Economics Working Paper 70

Probabilistic Maximal Covering Location
Models for Congested Systems.

Vladimir Marianov*
and
Daniel Serral

March 1994




g Fag,

<

ey g

Economics Working Paper 70

Probabilistic Maximal Covering Location
Models for Congested Systems.

Vladimir Marianov*
and
Daniel Serral

March 1994

Keywords: Maximal Covering, Queueing, Probabilistic Location, Discrete
Network Location.
Journal of Economir T+t-rature classificalion: C61, R30, L11.

* Universic ad Catdlica de Chile.
t Universi .at Pompeu Fabra.

UNIVERSITAT POMPEU FABRA

T

I —




Abstract

In this paper, we propose several Maximal Covering Location models that
include queueing parameters to obtain an efficient and effective service system.
The models are based on the fact that, in real life, the number of requests for
service 1s not constant in time, but instead, it is a stochastic process. This
stochasticity of the demand is explicitly taken into account in order to derive
a capacity-like constraint which, instead of upper-bounding the demand to
the capacity of the center, forces a lower bound on the quality of the service
at the facility, particularly the waiting time or the number of people in line,
awaiting for service. The first model considers that there 1s only one server
at each center. The second one considers that each individual center has a
fixed number of servers. In the third model there is a fixed number of servers
to be allocated to centers. Finally, solution methods and further research are
proposed in the context of integer programming.




1 Introduction

When dealing with limited budgets, Decisions on location of services are usu-
ally made with the help of Maximal Covering Location Models (Church and
ReVelle 1974) or p-median type models (Hakimi 1964, and ReVelle and Swain
1970 ). Frequently, these models include a capacity constraint, which forces
the demand for service at the center to be smaller than its maximum capacity.
In these constraints, the maximum capacity is usually given by either the ser-
vice load that the center can handle, or by some estimation of the maximum
number of users that the center can serve at the same time. On the other
hand, in general, as an estimate of the demand for service at any facility,
two different figures are typically used. The first one is the total population
allocated to the facility, multiplied by some experimental or practical factor,
which gives an estimate of the expected number of simultaneous requests for
service, or demanded workload, of that center. The second figure is an aver-
age of the historical rate of requests originating at the population allocated
to the center, if a record of it is available. This demand is then constrained
to be smaller than the maximum capacity of the facility.

In the traditional models we described, the demand is implicitly assumed
constant in time, equal to an average, which is strictly constrained to be
smaller than the capacity of a facility all the time. In some sense, there is
a contradiction between the strong, rigurous constraint, and the fact that it
is applied to an average. In this paper, we propose a model based on the
fact that, in real life, the number of requests for service is not constant in
time, but instead, it is a stochastic process. This stochasticity of the demand
is explicitly taken into account in order to derive a capacity-like constraint
which, instead of upper-bounding the demand to the capacity of the center,
forces a lower bound on the quality of the service at the facility, particularly
the waiting time or the number of people in line, awaiting for service.

The models presented here are specially useful when locating services that
can become easily congested by the users due to limited resources available.
In general, this is the case of emergency services, that can have workloads
which push them to their limit of their ability to provide effective service.

The optimal location of primary health care centers is an example of such
services. These centers must be located in such a way that they could be

reached from any demand point within a reasonably short time, and, once




a patient has arrived to the center, his/her waiting time should be as short
as possible, since waiting time is an important determinant of the perception
of service quality. The same reasoning can be applied to emergency rooms
and other facilities. Another example of congested systems is the location of
distribution centers, where trucks arrive to deliver their load. The presence of
several trucks in a facility with only one server can make it easily congested.

The first model addresses the issue of the location of a given number
of Single Channel, Single Server queueing system centers in the nodes of a
network so as to maximize population coverage within a distance standard,
and with the additional probabilistic restriction that the people in queue or
the waiting time in line will not exceed a given standard with a probability «.
The second model considers that the centers to be located have a given number
of servers each (M/M/m queueing system). The last model considers that not
only a given number of centers have to be located so as to maximize population
coverage given a distance standard, but that there is a given number of servers
in the system that has to be allocated among the centers. Finally, several
solution methods from the literature are proposed together with some remarks

on future research.

2 Development of the M/M/1 Maximal Lo-

cation Covering Problem

The M/M/1 Queueing Maximal Covering Location Problem (QMCLP1) can
be stated as:

“Locate p service centers, with 1 server each, and allocate users to them
so as to maximize covered population, where coverage is defined as: 1) covered
population is allocated to a center within a time or distance standard from
its home location, and ii) if a user is covered, at his/her arrival to the center,
he/she will wait on a line with no more than b other people, with a probability

of at least «, or ii) every user will be attended within 7.”

