy, we could have chosen two weeks or even one month but we
have considered that one week is a common frequency in many indus-
tries and it is reasonable to plan for a week.



There are no handling stock costs at the warehouse, and we assume
that there is enough amount of product (unlimited capacity). Keeping
stock at the warehouse is always relatively cheep when comparing with
the cost of keeping stock at retailers location, due to economies of scale
and dispersion of locations. We will consider this cost as being part of
production costs.

Retailers have stochastic demand, but the distribution function of the
demand for each customer and for each day is known.

At the retailers location there are inventory handling costs and a cost
for stock out, payed by the distributor.

Each location is visited at least once a week. There is a periodic need
for visiting the location for many possible reasons like: control reasons,
checking stocks, shelves positions, promotion controls or other market-
ing activities. This assumption, in a way, reflects the cross-functional
integration within a firm.

The stock is only observed at the beginning of the planning period,
and the decisions are made for the all planning horizon, independently
of what occurs during the week. So, if demand exceeds the amount
available there is a stock-out cost. There are no emergency deliveries or
changes in the delivery plan due to the arrival of information. This does
not mean that in practice these situations do not occur. But, we are
analyzing a strategy for the best delivery policy with the information
that we have, to minimize expected costs.

The holding and stock-out costs only depend on quantities and not on
retailers. They are both applied per unit of product per day and are
the same for all retailers.

We will consider two models: On the first model, there is no delivery
cost, the only costs considered are the holding and stock-out cost at
the retailers point. On the second model, there is an additional fixed
setup cost per delivery made.

The setup cost is a delivery cost per visit. This cost varies by retailers
location and by day, but does not depend on the quantities delivered.



3.2 The MPVMI model with no setup cost

In the first model, we consider that there is no cost associated with the
delivery of the product to the retailer. The only costs considered are the
costs of managing the inventory at the retailers point and the cost of a stock-
out situation. The distributor has to decide, for each day, how much to deliver
and to which retailers, minimizing total costs. Delivering higher quantities
increases the holding cost but decreases the possibilities of a stock-out.

The costs of the problem are:

e Inventory handling costs (holding costs) per unit of product at the
retailers point, per day;

e Stock out costs at the retailers point, per unit lost, per day;

The decisions to make are the following:

e Decide, for each day, which points will be visited;

e How much to deliver at these points on each day.

Objective function:

Objective is to minimize the expected total cost at the end of the week;

Min Weekly cost = Inventory holding cost + Stock-out cost.

Notation:

n = number of retailers, indexed from 1 to n;

P = number of periods (in this case, 5 periods, from 0 to 4);
h = inventory carrying cost per unit;

s = shortage cost per unit;

B, = initial inventory at location i on day p, i = 1,.n; p=1,..., P
and 3, 1s known;



Fp(.) = cumulative distribution function of the one period demand at
retailer’s location 7, for day p,i=1,..nand p=1,..., P;

Jip = distribution function of the one period demand at retailer’s loca-

tion i, for day p,i =1,..nand p=1,..., P;
lip = random variable representing the demand of retailer ¢ on day p,
1=1.nandp=1,..F;

Decision Variables:

w? = amount delivered to retailer ¢ on day p

- J 1 if retailer i is visited on day p
=120 i f otherwise

Inventory cost:

Biptwip
DY (ﬂip + Wiy — Lip) fip(Lip)dLip

Sy W
icB p +s Z (tip - /Bip - wip)fip<tip>dtip
Biptwip

For each day and for each retailer, the inventory cost is equal to the the
sum of the expected inventory holding and stock-out costs.

For each period, if demand exceeds the initial stock of that period plus
the quantity delivered, there is a cost s per unit exceeded. Otherwise, if
the demand is smaller than the quantity delivered and the initial stock, the
vendor incurs in a holding cost h, per unit of end stock.

