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Abstract

The problems arising in the logistics of commercial distribution are
complex and involve several players and decision levels. One impor-
tant decision is related with the design of the routes to distribute the
products, in an efficient and inexpensive way.

This article explores three different distribution strategies: the first
strategy corresponds to the classical vehicle routing problem; the sec-
ond is a master route strategy with daily adaptations and the third is a
strategy that takes into account the cross-functional planning through
a multi-objective model with two objectives. All strategies are ana-
lyzed in a multi-period scenario. A metaheuristic based on the Iterated
Local Search, is used to solve the models related with each strategy. A
computational experiment is performed to evaluate the three strategies
with respect to the two objectives. The cross functional planning strat-
egy leads to solutions that put in practice the coordination between
functional areas and better meet business objectives.
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1 Introduction

The growing number of problems that firms are facing nowadays with rela-
tion to the distribution of their products and services, has lead logistics to
be of primary concern to many industries.
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An important aspect of the logistics management task is to coordinate
the activities of the traditional distribution functions together with purchas-
ing, materials planning, manufacturing, marketing and often R&D. One im-
portant direction of the integration process is the cross functional planning,
which consists of coordinating different areas inside the firm, allowing for
cost reductions and improving service (see Christopher 1998).

The motivation of our work arises in this context of integration of logis-
tics functions with other functions of the firm. In our case, we will focus
our study in two key areas: the distribution management and marketing
management.

On one hand, the importance of good distribution strategies in today’s
competitive markets can not be overstressed. In many industries, an im-
portant component of the distribution systems is the design of the routes
of vehicles to serve their customer’s demand. And, on the other hand, new
trends in the supply-chain management are, as pointed out by some in-
dustry leaders, “.better customer service...greater customer sophistication”
(OR/MS Today, August 2000). Customer service is becoming more im-
portant, customers demand more than a product, they demand a product
arriving on time, an easy ordering system or a just-in-time distribution.

In this work, we will study the decision making problems in distribution
management related with the delivery of products to customers, on a given
period of time, using a fleet of vehicles. The decisions on how to assign
customers to drivers and to design the routes made by each vehicle consti-
tute the Vehicle Routing Problem (VRP). Usually, the VRP is responsibility
of the Distribution department. However, since many drivers also perform
commercial activities, the Marketing department has the objective of main-
taining always the same delivery agent assigned to the same customer. How
to balance these two, possible opposite, objectives is an interesting issue
when the firm wants to implement integrated distribution processes.

To analyze the impact of integrating the two areas of the firm, Distri-
bution and Marketing, we will explore three possible distribution strategies
that reflect different policies in distribution in the organizations.

The first strategy, Strategy 1, has a distribution policy that minimizes
distance. The objective is the classical objective of VRP, which consists of
minimizing total routing cost, measured in distance units. However, this
objective is often object of criticism by the users and planners, since it
does not take into consideration other concerns of the company, for exam-
ple, customer service. The second strategy, Strategy 2, tries to imple-
ment a marketing policy. In a growing competitive environment many firms
adopt strategies of tight relationships with their customers where loyalty



and friendship play a key role, through the delivering agents. In this strat-
egy, the routes are predefined such that one delivering agent is associated
with a specific set of customers.

The third strategy, Strategy 3, is the one that considers both objectives,
marketing and distribution at the same time, in an integrated manner.

The motivation to work on this VRP arises by the distribution problems
faced by the food and beverage industry. In these industries the tendency
is to have lower inventories and higher delivery frequencies. And also, to
have drivers responsible for commercial activities such as: promotions or
introduction of new products.

The present article is organized in the following way: In the next section
we will present the three distribution strategies. In Section 3, a review of the
VRPs is summarized. Then, we will describe the mathematical formulation
of each strategy and the solution approach, based on Iterated Local Search
(ILS), to analyze those models. In section 5, we will present a computational
experiment and analyze the results obtained. Finally, the conclusions of the
work are presented.

2 The Distribution Strategies

The distribution strategies correspond to different situations and concerns
inside the firm. By comparing them, we can analyze the effect that inte-
grating two areas can have on the distribution policies. The objective of
this analysis is to provide a set of possible alternative solutions to the de-
cision maker. Whom, with the use of additional side information on each
particular distribution problem, can make a good choice.

The strategies are settled in a planning horizon of a week, this is: five
working days. The choice of this period is based on the need for a strategic
perspective, we want to study the impact of a sequence of decisions on
different objectives. As a consequence we need several periods to analyze
the marketing effect and a week seems to be a reasonable choice since in
many industries, the behavior of the orders for a customer have a week
pattern (examples are the Beverage & Food industry). In any case, this
assumption can be relaxed and the problem could be extended to more
periods.

e Strategy 1: Distance Minimization

In this strategy the distribution policy is constructed based on routing
cost. Cost reduction is one of the biggest concerns in transportation and



distribution management, but not the only one as we will see later. We
want to find the route for each of the vehicles that will pass through the
demand points in such a way as to satisfy all the demand with the smallest
travelling cost. The classical VRP considers only one period at a time and
chooses the optimal routes for that period . Strategy 1 corresponds to
the classical vehicle routing problem (VRP) repeated for each day of the
planning horizon.

e Strategy 2: Master Routes

The second strategy is based on marketing principles, and the distribu-
tion strategy is based on service measures. An important source of value
to the firm can be obtained from a close connection between firm and cus-
tomers. This can be achieved through the development and investment on
the relationship with its customers.