The formulation of the model is the following:

max Z ZZZG,'.’Z:,'J' (1)

icl jeJ




subject to:

i <y vieLVieJ (2)
JEN;
Yy < p (4)
jeJ
Plcenter j has < b people on queue] > « Vied (5a)
P[waiting time at fac. 7 <7] > « Vield (5b)
Y5, Ti5 = (0,1) VZ‘EI,V].EJ
where:
1,] = index and set of demand areas
7,J = index and set of potential facilities
S = distance standard
T = maximum walting time on line
a; = Population at node 2
d;; = distance between nodes z and j

N; = {]EJ,d,JSS}
_ 1, if a center locates at node j
vi = 0, otherwise

1, if node 7 1s served by a center located at j
0, otherwise

Objective (1) maximizes the population which has been allocated to some
center, that is, covered population. Note that there is no constraint forcing
every demand node to be covered. Constraint (2) states that it is not possible
to allocate demand node z to a site j, unless there is a center at this site.
Constraint (3) forces each demand node 7 to be allocated to at most only one
service center j. Constraint (4) limits the number of centers to be located.

Constraint (5a) forces every facility to have less than, or at most, b people on




line with a probability of at least a. This constraint assures that, on his/her
arrival to the facility, every user will find a line that is short enough, most
of the time. Constraint (5b) explicitly makes the waiting time at the facility
shorter than or equal to 7 with probability of at least a, assuring to every
patient a timely attention.

Although the formulation presented is more intuitive, a variation of the
model which has less variables and constraints will be used in practice. The
variation is very simple: variables z;; are defined only for the pair of indexes
(1,7) such that j belongs to N;, that is, since we are forcing coverage of
every demand from a center located within the distance standard, there is no
need to define variables that will neve be equal to one. Thus, the number of
variables is reduced, the number of constraints (2) is reduced, and constraint

(3) becomes:

dozy; <1, Viel
ie€J
This new formulation would be only used in problems where there is no
need to assign uncovered demand to centers. This is not the case when it
is expected that everybody in the system will use the facilities, regardless of
coverage.
Constraints (5a) and (5b) could be replaced respectively by the following

ones:

[Avge. or expected # of customers in a center j < b > a, VjeJ (5al)

[Avge. waiting time at center j < 7] > «, Vied (5b')

Constraints (5a’) force the expected number of users at facility j (the one
being attended plus those in queue) to be less than or equal to 5. If this
constraint holds, on their arrival to the facility, users will find lines shorter
than b a 50% of the time (not a 100% percent), as in constraint (4), and the
other 50% of the time, they will face lines that are longer than b. Therefore,
constraint (5a’) is less tight than constraint (5a). Finally, constraint (56'),
forces the average waiting time to be less than or equal to 7. We will use
constraints (5a) and (5b).




Constraints (5a) and (5b) cannot be written in a usable form unless the
underlying probabilistic distributions are known. In general, these constraints
will be non linear. If a linear, integer model is to be used, their linear,
deterministic equivalents need to be found.

In order to write constraint (5a) in a tractable form, we make the reason-
able (and customary) assumption that requests for service at each demand
node 2 appear according to a Poisson process with intensity f;. Since each
facility serves a set of demand nodes, the requests for service at that facility
are the union of the requests for service of the nodes in the set, and they can
be described as another stochastic process, equal to the sum of several Poisson
processes. This stochastic process can be easily shown to be also a Poisson
process, with an intensity A; equal to the sum of the intensities of the pro-
cesses at the nodes served by the facility. This set of nodes is not known before
the solution of the mathematical programming problem is known. However,

we can use variables x;; in order to rewrite the parameter A; as

Aj = E fizij
iel

Using this definition, if a particular variable z;; is one, meaning that node
1 is allocated to facility at j, the corresponding intensity f; will be included
in the computation of A;.

We also assume an exponentially distributed service time, with a service
rate of p; (A; < pj, otherwise the system does not reach an equilibrium).
If we assume steady state, we can use the well known results for a M/M/1
queueing system for each facility and its allocated users.

If we define the state k of the system as k users in the system (either being
attended or in queue), the state transition diagram of the system is the one

shown in Figure 1.