This expression applies for the case where demand is a discrete variable.
Since the representation of the probability distribution is difficult to find,
particularly when demand ranges over a large number of possible values,
the discrete random variable is often approximated by a continuous random
variable (Hillier and Lieberman (1995)). Furthermore, when demand ranges
from over a large number of possible values, this approximation will generally
yield a nearly exact value of the optimal amount. In addition, when discrete
demand is used, the resulting expression may become slightly more difficult



to solve analytically. So, we will approximate the demand as a continuous
random variable and at the end we approximate the solution to the closest
integer.

Let I;,(w;;) represent the inventory managing cost of location i on day p.

Z Z Lip(wip)

B'i,p Wip
= Z Z h fo OO+ (Bip + wip = tip) fip (i) Ay
P +s fgiﬁwip (tip — Bip — Wip) fip(Lip)dlip

The problem can be stated as follows:

Minzzlip<wip) (2)

Subject to:

wip S M % yip7 v Z.u p (3)

1< Zyipu Vi (4)
P

Wip Z 07 v Z.u p <5)

yip € {07 1} v 2.7 b (6)

The meaning of the above constraints is:

e quantity to be delivered is positive, than that location has to be
3) If the quantity to be deli d is positive, than that location has to b
visited on that day.

(4) The VMI retailers are visited at least once a week.

(5) The variable w;

ipy
a given day is always greater or equal to 0.

that represents the quantity delivered to a retailer on

(6) This constraint defines 3, as binary.
At this point, we have an additional problem with the initial inventory:

The initial stock in only observed at the beginning of the planning horizon.
Then, we have to decide the delivery days and quantities without considering
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any information of the stocks during the period. We observe the initial
inventory of each retailer at the beginning of period 0, so the initial stock of
the future periods is also a random variable, since it depends on demand of
all the previous periods.

At each period, if there is a stock-out, a cost is incurred and the ini-
tial stock of the following period will be zero. There is an interdependence
between all periods, the initial inventory for each period is:

B = wu; >0, observed
By = Maz{0,u; +w; —tyo}
Bie = Max{0,8;; + wy —ta} = Mar {0, Max {0, u; + wipo — Lo} + wiy — Lir}
Bz = Max{0,8; +wip — tin} =
= Maa:{O,Maa:{ 0, Maz {0, u; + wio — Lo} + }+wi2_tz‘2}

Wy — Ly
By = Max{0,B;5+ws —tiz} =
O,Maa: O,MCLQ? {O,U,Z‘—I—wio —tlo}
Fwy — 1ty + w;z — i3
Wi — s

= Maz {0, Max

So, the initial stock of period p will be a function of the initial stock at
period 0 and of the quantities delivered and demand of all previous periods.

ﬂ@(uz‘; Wi, -, Wip—1, Lio, "'tipfl)

In this model we will assumed a stochastic demand that follows an expo-
nential distribution known by the distributor, with the form:

f(ty) = aipeiaiptip

with the average demand 1/a;,. There are many different statistical distrib-
tuions to choose from when working with inventory control. The exponential
distribution function is commonly used to represent the demand variation in
inventory models. See Lidke and Malstrom (1987) and Snyder (1984).

It makes sense that in some cases demand varies from day to day and
from retailer to retailer, we have considered a demand function parameter
for each retailer and for each day.
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We need to calculate the inventory cost for each period. So, for each
period we need to consider all the possible scenarios of the previous periods
initial inventory. This is, for period 0, we know the initial inventory, for
period 1 we need to consider two possibilities: stock-out at the end of period
zero (zero initial inventory at period 1) and positive stock at the end of period
0 (initial stock at period 1 positive). Extending this for all the periods we
obtain the complete inventory cost function.

o0

Bip+w'i,p
h/ (ﬂip + Wy — tz‘p)fip<tip)dtip + 3/ (tip - ﬂip - wip)fip<tip)dtip
0 Ié]

ip+w”71”
We will use the Heaviside function to simplify the expression,

substituing:

1 if by, — B, —wy, <0
1(tzp < ﬂip + wlp) - { 0 if otherwise

becomes:

00 h X 1<tzp < ﬂip + wip)(ﬁip + Wy, — tzp) . .
/0 l +5 X Ul > By + wip)(bip — By — wip) ] byt

For simplicity, in the next sections we will derive the expressions for one
retailer only, then add for all retailers.