In this strategy, each driver will serve always the same customer. This
marketing policy is giving emphasis to the personal relationship between
drivers and customers as a way to improve customer service. In many in-
dustries, drivers are more than drivers, they also perform sales tasks, pro-
motions and introduction of the new products.

One of the advantages pointed out to this customer relationship man-
agement policy is that it makes more difficult for a customer to switch to
another provider. Since, a relationship requires an investment of time from
both the customer and the provider, Simchi-Levi et al. (2003). These mar-
keting strategies allow the firm to obtain more information on customer
needs. And, at the same time, it becomes more easy to introduce new prod-
ucts, construct promotions and even speeds up the delivery process due to
experience effects from both parts.

e Strategy 3: Multi-Objective

The third strategy is the integrated distribution management model,
which consists of taking into account in the decision process the concerns of
the Distribution department and Marketing department i.e. the reduction
of transportation costs and the emphasis on the personal relationship be-
tween driver and customer. We propose a multi-objective model with two
objectives, each objective corresponds to a different function. The first is
the transportation and the second a marketing function. This strategy tries
to include in the same model the objectives of the two previous strategies.
The best solution for the transportation problem might not always be the



best solution for the marketing objective. In some cases these two objectives
may conflict and that is the main justification for a trade-off analysis be-
tween these two objectives. We need to find a solution (or several solutions)
that integrate a marketing policy and route design policy.

In the next section we will describe the mathematical model of each
strategy.

3 Literature Review on VRP

The classical VRP model is behind the models for the three distribution
strategies. Therefore, we make here a brief review of the classical VRP.

Vehicle routing decisions are extremely important within a company to
maintain its competitiveness an allow it to best exploit the available re-
sources and to distribute its products at the lowest possible cost.

Significant amount of research effort has been dedicated to VRP, see
the survey articles on VRP by Laporte and Osman (1995), Laporte (1992),
Desroisers et al. (1996), Bodin (1983), Cristofides (1979) and Fisher (1996)
and the book of Crainic and Laporte(1998). An extensive list of VRP re-
search papers can be found on http: //www.imm.dtu.dk/ ~orgroup/VRP_ref/.

The most well known is a basic VRP which can be briefly defined in the
following way: given a set of customers with known demand and location,
define a set of routes, starting and finishing at one depot, that visits all
customers with minimal cost.

The basic model of the vehicle routing problem considers a set of nodes,
representing retailers or customers, at a known location, that must be served
by one depot. Each node has a known demand. A set of vehicles K, with
equal capacity is available to serve the customers. The routes must start
and finish at the depot. The objective is to define the set of routes to serve
all customers with minimal cost.

For each pair of nodes, a fixed known cost is associated. We assume this
cost matrix is symmetric and can represent a real cost, distance or time. The
main constraints of the problem are that all the demand must be satisfied
and the vehicles capacity can not be exceeded.

The basic VRP is a generalization of the Traveling Salesman Problem,
where more than one vehicle is available, for TSP references see for example
Lawer et al.(1985).

There are several formulations of the classical VRP in the literature, for
some of these formulations see Fisher and Jaikumar (1978) (1981), Kulkarni
and Bhave (1985), Gouveia (1995) and Toth and Vigo (2002).



The classical model of the VRP can be formulated as an integer linear
programming and this is the formulation we will use along further chapters.
Consider the following data:

I=1,..,n set of nodes, that correspond to the different locations
of the customers, node 1 corresponds to the depot.

K=1,..,m set of vehicles;

Q capacity of each vehicle;

Qs demand of customer i, i = 1,...,n;

Cij cost of going from 7 to j,2=1,...,n;7=1,..,n.

This formulation considers two types of variables:

S 1, if vehicle & visits customer j immediatly after customer ¢
9871 0, otherwise

~_J 1, if customer 1 is visited by vehicle &
Yik 0, otherwise

The formulation of the problem is:
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Constraint (2) ensures that each customer is visited by one vehicle only.
Constraint (3) guarantees that all vehicles visit the depot. Constraint (4)
represents the vehicle capacity constraint. For each vehicle k, we guarantee
that the sum of the demand of the nodes that the vehicle covers is less or
equal to its maximum capacity. Here we assume that none of the customers
has a daily demand that exceeds ). The constraint (5) ensures that if a
vehicle visits a customer it also has to leave that customer.

Constraint (6) is the sub-tour elimination constraint. This constraint
implies that the arcs selected contain no sub-cycles. It states that for every
vehicle, the following holds: for every non-empty subset S of {2,..,n}, the
number of arcs that are in the route of this vehicle, with both nodes be-
longing to S, has to be less or equal to the number of elements of S minus
1.

The last constraint, (7) defines the variables z and y as binary. The
objective function is minimizing the total cost of the routes.



The TSP is a sub-problem of the VRP, the TSP belongs to the class
of NP-hard (non-deterministic polynomial time) problems, and so does the
basic VRP and extensions. This means that the computational complexity
of the problem grows exponentially with its size, i.e., it grows exponentially
with the number of customers.