A, A, A,
CXCECE
i Wj Wj

Figure 1: State Transition Diagram




In this figure, state k corresponds to k users at the facility, that is, state
zero corresponds to the facility being idle, state 1 to one user being attended
at the facility, state 2 to two patients at the facility: one of them getting
attention and one in queue, and so on. We want to make the probability of
a user being on a line with no more than b other people, at least equal to
alpha. If we represent as p; the steady state probability of being in state k,

this requirement is written as:

Po+p1+ it Po1 > (6)

Writing and solving the steady state balance equations of the M/M/1 sys-
tem, we get the following expression for the steady state probabilities (Wolff,
1989):

pe = (1—p;)ef
Where p; = A;/p;. Hence, equation (6) becomes:
(L=p))+ (L =pidpi+ (L= pi)pt + ..+ (1= pj)pit >

or

b+1 .
(1—p;)Y 0 >0
k=0

which 1s equivalent to

(1= p)l(1 =52/~ ps] 2 o,
or
PP <1 —q,
therefore,
p: < (1 __Va)l/b+2'

Since p; = A/ 1)



A < (1= )t (7)

Equation (7) is equivalent to constraint (5a). Using the relationship be-
tween the intensity at the facility and the intensities at the demand nodes,

constraint (5) is rewritten as

> fimi < pi(1 — a)l/bt? (8)

el
which is a linear, deterministic equivalent of constraint (5a).
If we choose to use constraint (5b) instead of constraint (5a), that is
Plwaiting time at facility 7 < 7| < @, Vijeld
we may use the probability distribution function of the waiting time in

a M/M/1 queue, w, which has the following expression (Larson and Odoni,
1981):

Fulws) = (nj = Az)eTHim2)s

to derive its cummulative distribution:

P(‘LUJ' < 7') = Fw(T) =1- e(“j""j)"' (9)

The probability in equation (9) is made greater than or equal to a:

1—ew M) > q Yy e J,

e~ i) < 1 Q, Vi€ J,

(4 =) <in(l-a), Vi€l

A; S py+1/7in(l ~ a) Vie J

Using equation (8) to rewrite the parameter }; , we finally get




Zf,-m,j _<_ Ky -+ l/TlTL(]. - a) VJ € J (10)
1€l

which is the linear deterministic equivalent of equation (5b).

3 Development of the M/M/m QMCLP when
the number of servers in each center is

fixed

When there is more than one server at center 7, the inequality p; > m;A;
must hold, where m; is the number of servers at center j; otherwise, the
system does not reach an equilibrium. By virtue of the new assumptions, the
well-known results for a M/M /m queueing system can be used for each center
and its allocated users. In this case, the new state transition diagram of the

system is as follows.

A, A, A, A, A
O e e
Hj 2H; 3 my; my;

Figure 2: State Transition Diagram, M/M/m system

In this figure, state k corresponds to k users at the center, that is, state
zero corresponds to the center being idle, state 1 to one user being attended at
the center, state 2 to two users at the center, both of them getting attention,
and so on, up to state m, in which all m users in the system are getting
attention. In state m + 1, however, m users are being attended and one in
queue; state m + 2 represents m users in service and 2 in queue, and so on.
We want to make the probability of a user finding a line with no more than
b other people, at least equal to a. If we represent as p, the steady state

probability of being in state k, this requirement is written as:

Po+P1+ oot Db > @

that is, the probability of the queue being shorter that or equal to b users at




the arrival of the next request, is greater than a. Also, since pg+p1+... + Poc =
1

)

Pmibtl T Pmibi2 + . + P <1 — q (11)

which means that the probability of the queue being longer than b is
smaller than 1 — a. Note that the special case b = 0 does not mean that
the user necessarily finds one server available, because it may happen that
all m servers at the center are busy, but there are no users in the queue. In
this case, the arriving customer must wait until one of the servers becomes
idle. If free server availability is desired, that is, at least one server free with
probability «, then po + p1 + ... + pm—1 must be forced to be greater or equal
to a.

Writing an solving the steady state balance equations of the M/M/m sys-
tem, we get the following expression for the steady state probabilities (Wolff,
1989 ):

Pk pop*/ k!, k<m
P = popt/mimk™ k>m

m-1 3 -1
m p
P {Tﬁfﬁ*z?]

Where p = A/u. Although these parameters are specific to each server cen-
ter, we will not use any subscript for the time being. With these expressions

for the steady state probabilities, equation (11) becomes:

0o m k
Z Po'm; (ﬁ) <l-a

k=mibt1 T\
or
m [ oo k. m+b k
pom p p
- (Z(ﬂ ‘Z(;))fl‘a-
: k=0 k=0

Since p/m < 1, the summations in parentheses converge. Recalling that

these summations can be written in a well known, simpler form, we get




m

m p
(=)

after some algebreaic manipulation, this equation becomes

m

-1 (L) m4b+1

m

"b

T1-z |SiTe

m—-1 4
+ -
m! Jz:%) 7!