Since obtaining the expression for the inventory cost function is complex
we will first obtain the expressions for the inventory cost expression for each
period separately, the complete cost function is the sum of the inventory cost
of each day.

For the first period, the inventory cost, Iy, is:

Period 0:

[ b L(u+wo — L) * (u+wo — to)
o = to)dt
0 /0 [—3*1(—U—w0—|—t0)*(u—|—w0—t0) f(o) 0

= exp(—ag* (u+wp)) * (s+ h)/ag+ h+* (ag*u+ ag*wy— 1)/ag

Iy is the inventory cost in period 0. It is equal to a holding cost of
hx (u+wy — to) if u+ wg > tg and a shortage cost of s * (tg — u — wy) if
U —I— Wo < to.
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For period 1 we will have to consider the 2 possible outcomes of period 0.

Period 1:

[ (w4 wo — to) * (h* 1(u +wo +wy — o —t1) |

*(U—I—wo—l—wl—to—tl)

Y —s* 1(—u—wo — wy +to + 1)

]1 - /0 /0 *<u +we +wy — tg — tl)) f<t0>f<t1>dt0dt1

+1(—u — wo + to) * (h* L(wy — t1) x (wy — t1)
—s* 1(—wy +t1) * (wy — t1))

I = ((qxutayxwe+1)/ag*h+ (aq xu+ oy *w
+1)/ay * 8) * exp(—ay * (u+ wo + wy))
+1/ay * h* exp(—oq * (u + wp))
H(=2+ ap *wy + o *u+ oy xwp) /o xh

I, is the inventory cost of period 1. It is the inventory cost considering

two possibilities:
- Positive stock in period 0:

Lu+wy—tg) * (h* L(u+wy+wy —tg—1t1) * (u+wy+wy —tog—1t)—
sk 1(—u—wy—wy +tg+ 1) * (u+wy+w, —tyg—1t1))

- Stock-out in period 0:
I(—u—wo+tg)* (h*L(wy —t;) % (wy —t) — s 1(—wy + 1) * (wy — 1))

For the third period we would have to consider 4 possibilities, for the
fourth period 8 and 16 for the fifth.

The analytical expression for the inventory cost function of all the periods

is in Appendix 1.
The total inventory cost will be the sum of the cost of each period:



The inventory cost function is a non-linear function. The first order
derivatives of the inventory cost function are also non-linear functions. And,
we also have the constraint that the w’s can not assume negative values.
So, to minimize the function we will use the Gauss-Newton’s approximation
methods (Bertsekas (1995)).

The result obtained after solving this model is a delivery policy which
implies that the distributor visits a location almost every day. In some cases,
if initial stock is sufficiently high, then the best solution will be to deliver
after this stock has ran out. Nonetheless, it makes sense to include a cost
per delivery that might change the above delivery policy. This cost, in a way,
reflects the transportation cost. This is what we will consider in the next
model.

3.3 The model with setup cost

Consider now that there is an additional cost, a setup cost per delivery. This
setup cost is a fixed charge, independent of the quantity delivered, that will
vary from retailer to retailer and eventually from day to day and is applied
whenever a deliver is made to a retailer. It does not depend on the quantities
delivered, it corresponds to the cost of preparing the order, transportation
cost and delivery cost.

The model will again minimize total cost, but this time it includes holding
and stock-out costs per unit of product per day and the setup cost per day
and per retailer visited.

The setup cost varies from retailer and day, this assumption is justified
when looking at the setup cost as a transportation cost. Customer far away
from the warehouse or with more difficult access (ex. downtown areas) have
associated a higher delivery cost.

Delivery costs might also vary by day, looking again in terms of trans-
portation and analyzing the group of retailers to be served, a retailer away
from the warehouse but closer to other group of retailer being visited has a
lower cost than if he is isolated. Another aspect is the number of routes, a
retailer served on a given day might be included in a tour which is costly
than if it is included on another day.