4 The Models for the Distribution Strategies

In this section we will present the mathematical models associated with the
three strategies. First of all, we describe the assumptions of the model.

We assume that the firm is responsible for the distribution of its own
products. Therefore, there are no questions of outsourcing to be handled.
These firms face the pressures of a competitive market making them con-
cerned both on consumer satisfaction and internal efficiency.

The classical VRP considers only one period and chooses the optimal
routes for that period. Here we will introduce more periods by considering
a week length of analysis. Each day we have a different set of customers to
serve and quantities to deliver. The reduction of the inventory levels, and
the increase in the frequency of orders is a tendency in many businesses to
lower stock handling costs.

Other assumptions of the model are:

e All the demand is satisfied in the same day that it is required and not
on any other day of the week.

e Only unload is done at each customer.

e The number of vehicles is fixed and there are no fixed costs associ-
ated with the use of the vehicles. They all have the same capacity.
Moreover, the number of vehicles available is enough to satisfy all the
demand.

e Another assumption is that the distance matrix between customers
and between customers and warehouse is known and fixed. This matrix
does not depend on the day or the quantity loaded.

e Llach vehicle is assigned to a driver. And we consider that they work
every day in the period in question.

e One vehicle can only be used once a day and the time it takes to deliver
the full capacity is less than a working day.



Next we will present the model in detail. The following data is considered
in the mathematical formulation:

7,1 index and set of nodes, I = 1,...,n where 1 is the depot and 2 to
n are the customers locations;

k, K index and set of vehicles, K =1, ..., m;
t, T index and set of days which represent the period, T'=1, ..., p;

T; set of days where customer ¢ has a demand that is greater than
Zero, t = 2, ...,N;

¢! demand of customer i on day ¢, i =1,...,n and t = 1, ..., p;

¢;; the cost of going from ¢ to j, this is a fixed matrix ;2 =1,...,n and
7=1,..,n

() capacity of a vehicle.

The variables of the model are:

if vehicle & visits customer j
¢ __ 3

ik = immediatly after customer ¢ on day ¢

0, otherwise

. | 1, if customer 7 is visited by vehicle & on day ¢
Yie = 0, otherwise

4.1 Strategy 1: Distance Minimization

The objective function minimizes routing costs, for all customers during the
week period. This strategy corresponds to repeating a classical VRP for
each day of the week.

The formulation of this objective will be the same as the one used for
the classical model but with a new parameter, ¢, representing the day of the
week.

P n n m

Objective function: Min Z Z Z Z Cz‘jx%k (8)

t=1 i=1 j=1 k=1



4.2 Strategy 2: Master Routes

First we construct a set of routes, “master routes”, using the same VRP
formulation as in Strategy 1.

This startegy and the model associated is very close to a common practice
in several companies. It consists in: first defining “master routes” and,
afterwards performing daily adjustments depending on the demand of the
customer and on the capacity of the vehicle. To obtain the “master routes”
we consider a VRP model, where all customers are in the input data and the
demand of each customer depends on the average daily demand. To adjust
the daily routes we consider other constraints such as capacity and number
of vehicles.

So, the requirement that a customer will always be served by the same
driver may have to be sacrificed but we will try to enforce this at least to
the best customers. Therefore, the idea is: the better the customer is the
more interest we have in maintaining the same driver.

The mathematical formulation for this strategy is identical to the one of
the classical VRP for one period presented in section 2, but, in this case all
customers are considered for the “master routes”.

4.3 Strategy 3: Multi-Objective

In this strategy we propose a multi-objective model with two objectives:
minimizing of routing costs and minimization of service levels, that reflect
the integrated strategies between Distribution and Marketing departments.

As far has we know there are no studies on routing problems with multi-
ple periods and this marketing oriented objective function. Although there
are some multi-objective VRP that consider other types of objectives. Ex-
amples of these are the papers by Hong and Park (1999) that consider the
minimization of the customer waiting time as the second objective function,
in a VRP with time windows constraints. Lee and Ueng (1999) developed an
integer linear model that searches for the shortest travel path and balances
driver’s load simultaneously. The work is measured in terms of traveling and
loading time. The objective function is the weighted sum of the above objec-
tives. This second objective minimizes the difference between the working
time of each vehicle and the working time of the vehicle with the shortest
working time.

In most cases of multiple objectives it is unlikely that the problem is
optimized by the same alternative parameter choices. Hence, some trade-off
between the criteria is needed to ensure a satisfactory design.
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In the multi-objective optimization an important relation is the domi-
nance relation.

Let (z1) and (z2) be two solutions of a multi-objective problem with R
objectives.

We say that:

Solution (z1) dominates (z9) if 21, < 29, V objectivesrin{1,..., R}
and z1, < 29, for at least one r and (z1) # (29).

A feasible solution is efficient if it is non-dominated.

Based on this concept we will optimize the two objective functions to
find non-dominated solutions.

Ideally, we would like to find the solution that would be optimal for both
objectives at the same time. In multi-objective programming this solution
point rarely exists. So, we would like to find solutions that are closer to this
ideal point.