! (m— k)mmb 1 S 1 5
Z k! prtbti=k = ] (1 )

k=0

for the second model.

Since p = A/u, and since A is a function of the variables z;;, equation (12)
can be also written as a function of variables z;;, becoming the deterministic
equivalent of equation (5a).

It is intuitively easy to see that, for any fixed value of ¢, the value of the
left hand side of equation (12) can be made large enough to make the equation
hold, by making p small enough, because its exponent is always positive. The
value of variable p is decreased by manipulating variables z,; (making as many
of them equal to zero as needed). Furthermore, for any value of a there must
exist a value p, of p which makes the equation (8) hold as an equality, as well
as a range of values of p such that equation (12) holds as a strict inequality.

Although it is the deterministic equivalent of equation (5a), equation (12)
cannot be used in a linear model, because of its nonlinearity. However, we
show next that its left hand side (LHS) is strictly decreasing with increasing
p, and we later use this characteristic to find a linear equivalent to it.

The derivative of the LHS of (12) with respect to p is

OLHS 7 (m—k)m!mt 1
"o - ,CZ_‘B [~(m+b+1—k) X T (13)

This derivative is strictly negative because (m + b+ 1 — k) is strictly
positive, as well as all the remaining factors of each term of the summation.
The entire summation is also strictly negative, and so is the whole derivative.
Thus, the LHS of equation (12) is a strictly decreasing function of p, which
also means that it strictly increases when p decreases.

Let po be the value of p which makes the equation (12) hold as an equality.
Since the LHS strictly increases when p decreases, equation (12) also holds

for any value of p < p,. In other words, the inequality p < p, is a sufficient

n




condition for equation (12) to hold. Furthermore, by virtue of the strictly
increasing nature of the LHS of equation (12), for any p > p, equation (12)
cannot hold. Thus, p < p4 1s also a necessary condition for equation (12) to
hold. Since p < p, is a necessary and sufficient condition for equation (12)
to hold, we can use it instead of equation (12). Once the value of « is given,
the value of p, can be found by using any numeric root-finding technique
(Newton methods, for example) on equation (12), written as an equality, and

equation

P < Paj, V] cJ

can be used instead of equation (12) for each j.

Since p; = Aj/pj,
Aj < Wibaj, V3 EJ

Recalling that }; is a function of variables z,;,

Zfimij < WjiPaj, Vied (14)
1el

which is the set of linear, deterministic equivalents of constraint (5a).

The second model (QMCLP2) consists of equations (1), (2), (3), (4) and
(14). If the problem is solved using its linear relaxation, in this last equation
the right hand side may be multiplied by variable y; in order to improve the

integer characteristics of the variables at the solution.

4 Development of the M/M/m QMCLP when
the number of servers in each center is not

fixed

This new model can be stated as follows:

"Locate p° service centers, and p® servers, and allocate users to them so
to maximize covered population, where coverage is defined as: i) covered
population is allocated to a center within a time or distance standard from

its home location, and ii) if a user is covered, at his/her arrival to the center,

iyl




he/she will wait on a line with no more than b other people, with probability
of at least .”

In this model, the total number of servers is given, and it is distributed
among the centers in the best possible way given by the solution of the math-
ematical program, as opposed to the former model, in which a fixed number
of m servers per center is sited. In order to formulate this model, which builds
on the former one, a new variable z; is defined. This variable is one if at
least k servers are located at service center j, and zero otherwise. As many
variables are defined for each center as the maximum number of servers that

may be sited at that center. The set of ordering constraints

Zik < Zjk-1, Vi, k=2,3,..,Cj (15)

where C; is the maximum capacity of a center located at node j are added,
to indicate that a k** server cannot be located at node j without first locating
the (k — 1)** server. Constraint (14) becomes

C;
> fimi < pj [ Zipagy + Y Zik(Pask — Pajie-1))| - Vi€ (16)
el k=2

In equation (16), the parameter p,;, represents the value of p,; whica
makes equation (12) hold as an equality if the number of servers located at j
is k. This value can be computed previous to the solution of the mathematical
program, using m = 1, m = 2, up to m = C; in equation (12) Note that, if
the solution of the mathematical program indicates that there are four servers
at the center located at node j, the four first variables z; will be equal to
one, and the right hand side of equation (16) will be equal to p;paja-