Let us now introduce the setup cost in the inventory function:

2, = setup cost of delivering to retailer i on day p, with i = 1,...n and

p=1,..P;
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The inventory cost function with setup cost (1.5) is:

15 =
1<wip < 0) X Zip
B'ip Wip
- Z Z +h fOOO ! (ﬂip + Wi — tip)fip<tip)dtip
top +s fgiﬁwm (Lip — Bip — wip) fip(Lip) by
with
1(wip > 0) = P

0 if otherwise
Let us start by analyzing the inventory cost for only one retailer 7 and
one period p:

Zip +L(wp) if wp >0
I(w?) if wp =0

ip
To solve this problem:
First, let w}, be the delivering quantity that Minimizes /;,
If we deliver, it becomes: [ (wl’-“p) + Zip
So we have to compare [(w;, = 0) with [(w},) + z;,
Let 77, be the value that equals I{w;, = 0) = ](wl’.“p) + Zip
Then the optimal cost will be:

< + ]<w:p) Zf ﬂz‘p S T:p

If we try to extend this problem to more than one period the decision tree
will increase, see Figure (1) for the decision tree of all the planning horizon.
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30=u

31>0 R1<0

32>0 32<0 32>0 32<0

T T

33>0 33<0 33>0 33<0 33>0 33<0 33>0 33<0

| | | | | | | |
/R e e e e N B R R
R4>0 B4<O B4>0 RB4<0 R4>0 R4<O R4>0 BA<O B4>0 B4<0 R4>0 R4A<O R4>0 R4<O R4>0 B4<O
Figure 1: Decision tree for the MPVMI model with setup cost.

To solve this problem becomes a complex task. The solution we propose
is to analyze the best delivery quantities for all the possible combinations of
delivery days and choose the solution with minimum total costs (inventory
+ stock-out + setup costs).

So, for each retailer given the setup cost for each day of the week, we
calculate the best delivery quantities for all the possible combinations of
days.

We do not consider the case when there is no delivery since one of the
assumptions is that at least once a week the retailer has to be visited.

The procedure to solve the problem is the following :

- Minimize the inventory cost for each combination of delivery days.
- Obtain the best delivery quantities for that combination.

- Calculate the total inventory cost by adding to the inventory cost the
corresponding setup-cost.

- Choose the combination and quantities that gives the best solution
(minimum total inventory cost).

- Repeat the procedure for each retailer.

Another point is the constraint that imposes only positive values for the
deliveries, which transforms the problem into a constrained minimization
problem.
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The solution to the first model, with no setup cost corresponds to the
combination where we considered that is possible to delivery every day of the
planning period (5 days). The second model, with the setup costs, chooses
the best solution from all the possible combinations, including delivering
every day.

In the next section, we will describe the computational experiment that
we have done on several examples, and show the main results.

4 Computational experiment

In this section, we will present a numerical study on the two MPVMI models
with and without setup costs. We will refer to Model 1 (M1) for the MPVMI
with no setup cost and Model 2 (M2) to the MPVMI with setup cost.

The objective of this experiment is to compare the solutions of the two
models in terms of costs and delivery days.

Results show that optimal solutions depend on the type of demand and
on the setup cost. When introducing a setup cost, the average number of
delivery days decreases while total costs increase.

Next, we will explain the data used and analyze some important results
of this experiment.

4.1 The data

For the computational experiment we have generated several instances that
can be divided in different groups according to their size, measured by the
number of retailers (10,50, 100,200), type of setup cost (equal every day
versus different for each day, and low versus high) and type of demand (same
every day and different every day).

For the demand data we have generated the distribution function param-
eter a,. So, for each retailer i and day p we have generated a value for a;y,.
These values were randomly chosen from a Normal distribution with mean
50 and standard deviation 20 between retailers. For instances with demand
varying from day to day, the mean was the same as before, but the standard
deviation between days was equal to 2.