Mathematically, all dominated solutions are equally acceptable, it is the
decision maker, who is responsible for choosing the final solution. The
decision maker is someone who has a deep knowledge of the problems,
relationships and implications of each solution. The choice among these
non-dominated solutions is determined by the decision maker’s preferences
among the multiple objective.

The two objective functions considered within the integrated strategy
are:

Objective A: Minimizing Cost

The formulation of this objective will be the same as in (8), the one used
for the model of strategy 1.

P n n m

Objective function A: Min Z Z Z Z Cijx%k

t=1 =1 j=1 k=1

Objective B: Marketing Objective
In terms of mathematical formulation, the second objective works as

follows: For each customer we have a set of pairs of days with positive
demand, T;, for each pair of days g, h in T; (with g # h) we want to

11



minimize the difference in the assignment to a vehicle £. The objective is to
minimize yfk — y& .

The importance is given by the total demand in the period, therefore a
weight is introduced by the total amount ordered by each customer. The
objective function becomes:

The importance of a customer is measured in terms of sales. In some cases
other measures could be used to classify the goodness of a customer, for
example, frequency of orders, credit history, etc. This function is non linear.

Considering a multi-period model is an essential point in our study since,
objective B is not static, it measures decisions allong more than one period,
it only makes sense in a continued time base.

In the integrated strategy the objective is to find a set of non-dominated
solutions and give the decision maker the possibility to choose not only
between strategies but also between solutions.

n m Y4
Mnd33 Y [(zqz) o
i=1 k=1 g,gh<ehTi t=1

The constraints of the model for strategy 1 and 3 are:

12
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Constraints (9) to (15) are similar to the ones in the basic model, but
for each day of the period in question.

Constraint (9) ensures that in the days where the customers have a
positive demand, that customer is visited by only one vehicle.

The constraint (10) forces that each day all vehicles go to the depot.
Constraint (11) ensures that, the daily loading of a vehicle does not exceed
its capacity.

Constraint (12) guarantees that if the vehicle enters a node, on day ¢, it
also has to leave that node, on the same day.

Constraint (13) prohibits a vehicle to visit a customer on a day where
he has zero demand.

Finally constraint (14) avoids sub-tours, but now not only for each ve-
hicle but also for each day. The sub-tour elimination constraint represents
an exponential number of constraints.
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The last constraint (15) define all variables as binary.

For Strategy 2 the constrains of the model are the same as for VRP
formulation in section 2, applied in this occasion to the “master routes”,
only for one period.

5 Solution Approach

The above models are complex combinatorial optimization problems, classi-
fied as N P-hard!'. The effort required to solve N P-hard problems increases
exponentially with problem size. The approach for solving these type of
problems optimally suffers from computational burden with problem size.
As a result they require an heuristic methodology in order to solve them.
Since our objective is to compare the three distribution strategies we will
use the same solution technique for each strategy.

5.1 Heuristics method

A heuristic algorithm is a solution method that does not guarantee an op-
timal solution, but in general had a good level of performance in term of
solution quality and convergence. Heuristics may be constructive (producing
a single solution) or local search (starting from one given random solutions
and moving iteratively to other nearby solutions) or combination. Heuristics
for VRP have been extensively studied. Cordeau et. el. (2002) summarize
the most important classical and modern heuristics for the VRP. Osman
and Laporte (1996) have a bibliography review on theory and application of
metaheuristics.

Local search is the most powerful general approach for finding high qual-
ity solutions to hard combinatorial optimization problem in reasonable time.

It is based on the iterative exploration of neighborhoods of solutions
trying to improve the current solution by local changes. The type of lo-
cal search that may be applied to a solution is defined by a neighborhood
structure.

The most basic local search is the iterative improvement. It typically
starts with an initial solution, generated randomly or by some constructive
heuristic and tries to repeatedly improve a current solution by moves to
better neighboring solutions. A major drawback of iterative improvement

INP-hard problems are the class of network and combinatorial problems for which no
polynomial-bounded algorithm has yet been found.
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local search is that it may stop at very poor quality local minimum. To
avoid the disadvantage of iterative improvement and, in particular, multiple
descendent, we need to allow the local search to escape from local optima. To
escape from stagnation at local optima is the main goal of methaheuristics.
Metaheuristics are typically high level strategies, which guide an underlying,
more problem specific heuristics, to increase their performance.

Our proposal is to use a metaheuristic algorithm that as proven to give
quiet good results on other problems and is easy to implement and modify,
adapting to different strategies, Iterated Local Search (ILS).

5.1.1 TIterated Local Search for the VRP

ILS is a simple and generally applicable meta-heuristic which iteratively
applies local search to modifications of the current search point, for more
detailed information on ILS see Lourengo et. al. (2001), Lourengo et.
al. (2002) and Sttitzle (1998). At the start of the algorithm a local search
is applied to some initial solution. Then, a main loop is repeated until a
stopping criterion is satisfied. This main loop consists of a modification step
(“perturbation”), which returns an intermediate solution corresponding to
a modification of a previously found locally optimal solution.

Next, local search is applied to yielding a locally optimal solution . An
“acceptance criterion” then decides from which solution the search is contin-
ued by applying the next “perturbation”. Both, the perturbation step and
the acceptance test may be influenced by the search history. ILS is expected
to perform better than if we just restart local search from a new randomly
generated solutions.