Note also that adding an extra server to center j, we add service capacity
to it. Although this is intituively true, it can be shown, proving that pax —
Paj(k—1) 1N last equation is positive, which we next do, proving that puji is
greater than pqj(k—1)-

Recall that pa;x is the value of p which makes equation (12) hold as equal-
ity, when m servers are located at node j. We compute the left hand side of

equation (12) for the same value of p, and m + 1 servers, LHS(m + 1):

12




= (m+1 —k)(m+1)!(m+1)b 1
LHS(m +1) =} il prHIFbHI—k

k=0

Changing summation variables, 7 = k + 1,

LHS(m +1) = mi:l (m—7)m+1(m+1P¢ 1

2 G e
(m+ D (m+ 1) 2 (m—5)m+ 1)(m+ 1) 1
= pm+b+2 = (] + 1)! pm+b+l—j.

Renaming j as k again, we get

(m+ Dl(m + 1)"+l m-1 (m+1)(m — k)m!(m + 1)b 1

HS 1) = .
LHS(m+1) b2 = (k+1) k! pmtbi1—k

The first term of this expression is strictly positive, and clearly, each term
of the summation is also strictly greater than its equivalent term in the ex-
pression for LHS(m). Thus, we can conclude that, for the same value of p,
LHS(m + 1) is strictly greater than LHS(m). Let p = pajm. Since this value
of p makes LHS(m) equal to 1/(1 — ), it makes LHS(m + 1) strictly greater
than 1/(1 — a). Recall that LHS is a decreasing function of p. Thus, in order
to decrease LHS(m + 1) to make it equal to 1/(1 — a), and find pujm1), we
must decrease p. Hence, pgjim+1) 15 strictly greater than pujm, and the term
Paj(m+1) — Pajm 18 positive for all m.

The reasoning shows that adding a server to a center, the service capacity
is increased, and that structure of constraint (15) represents adequately this

characteristic.

Finally, the third model (QMLCP3) is the following:

minZ = Z Z a;T;; (17)

i€l jeN;

subject to:

13




23k < Zj(k-1) Vj,k:2,3,...,Cj (18)
Tiy < 251 ViGI,VjEN,' (19)
o =1 Vie I (20)
JEN;
k=Cj
2z = P (21)
7.k=1
>z = P (22)
J
> fizy < b ViedJ (23)
el

Zjk, Tij = (0, 1) Vie I,V3 € N;,Vke K

where
Cj

bj = pj | 2i1Pait + D_zik(Pask — Pai(r-1))
k=2

5 Conclusions

The discipline of location-allocation theory has mainly focussed on the issue of
the optimal siting of services and facilities, but little attention has been paid to
the issue of service congestion, i.e, service quality. In this paper several models
that address the issue of queueing and location have been presented. The
models are based on the well-known Maximal Covering Location Problem,
introducing a set of constraints that restrict the number of users at a given
time to be less than a standard with an a probability. While these constraints
might seem highly non-linear, deterministic equivalents have been found that
allow the problems to be casted as an integer programs (IP).

In fact, the IP mathematical formulations presented for QMCLP1 and
QMCLP2 are exactly the same as the one corresponding the Capacitated
Maximal Covering Problem (CMCP) developed by Chung et al. (1983) and
Current and Storbeck (1988), and developed by Pirkul and Shilling . As
these authors point out, these problems “belong the to the notably difficult

14




NP-Complete class of problems” and therefore, general-purpose integer pro-
gramming codes become highly inefficient for reasonable size problems. To
overcome this problem, Pirkul and Shilling developed a Lagrangean relax-
ation procedure to obtain solutions that proved to be very efficient, with lower
bound gaps typically well below two percent. Both QMCLP1 and QMCLP2
can be solved using their approach.

The mathematical structure of the third model, QMLCLP3, differs signifi-
cantly from the previous models QMCLP1 and QMCLP2. While the method-
ology presented here provides globally optimal solutions using a general-
purpose IP code, it can become very expensive in terms of computing time due
to both the large number of variables and constraints, and to the mathemat-
ical structure of constraint set (23) for medium-size problems. As Current
and Storbeck (1988) point out “ although many real-world location prob-
lems fall in the small to moderately sized range, others do not”. Because
the widespread applicability of QMCLP models, the developement of efficient
heuristics based on Lagrangean relaxation for large QMCLP3 problems is an

important area of future research.
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