The initial stock for each retailer was generated by a random uniform
distribution between 0 and 50. Finally, the setup cost was generated for
each retailer and for each day of the week, following a uniform distribution
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between 10 and 200 for high setup cost and between 5 and 50 for low setup
cost. The total number of cases analyzed was 160.

4.2 Analysis of the results

We can start by analyzing and comparing the Inventory Cost. In Table 1, we
have the Inventory Cost for M1 and M2, with and without the setup cost?,
separated by size and type of setup cost. The cost in this table is an average
of all instances with the same size.

N Setup M1 M1+setup M2 M2+setup
10 HS 6211,60 11039,55 7193,79 8270,99
LS 6211,60 7335,95 6318,67 6989,07
50 HS 30304,26 55249,71 35309,20 40974,90
LS 30304,26 36798,16 31431,37 34983,87
100 HS 60588,02 110789,07 70499,63 81778,17
LS 60588,02 73643,97 62803,86 69832,36
200 HS 120429,09 222111,27 140718,38 163254,89
LS 120429,09 146841,40 125169,50 139334,50

Table 1: Average Inventory Costs for M1 and M2 for Low (L.S) and High (HS)
setup costs.

From Table 1 we can observe that M2 has always an Inventory Cost (free
of the setup cost) greater than M1. However, M1 and M2 are closer to
each other when the setup cost is low. These results were expected since if
we are using an additional cost in the decision process the solution will be
worst. The opposite happens when looking at both models when adding the
correspondent setup cost, M1 will have always the highest total cost.

I Although we have assumed that in M1 there are no setup costs, we have added to M1
the setup cost that would be applied if we were delivering on the days proposed by M1.
This is done so that we can compare both models.
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In Table 2, the instances were separated into two groups: the group with

a setup cost that is equal every day and a group with setup cost that differs

each day.
N Low Setup M1 M1+setup M2 M2+setup
10 = 6211,60 7314,10 6298,71 6997,01
z 6211,60 7357,80 6338,63 6981,13
50 = 30304,26 36592,86 31176,13 34944,93
? 30304,26 37003,46 31686,60 35022,80
100 = 60588,02 73531,22 62465,64 70004,54
# 60588,02 73756,72 63142,08 69660,18
200 = 120429,09 146875,40 124546,33 139814,12
# 120429,09 146807,40 125792,68 138854,89
N High Setup M1 M1+setup M2 M2+setup
10 = 6211,60 10994,00 7142,08 8441,98
? 6211,60 11085,10 7245,50 8100,00
50 = 30304,26 54572,06 34918,82 41780,72
z 30304,26 55927,36 35699,58 40169,08
100 = 60588,02 110704,02 70171,28 83733,48
* 60588,02 110874,12 70827,97 79822,86
200 = 120429,09 223041,82 140034,83 167567,55
* 120429,09 221180,72 141401,92 158942,23

Table 2: Average inventory cost for M1 and M2 with equal setup cost (=) every

day versus different setup cost (#) for each day.

The results show that, when setup cost differs from day to day, then
the best solution of M2 has a higher cost than when the setup cost is equal
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every day. This can be explained by the higher influence setup cost plays on
solutions, if it varies, solutions adjust more to these differences.

We have also analyzed and separated the instances by the type of demand.
In Table 3, we have the inventory cost for M1 and M2 with equal demand
every day and different demand for each day. The same relation applies for
the difference between M1 and M2. This difference is smaller when demand
varies from day to day. This is, the model leads to lower costs by playing
with the variations on the expected demand.

N Demand M1 M1+setup M2 M2+setup
10 _ 6494,42 9512,12 7128,76 8060,41
7 5928,78 8863,38 6383,69 7199,64
50 _ 29787,64 45563,24 33150,73 37696,18
Z 30820,88 46484,63 33589,84 38262,59
100 _ 60830,22 92653,16 67667,79 76941,63
7 60345,83 91779,88 65635,70 74668,90
200 _ 121550,58 185917,46 135340,07 153995,22

Z 119307,60 183035,21 130547,82 148594,18

Table 3: Average Inventory Cost for M1 and M2 with equal demand (=) every
day versus different demand (#) for each day.