The architecture of the ILS is as follows:

15



Architecture of the ILS algorithm

Procedure ILS:
5% = Generatelnitial Solution
s* = LocalSearch(s°)
Repeat
§' = Perturbation(s*, history)
s* = Local search(s’)
s* = Acceptance Criterion(s*, s*, history)
Until termination condition met
End

The proposed ILS heuristics is based on the ILS metaheuristic developed
by Stiitzle (1998) and Kunz (2000) to solve the classical VRP. The ILS used
for the VRP is the following:

ILS for the VRP
Step 1. Savings Heuristic - Initial Solution

Step 2. ILS for TSP on each tour:
Step 2.1. Local Search for TSP
Step 2.2. Perturbation for TSP
Step 2.3. Acceptance criterion
Step 3. ILS for the VRP
Step 3.1. LS for the Assignment Problem
Step 3.2. Perturbation for VRP
Step 3.3 Acceptance Criterion
Step 4. ILS for the TSP on the new routes

We will now present the implementation of each step the above algorithm
in more detail.

- Savings Heuristic

This is a greedy heuristic to construct an initial solution. It has been
proved that starting from a random solution gives worst results (Stiitzle
1998). This savings heuristic gives us the tours to start the search, it was
proposed by Clarke and Wright (1962).

- ILS for the TSP

16



On each of the tours obtained in the savings heuristic we apply an ILS.

At this step of the algorithm we ignore any relation between routes.
LS for TSP

The LS used was a 2-opt, this is: on a tour 2 connections are exchanged as
soon as all customers are tested with the others, we have a new constellation,
since there are now new crusts that have not been checked, the process is
repeated. Only when a complete run without improvements finishes, one
has reached a 2-opt resolution.

Figure 1: Example of a 2-opt move for the TSP

Searching in a complete 2-opt would not be efficient. So, to reduce the
search space, some techniques are introduced that faster the process and
still arrive to good quality solutions: A list of candidates and “don’t look
bits”. One “don’t look bit” is associated with each node. Initially, all “don’t
look bits” = 0, if for a node no improving move can be found, then “don’t
look bit” is turned on (set to 1) and is not considered as a starting node in
the next iteration. If an edge incident to a node is changed by a move, the
node’s “don’t look bit” is turned off again - reduces to O(n).

Perturbation (Kick-move) for TSP

On the local minimum that has been reached, we apply the kick-move
and arrive to a new start solution. The goal here is to escape from local
optima by applying perturbations to the current local minimum.

For the LS on the TSP we use “double bridge”, this perturbations cuts
four edges, and introduces 4 new ones.

Figure 2: Example of a Double Bridge move.
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Acceptance criterion
The acceptance criterion used at this step is better; this means that the
new tour is accepted if it has a lower cost.

- ILS for the VRP

The ILS for the VRP is implemented considering the initial solution the

routes obtained from the ILS of the TSP.
LS for the assignment problem

The local search for the VRP is a 2-opt and again a list of candidates
and “don’t look bits ” techniques are applied to restrict the search.

We have two possibilities for a 2-opt: A customer of a tour is postponed
into another or a customer trades with another customer from another tour.
First, if capacity restrictions allow and it reduces costs, a city is inserted in
the tour. Only if it cannot be inserted, then we check if an exchange with
another tour improves the solution.

Figure 3: Example of a 2-opt move for the VRP

The same techniques as in LS for the TSP are used: “don’t look bit”
and List of candidates.
Kick-moves
“Numb-crosser”: This perturbation consists in exchanges a group of
customers from 2 tours. In this case, 1/3 of the customers of the tour are
exchanged.
Acceptance criterion: Best, the same as the acceptance criterion for

the TSP.
- ILS for the TSP on the new routes

Repeats the ILS procedure for the TSP.
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5.1.2 The ILS for each strategy

The ILS for the VRP is now adapted to solve the 3 models for the different
strategies. Next we will describe in detail th ILS for each of them.

Strategy 1: Since in this strategy we have a classical VRP model, for each
day, we apply the ILS to find the best daily routes, according to the capacity
of the vehicle and daily demand. The algorithm is repeated for several runs
and for each day chooses the best solution.

Let L be the total number of loops:

Structure of the algorithm for Strategy 1

Step 1: Set loop =0

Step 2: Set day =1

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;
Step 8. Set loop = loop + 1

Step 9. Repeat Step 2 to 8 until loop = L

Strategy 2: In this strategy, we have considered a classical VRP model
to obtain the “master routes”, where all customers are taken into account
using its average demand. Therefore, to obtain the master routes we apply
an ILS.

Afterwards, the routes, for each day of the week, are obtained in the
following way: Exact the same routes are maintained for each day; Eliminate
from the routes the customers that have no demand on that day; If in any
of the routes the capacity constraint is being violated, we pick up from the
tour the customer that is considered less important and we delete it from
this tour and insert it on another tour. This tour is chosen in such a way as
to minimize routing costs.
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Structure of the algorithm for Strategy 2

Step 1: For all customers do
Step 1.1. Savings Heuristic - Initial Solution
Step 4. ILS for TSP on each tour
Step 5. ILS for the VRP
Step 6. ILS for the TSP on the new routes
Step 2: Set day =1
Step 3. For each tour eliminte customers with zero demand
Step 4: For each tour, if capacity constraints are violated
remove customer with lowest total demand
Step 5: ILS for the TSP on the new routes
Step 6: Set day = day + 1
Step 7: Repeat Step 3 to 6 until day = 5;

Strategy 3: In this strategy we face a multi-objective combinatorial op-
timization problem(MOCOP). Ehgoot and Gandibleux (2000) provide an
annotated bibliography on MOCOP.

Two main approaches can be found in the metaheuristics for the MO-
COP: methods of local search (IS) in object space and population based
methods. In the LS methods, we start from an initial solutions, and the
procedure approximates a part of the non-dominated frontier corresponding
to the search direction A given. A local aggregation mechanism of the objec-
tives, based on the weighted sum, produces the effect to focus the search on
a part of the non-dominated frontier. The principle is repeated for several
search directions. In the population based methods, all population con-
tributes to the evolution process toward the non dominated frontier. Here
we will use the first approach, i.e. methods based on local search.

In this case, after having decided the routes for the first day, the program
takes into consideration objectives B, through a wheighted function of both
objectives. To do this, we calculate the effect of a move on the weighted
function of the objectives. Then, in the acceptance criterion, a new solution
is accepted if the weighted function has improved. The algorithm is repeated
for several different sets of weights. All the non-dominated solutions are keep
during the run of the algorithm.

A objective function Z is used as weighted function, which is a weighted
sum of the single objectives A and B.
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Let f, be the single objective function of objective 7,

2 2
Z = Zwrfr and Zwr =1
r=1 r=1

The solution is very sensitive to the weights that have been defined. The
problem lies also on having objectives with different variables and scales. In
our case, for example we are adding costs and quantities.

Notation:

w, weight for Objective A, with 0 < w, < 1;

wy, weight for Objective B, with 0 < w, < 1;

and

We +wp =1

z = we(Objective A) + wy(Objective B)

Structure of the algorithm for Strategy 3

Step 1: Set wg, =1 and w, =0
Step 2: Set day =1
Step 3. Savings Heuristic - Initial Solution
Step 4. ILS for TSP on each tour
Step 5. ILS for the VRP
Step 5.1. LS for the Assignment Problem
Step 5.1.1 For each move calculate the effect on objective A and B
Step 5.1.1 Accept only if the new z is smaller
Step 5.2. Perturbation for VRP
Step 5.3. Repeat Step 3.1
Step 5.3 Acceptance Criterion
Step 6. ILS for the TSP on the new routes
Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;
Step 8. Set w, = wg — 0.1 and w, = wy + 0.1
Step 9. Repeat Step 2 to 8 until w, = 1 and wb =0
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6 Computational experiment

The main objective of this experience is to evaluate the three strategies and
analyze the effect of each objective in the solutions. With this purpose we
have applied the above algorithms on several sets of randomly generated
examples. The results are expressed in terms of the values of the objectives
and total number of vehicles needed. For each strategy two values were
calculated: the Routing Cost and the Marketing (or service) Value (these
are the two objectives of strategy 3). The first is measured in distance and
the second can be interpreted as the unit cost for the distributor for not
serving a customer with the same salesman, working in a similar way as
penalty cost.

Next we will explain the data used and analyze some important results
of this experiment.

6.1 The data

For the computational experiment, we have generated several sets of exam-
ples concerning the total number of customers (50,100, 200, 400). Also, we
have examples with two types of demand (low variation and high variation)
and two types of vehicles capacity, high and low.

To obtain the demand, we have used a normal distribution with mean
50 and standard deviation 20 for the case demand has a high variation and
a standard deviation of 5 for the examples with low variation. For each
day, on average, 25% of the customers have zero demand. This implies that
in a problem of 100 customers, with 5 days week, we will have around 375
deliveries to make.

The customers locations are uniformly generated in a 100 x 100 square
with the depot located in the center with the coordinates (50, 50).

Truck capacity is 300 for problems of sizes 50, 100, 200 and 700 for size
400. Also run cases with size 200 and capacity 500. In total we have studied
30 examples for each strategy, therefore we will consider 90 problems per
run.

6.2 Analysis of the results

In this section we will present the results obtained for each example in terms
of the objective functions values, number of vehicles used, non-dominated
solutions and run times.

We can start illustrating the aim of the different strategies by looking
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at a small example with 2 days and a few customers: in Figure 4 we have
the routes for two days, in strategy 1, 2 and 3. Strategy 1 has fewer and
more eflicient routes in terms of distance, Strategy 2 has more routes, but
the routes are the same for each day. And, Strategy 3, has a solutions that
is not completely efficient in terms of distance, but allowing for a better
service level.

Strategy 1
Day 1 Day 2
—e— Route 1 —m— Route 2 —e—Route 1 —m— Route 2
Strategy 2
Day 1 Day 2
—e—Route 1 —m— Route 2 —a— Route 3 —e— Route 1 —m— Route 2 —— Route 3
Strategy 3
Day 1 Day 2
—e—Route 1 —m— Route 2 —e—Route 1 —m— Route 2

Figure 4: Routes for Strategy 1, 2 and 3.