In Table 4, we can see the average number of delivery days in the solutions
of M1 and M2. The first observation is that the number of delivery days does
not depend on the size of the problem (retailer have an inventory cost that
is independent of other retailers). As expected M1 has high delivery days
in the planning period, on average 4,7 days per week (in 5 days). When
introducing a setup cost in the decision process (M2), the number of days a
retailer is visited during the planning horizon falls to an average of 2,3 days
a week.
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N M1 M2

10 4,70 2,41
50 4,76 2,37
100 4,63 2,23
200 4,78 2,32

Table 4: Average number of delivery days per week in M1 and M2.

And, if we analyze the two instances separated by high and low setup
cost, in M2, the average number of delivery days goes from an average of
3 days per week for the Low setup cost case to an average of 1,6 delivery
days for the case of high setup costs. There is a strong relation between the
magnitude of the setup cost and the number of delivery days per week in the
solution.

N Setup M1 M2
10 HS 4,70 1,58
LS 4,70 3,25
50 HS 4,76 1,64
LS 4,76 3,10
100 HS 4,64 1,74
LS 4,62 2,72
200 HS 4,78 1,61
LS 4,78 3,03

Table 5: Average number of delivery days in M1 and M2 for the cases of Low
(LS) and High (HS) setup cost.

21



The relation between the two models can also be observed in Figure (2).
In this graph we have the inventory cost for M1 and M2 with and without
setup cost, for a set of 20 retailers with equal demand and low and equal
setup cost. As can be seen, the inventory cost of M1 is always the lowest if
free of setup costs and the highest costs if we add the correspondent setup
cost.
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Figure 2: Inventory Costs for M1 and M2 for a group of 20 Retailers.

Finally, concerning the run time of the algorithm, in Table 6, we see
that it is proportional to the size of the problem (number of retailers), this
result is due to independence of the inventory cost function among retailers.
The run time, in these particular models, does not have major implications
since it takes an average of 0,38 seconds per retailer to solve a week planning
problem.

22



N Run time in sec

10 4,03
50 19,32
100 38,26
200 76,59

Table 6: Run time in seconds for M1+M2.

The objective of the above numerical experiment is twofold: In the first
place analyze the two models in terms of inventory cost and number of de-
livery days. Secondly, to give an insight on the effect the delivery frequency
can have in terms of costs. There is a clear trade-off between delivery days
and inventory costs and the decision maker might evaluate what is the effect,
for example, in terms of marketing or other control policies, of not visiting a
retailer on a given day.

5 Conclusions

Inside the trend to a wider cooperation and integration of logistics processes
is an initiative called the VMI system. In a VMI system the supplier makes
the inventory decisions for the consuming organization.

The VMI system has gained importance during the last few years. The
introduction of technologies for information sharing and coordination has
contributed for the success of those policies in many industries. Nonetheless,
there are still gaps to fill in the research in the area of modeling these agree-
ments and using algorithms to strategically plan the inventory managing
systems.

The motivation of this work arrives from the need to strategically respond
to the growing tendency for planning deliveries and coordinating strategies
within an integrated SC. And also, from the advantages that seem to exist
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when using a VMI system, in the coordination of the inventory management
area with other management areas at the operational and strategic level,
such as distribution, scheduling or location.

This work presents two inventory models: the MPVMI with no setup cost
and the MPVMI with setup costs. In these models it is the responsibility
of the distributor to manage the inventory at the retailers’ location. The
distributor does not know the demand of the product and only observes the
initial stock at the beginning of the planning period. He has to decide how
much and when to deliver to each of its retailers while trying to minimize total
inventory costs. We have done a computational experiment and the results
show that, by introducing a setup cost, the number of deliveries per planning
period are reduced while holding plus stock-out costs increase. When com-
paring the inventory costs including setup cost, the inventory model solved
without considering the setup costs (M1), has higher total costs. The impact
of his trade-off depends on the type of demand and level of setup cost used.

Our models gain interest in the above setting if we consider them as tools
for the coordination with other areas in the SC. One example is to consider
the setup cost as a transportation cost and to use this model to manage and
define policies for a large scope of the supply chain management, in this par-
ticular case the transportation and inventory management. This is commonly
known as the inventory-routing model and will be the subject of our future
research: design a model for the integration of this VMI system with other
transportation issues, such as the routing of vehicles for the distribution the
products to retailers.
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Appendix 1:  Inventory cost function for each
period, for one retailer.

Period 0:

Iy = exp(—ag * (u+wp)) * (s + h)/ag + h* (ag * u+ ag * wg — 1) /ag

Period 1:
I = ((apxutayxwe+1)/ay*xh+ (o *xu+ aq *wy
+1)/an x s) * exp(—an * (u + wo + w1))
+1/ay * h* exp(—oy * (u + wp))
+(—2+a1*w1+a1*u+a1*w0)/al*h
Period 2:

Iy =1/2(2 4+ 2a9u + 2a9wy) /aghexp(—as(u + wo + wy)) + exp(—ag(u + wy)) /agh
4+ (1/2(2 + a2u? + 202wiu + 202uwy + 209u + 209w + adw?

+ 209wy + 205w wg) /agh + 1/2(2 + a2u® + 20w u + 2a2uw,

+ 209u + 200w, + adwE + 20wy + 205w wy) /s s)exp(—an(u 4+ wy + wy

+ ww?2)) 4+ 1/2(—6 + 2a5u + 200wy + 200ww2 4 2a9wy) /csh

Period 3:
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Iy = 1/6(6a3uwy + 602w wy + 6ciw u + 6azw; + 3adw: + 6azu
+6azwy + 3aju® + 6)/azhexp(—(u + wo + wy + wy)a3)
+1/6(6 + 6ciu + Bazwy) /azhexp(—(u + wo + wy ) o)
+(1/6(603u 4+ 6azwy + 6 + 6wy + 6azw, + 6aiwyw,

2,2 2.2 2.2 3 3,2 3
+3azw] + 3ozu” + Jozwy + bazweuwg + dazwiu + Jazwon

2
—I—SOzgwlwg + 6a§w2u + 3a§w1u2 + agwg‘ + SOzgwgu
—I—SOzngwS + 6a§w1uwo + a§u3 + 6a§w2w1w0 + 6a§w2w1u
+6a2wawo + 3azwau® + Saswiwe + 6aiwiu

+602wiwy + 6aiuwy)/ash + 1/6(6asu + 6azwy + 6

603wy + 6azw; + 6aiwaw; 4 3aiw? + 3aiu® + 3adw]
—|—6a§w2uw0 + SOzgw%u + 3a§w0u2 + SOzgwlwg
+6a2wyu + 3w u? + aswy + 3ajwiu + 3aiwywy

—I-GOzgwluwo + ozgu?’ + 6a§w2w1w0 + 6a§w2w1u + 6a§w2w0 + 3a§w2u
+3aswiwy + 6aiwyu + 6adwiwy + 6aduwy) /ass)exp(—as(u + wy
+wy + wy + ws)) + exp(—az(u + wo))/azh + 1/6(6azu + 6azwy

+6a3w3 — 24 + 60[311)2 + 6a3w1)/a3h

Period 4:

Iy = ((@Puwy+ 2wyt + a2wsu+adwswg + 1 + a2w u+ adw we + a2 wswg +
QW3 + Quwy + Qg + gt + AW uwy + AiWsw Wo + AGW3W U+ A wsweg +
QW3 UW W UWo+ QW3 W W+ AW WUy~ Wy wswy+ i wyw  wo+
QR Wo U+ OB W3 WU+ Wl + W W + W W1+ G WeW WU+ W3 W U+
aqwswywiwy + 1/2(a2u + cGwiu + adwywd + cdjwiu + dwiu + adwiwy +
Qwswd + adwwl + adwiwy + ajwiw,

+adwiu + ajwsu + QGweu + Aiwou + adwaw? 4+ ajwiuwy + ajwswiu +
QW3 W U+ Qfwiw wy + awiw u+ ajwswywl + afwswwi 4+ ajwsw? + aw? +
Qw3 + afwywiwy + awiweu + afwyw u+ awaw  wE + ajwswiu 4 afwiuwy +
QQW3UWo+ W UWE+ Gy W U Weuwd +a wotiwy + g wsw? wo+awswyu+
a2wd) + 1/4(cqwiu + aqwiwk + ajwiu + ajuwg + ajw?w?)