Table 1 and 2 show the results for each example and for each strategy.
Strategy 1 tries to find lowest cost, strategy 2 the best service level and
strategy 3 the set of non-dominated solutions with respect to the integrated
strategy. We can observe that, as expected, strategy 1 will always give us
the solution with the lowest objective A and the highest objective B when
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compared with strategy 2. In the strategy 2 we have much lower marketing
values but the cost of routes increases significantly.

Concerning Strategy 3, we can say that, in almost every example, we can
find more than one non-dominated solution. In case 4, for example we have
4 non-dominated solutions and it would be the responsibility of the decision
maker to decide on one of the alternatives.
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Strategy 1 Strategy 2 Startegy 3

N Example a b a b a b
50 1 14344,15 36840 17018,9326  3306,00 14510,3408 32327
14344,1455 36840
2 13589,47 38538 16304,18 13589,4697 13755,11 35826
13697,92 38148
13589,47 38538
13680,72 38278
3 13225,97 40284 15744,37 4997 13289,63 36178
13228,96 40284
13278,06 40140
4 11710,85 32341 15597,20 5950 11850,30 25753
11811,55 31776
11710,85 32341
11788,70 32289
5 13452,19 38084 16832,33 3012 13541,62 30733
13462,15 38426
13473,14 38198
13485,40 37925
100 6 22970,35 75096 28356,94 8368 23240,29 64967
23033,34 75012
22971,54 75096
23162,88 74404
23153,67 74601
7 21999,94 73497 27755,47 7209 22045,08 61244
22041,77 73416
21999,94 73497
8 21839,25 74834 26873,79 10264 21907,99 63623
21839,25 74834
9 17062,82 70744 24874,82 5045 17236,27 59365
17036,71 70838
17220,50 69385
17167,73 70579
10 22383,01 76252 27892,61 5987 22632,56 63871
22467,32 76110
22493,46 75632
22462,16 76252
200 11 40438,9102 152536 52738,0898 19418 40682,9297 132320
40438,9102 152536
40484,59 152292
12 40420,20 152564 52089,76 9967 40757,39 134118
40420,20 152564
13 38484,12 151187 49881,28 19803 38498,67 131916
38423,13 150677
14 38481,27 148056 47837,33 9999 38681,92 129944
38710,30 147051

Table 1: Routing Cost (a) and Marketing Level (b) for Strategy 1, 2 and 3.
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Strategy 1 Strategy 2 Strategy 3

N Example a b a b a b
200 16 28589,23 152040 35849,68 8375 28883,37 132744
(cap=500) 28782,42 151361

28780,13 151569
28686,55 151883
28551,02 152164
28630,92 152040
17 28675,59 150844 34171,21 2096 28814,46 130891
28711,49 150542
28704,59 150844
18 27350,06 149576 33919,55 9715 27511,86 130867
27474,54 149315
27255,56 150108
27503,72 149261
27397,52 149435
27371,87 149576
19 27674,9883 147608 33632,543 9637 27676,8105 128579
27613,74 147754
20 27836,23 152388 34002,28 9320 28035,45 130763
27896,09 151456
27824,33 151509
27990,09 151355
400 21 40013,37 304388 49637,54 9607 40120,91 260814
40101,29 304184
40023,38 304388
22 39758,16 308956 47691,43 9401 39961,71 270449
39845,06 308604
39842,24 308956
23 39576,79 300057 47635,00 6954 39658,17 255775
39584,53 299568
24 39949,22 302980 47978,58 9525 40022,79 266906
39956,93 303057
39970,21 302980
25 39552,16 299976 46682,13 9538 39593,31 264664
39583,24 299976
50 26 12606,09 37756 11465,43 2032 12870,39 33258
(low stdev) 12716,2236 37124
12606,09 37756
12867,78 36802
27 13752,04 37759 11913,72 0 13861,01 34403
13715,64 37757
13855,72 37428
28 12723,78 39888 11096,46 0 12820,78 33940
12781,623 39888
29 12468,2988 32983 11225,9092 0 12571,04 25854

Table 2: Routing Cost (a) and Marketing Level (b) for Strategy 1, 2 and 3.
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In Figure 2 we can see the set of all solutions obtained for 22 iterations for
an example of 50 customers. The blue squares correspond to the dominated
solutions and the red squares correspond to non-dominated solutions.

34600 -
32600 - m m
30600 -

28600 -

Objective B

26600 -

24600 T T T T 1
11600 11700 11800 11900 12000 12100

Objective A

B Non-dominated Solutions

¢ Dominated Solutions

Figure 5: Example of a set of dominated and non-dominated solutions for
Strategy 3.

The number of vehicles needed for each solution strategy also varies and
this is reflected in the total distance cost. In Table 3, we can observe these
differences. The master routes approach has always much higher number of
vehicles a week, this happens due to the procedure of the routes design, they
are constructed considering all customers, and then for each day eliminating
the ones with no demand. When constructing the “master routes” we have
used the daily average demand of each customer. Nonetheless, if we had
chosen higher values for the demand, associated with each customer, the
higher the number of vehicle used in the “master routes” and the lower the
marketing objective.