+1/6(ajuPwot aguwy +ogqur P+ oqwsu® +ajwiut adwi 4 adud +ajuwwe+
Qwatd + Afwywd +ajwswi + ajw wi +adw? ) +1/24(afwi+1/24aqut)) fagh+
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1/24(cjwi+aqut+24+12(02u+ 3w ut adwowd +adwiu+ adwiu+ aiwiwe+

3 2 3 2 | 3002 3,2 3 3 3 4,.2
Qi WaWy + QW Wh + QWi Wo + QWU + QWst + Qi Wolh + QW + Qe Wa Wy Wo +

QqwIw U+ aSwiw, + adwyw? + At uwg + CqWWEL + QW W U+ W WwdE +
aiwgwlwg + aiwgw% + aiw% + aiw% + ainw%wo

+agwiwou + afwywu + aqwowwi + cjwswiu + ajwiuwy + ajwsuwg +
QWIUWE + AW u + afwauws + awetwe + aqwswiwy + ajwswou + 2wl ) +
4(0&11)8‘ + oziu3 + aiuwg‘ + aiw1u3 + aiw3u3 + oziwifu + aiwi"wo + oziw2u3 +
Qqwowy + agwswd + agutwy + aguwwd + aiw?) + 24 (adwiu+ adw wy + aduwy +
ainU + aiwgu + aiwgwo + ainwo + a3 + awy + aug

—I—oz4u—|—oziw2uw0—|—ozzw3w1wo—l—ozzwgwlu—l—oziwngwo—l—oziwguwo—l—ozzwluwo—l—
QW W Wo+ O Wl U W3 W+ 2 Wew | + 2 W3 w1+ W3Wew; +WsWetwo+
Wy + QW3 Wy + AFWHW Wl + AFW3WW U + QW3WaW Wy + QjWaw Welt) +
6(ajw?u + ajwiwt + ajwiu+ ajuwi + ajwiw?)) /ays)exp(—oy(u+wo+wy +
Wyt ws+wy))+1/agexp(—aoy(utwg)) h+1/24(24+ 240 u+24 0wy /g hexp(— (u+
wo + wy)ay) + 1/24(24(cqwy + @wiu + aqwo + cqu

+14+2wiwe+ duwg) +12(adu+dwd)) Jaghexp(— (u+wo+wy +wy ) ary) +
1/24(12(03u+ cjw u+ adwywd + adwiuadw?u + aiw wi + aiwwy + awyu+
ajwou+ adw? + awd) + 4(edwd + aju®) 4+ 24(1 + 2w u + adwwy + aluwg +
Q2w + aWyWwo + QWi + wo + QU + adwytwy + W uw + W Wy +
QBWyw U+ wewy ) + 24w [ aghexp(—(u+wo +wy +wy +ws)ay) + (@qws +
Qg + o + auu 4wy + aqwy — 5)/agh
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Appendix 2: Simulation

The inventory cost function is a complex expression. To verify if the

expression was obtained in a correct form, we have ran a simulation.

For M1 and M2, we have picked up a retailer and solve the optimization

problem.

And simulated the demand with the same behaviour (same mean and

same standard deviation) for 10000 iterations and compared the solution
obtained by optimization with the simulated one. The simualtion converges
to the optimal solution, the slightly difference is due to the conversion of
continuous to dicrete deliveries.
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Figure 3: Simulation versus Optimization, for M1 and M2, for one
customer.
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