Comparing the number of vehicles from Strategy 1 and Strategy 3 we
observe that, on average, Strategy 3 has the same or a higher number of
vehicles, this is due to the existence of the second objective, that introduces
a preference for service rather than distance. To have a better service we
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N Strategy 1 Strategy 2 Strategy 3

50 36 44 36
100 68 84 68
200 135 167 135
200(cap=500) 80 99 81
400 114 141 114
50 (low stdev) 36 26 36

Figure 1: Table 3: Average number of vehicles needed per week, for Strategy
1, 2 and 3.

need to sacrifice the routing efficiency and this can pass through the use of
an additional vehicle.

In terms of running time, the importance of the results can be over-
stressed. The first and third strategies are the ones that take more time to
compute. But, since we are referring to strategic planning, it does not seem
inefficient for a firm, with a network of 400 customer, to spend one hour on
a strategic planning task for a week. Take into consideration that in many
cases the week planning pattern is repeated in the next weeks. Table 4 sum-
marizes running times. For Strategy 1 and 3 we have done the same number
of iterations. The magnitude of the difference in run time of strategy 2 is
due to the fact that we only run for once the VRP, for the master case. On
the other two strategies we have to run VRP for each day of the panning
period several times.
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N Strategy 1 Strategy 2 Strategy 3
50 146,19 2,32 142,40
100 383,95 6,24 384,38
200 1116,73 17,09 1076,41
200(cap=500) 1497,82 21,13 1409,40
400 3199,07 29,07 3088,93
50 (low stdev) 152,59 3,05 149,16

Table 4: Average run time in seconds, per problem size, for Strategy 1, 2
and 3.

Finally, in Table 5 we show the results of other versions of algorithm for
strategy 3. In version 2 we have introduced more iterations for each weight.
And, in version 3 we have done more iterations for the ILS for each day,
and kept the same number of iterations per weight. From the results we
can conclude that by allowing more running time, the algorithm of version
2, on average, gives more non-dominated solutions in 3 of the 5 problems.
In version 3, on average the number of non-dominated solutions is smaller
than in the other versions but we are able to improve the solutions, when

comparing with version 1 and 2.
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Startegy 3, version 1

Startegy 3, version 2

Startegy 3, version 3

Examples a b a b a b

1 14510,34 32327 14510,34 32327 14372,34 32327

14344,15 36840 14376,34 36570 14251,39 36840
14318,05 36840

Run Time 151,60 369,65 406,61

2 13755,11 35826 13755,11 35826 13657,49 35826
13697,92 38148 13697,92 38148 13631,61 38148
13589,47 38538 13680,72 38278 13944,69 39060
13680,72 38278 13644,05 38376

13589,47 38538

Run Time 141,22 358,72 386,46

3 13289,63 36178 13289,63 36178 13235,85 35668
13228,96 40284 13224,70 40284 13229,69 40148
13278,06 40140 13183,31 40284

Run Time 150,23 378,33 398,76

4 11850,30 25753 11850,30 25753 11812,68 25393
11811,55 31776 11805,80 31416 12126,23 31416
11710,85 32341 11751,11 32062
11788,70 32289 11710,85 32341

Run Time 123,64 311,10 329,89

5 13541,62 30733 13541,62 30733 13515,69 30336
13462,15 38426 13485,40 37925 13441,13 36998
13473,14 38198 13452,19 38084 13364,65 38084
13485,40 37925

Run Time 145,33 368,83 397,50

Table 5: Routing Cost (a) and Marketing Level (b) for the non dominated

solutions of Strategy 3, for 3 different versions of the algorithm.

7 Summary and Conclusions

In this paper we have explored different distribution strategies to analyze
an integrated distribution problem. The strategies cover a week planning
horizon and reflect different ways of looking at the distribution problem.
The first strategy is the classical VRP approach, which reflects only trans-
portation cost: For each day of the planning horizon the routes are designed
minimizing routing costs. The second strategy is a more customer oriented
strategy based on customer relationship management principle, where mas-
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ter routes are constructed to ensure a marketing policy where each customer
is always served by the same driver. The third strategy is a multi-objective
combinatorial optimization problem with two objectives: minimizing cost
and improving customer service. This third strategy results from the inte-
gration of the two other strategies and brings together two important areas
in many industries: Distribution and Marketing. The idea was to compare
this new approach with the other two strategies.

For each of the above strategy we have presented a mathematical model
and a heuristic procedure, based on the ILS, to solve the problems. Then,
the three algorithms were applied to a set of randomly generated instances.
The main conclusion is that the multi-objective model gives several non-
dominated solutions, that can be seen as a good balance between optimiz-
ing the transportation cost or customer service. The decision maker has
to choose the solution which meets better his business needs, since cost
minimization is not the only concern in distribution management.

There are several possible extensions of this work, one is in the area of the
metaheuristics and here it would be interesting to develop multi-objective
population based metaheuristic to solve the multi-objective model and to
perform a comparison with the current approach. The second extension
would be to include other objectives that would reflect different business
needs, as for example, the one of balancing the routes. This is particularly
interesting if we assume that driver’s remuneration is related with truck
loading. In this case, we would be studying the integration decisions with
the Human Resources department.
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