UNIVERSITAT POMPEU FABRA &

A Unique Informationally Efficient and
Decentralized Mechanism with Fair Outcomes

Xavier Calsamiglia

and

Alan Kirman

Economics working paper 7. November 1991




A Unique Informationally Efficient and
Decentralized Mechanism with Fair Outcomes®

Xavier Calsamiglia
Universitat Pompeu Fabra, and

Institut d’Analisi Economica
and
Alan Kirman
European University Institute, Florence

June 1992

"Presented at the World Mecting of the Fconometric Society., Barcelona 1990, We are grateful
to Carmen Herrero. Antonio Manresa and Antonio Villar {or their helpful comments. We also
thank Martin Hellwig and an anonymous referee. both of whose cxtensive comments have led to a
considerable miprovement m the exposition. Finally we arce particularly indebted to Jim Jordan
whose suggestions led to a significantly shorter and simpler proof. Responsibility for remaining
defects or errors is. of course, our own. This research has been supported by the CICYT.

UNIVERSITAT POMPEU FABRA

HonM




1 Introduction

Following the pioneering work of Hurwicz [15] and Mount and Reiter [29], there
has been a significant amount of work on trying to determine the informa-
tional requirements of decentralized resource allocation mechanisms. By mech-
anism here we mean a system which communicates knowledge which is dispersed
among agents and uses it to determine the allocation of resources. Agents send
messages and these are translated into outcomes. In particular, the focus in the
literature has been on the dimension of the space of messages used for commu-
nication between agents. These informational requirements depend upon two
basic elements: the class of environments over which the mechanism is sup-
posed to operate and the particular outcomes that the mechanism is required
to achieve.

Most of the literature has centered on the informational requirements for
obtaining Pareto optimal allocations in different environments. In this paper we
discuss the information needed to obtain a more restricted class of outcomes:
in the context of pure exchange classical environments, those which are fair,
i.e., both efficient and envy free. The interest in such allocations is a long-
standing one, and although the definition we use is that of Foley [12], the
underlying notion goes back to the ancient Egyptians and has been formally
investigated in another context by Dubins and Spanier [10]'. Intuitively, it
might seem that a great deal of information would be required to obtain such
outcomes since establishing whether an allocation is fair would seem to involve
each agent comparing his allocation with that of everyone else and this would
require knowing the initial endowments of all agents. However, we will show
that in fact very little more information is needed to obtain fairness in addition
to efficiency and, in particular, we will prove rigorously the idea suggested by
Thomson and Varian [37] that we can actually specify a mechanism which is
the only one involving minimal informational requirements.

The design of a particular mechanism involves the specification of a message
space (i.e. the set of signals used for communication), the response functions
(i.e. how individuals choose the messages they send) and a rule to recognize
the so called equilibrium messages, which are messages that indicate that the
decisions of the independent agents have been coordinated. These equilibrium
messages are then mapped by an outcome function into the allocations. The
message space, response functions, equilibrium rules and outcome functions are
regarded as chosen by the mechanism designer and not by the individuals. If
all the outcomes of the mechanism are the ones prescribed by a social choice
rule (also chosen by the designer) then it is said that the mechanism realizes
that social choice rule. The problem of why the agent should be motivated to
send the messages and behave in the way prescribed by the mechanism, that is
the problem of incentive compatibility, is not directly dealt with, though useful
discussions may be found in Hurwicz 16}, Reichelstein [33] and Reichelstein
and Reiter [32]. When a mechanism realizing a given social choice rule provides
the right incentives, we say that it implements it. The problem we address in

LA survey of the literature on the subject is given by Crawford (1987).




this paper is of the following nature: given a social choice rule (fair allocations
in our case), find a decentralized mechanism that realizes it with minimal mes-
sage spaces. The question of its implementation is not considered. It is clear
that the competitive mechanism which receives particular attention here has
the same incentive compatibility problem as in the standard general equilib-
rium model. Agents’ messages cannot be regarded as best responses in finite
economies in a game theoretic sense. However, given the instructions received
from the mechanism designer, they reflect the best choice.

There has been considerable work done on the problem of the informational
requirements of an allocation mechanism which ensures efficient outcomes in
classical environments?. This has been extended to environments with public
goods ( Sato [34]), and those which are stochastic (Jordan [21]), non-convex
(Calsamiglia [2](3][4]), discrete (Hurwicz and Marschak [20]) and intertemporal
(Hurwicz and Majumdar [19], Brock and Majumdar |1} and Dasgupta and Mitra
9)).

The outcomes that are selected as socially desirable are chosen by the de-
signer, and in our case his two criteria are efficiency and fairness. He does not
require that the agents should be able to verify these properties but merely
affirms that these are the desired properties of acceptable outcomes. Indeed,
since the process is decentralized and informationally efficient, it is not possible
for the individuals themselves, with the information at their disposal, to check
that the outcome is fair any more than they can check on efficiency.

In the context of classical environments the competitive mechanism plays a
special role and indeed Jordan [22] has shown that, under certain assumptions,
it is the unique informationally efficient way of obtaining Pareto optimality.
This will be important in what follows. We know that, in classical environments,
if all agents have the same consumption sets, there always exist fair and efficient
allocations. 3. This was shown by considering the Walrasian outcomes obtained
after dividing income equally between all agents*. This indicates the route to
follow. Since the competitive mechanism is informationally efficient in obtaining
Pareto outcomes, all that remains is to distribute income equally. The question
is how much additional information it is necessary to convey in order to perform
the required redistribution.

The equal income Walrasian mechanism has received considerable attention
in the literature. Apart from the papers mentioned above, results by Maskin
[28] and Thomson [36][38] show that any Nash implementable social choice cor-
respondence is closely related to the equal income Walrasian correspondence.
Furthermore, as Varian [40], Hammond [14], Kleinberg [24], Champsaur and
Laroque [5], and Mas Colell {26] [27] have shown, in economies with a large
number of agents with sufficiently diverse characteristics the only fair outcomes
are equal income Walrasian allocations. However, if there is not enough diver-

2Mount and Reiter [29], Hurwicz [17], Osana [30], Chander [6] and Calsamiglia [4].

3If consumption sets are not identical, i.e., there are non transferable commodities, then
fair allocations may not exist. In particular, Pazner and Schmeidler [31]and Tillmann [39]
have shown that, in a productive economy with agents of differing ability, there will be no
such allocations.

4See Kolm [25] and Feldman and Kirman [11].




sity or not enough agents it is known that there may exist many other fair and
efficient allocations.

The three basic results of this paper also indicate the central position of the
Walrasian mechanism from a different perspective. They can be summarized
as follows:

a) Any informationally decentralized mechanism that realizes fair allocations
over the class of classical pure exchange environments has a message space
of dimension greater than or equal to nf, that is the number of agents
times the number of commodities.

b) The equal income Walrasian mechanism, in which all agents take prices
parametrically and maximize utility subject to the average income con-
straint, realizes fair outcomes over the class of classical pure exchange
environments and has a message space of dimension nf. Besides the typi-
cal competitive message, every agent has to send a real number expressing
the value of his initial endowments at going prices. Thus, the equal income
Walrasian mechanism is informationally efficient.

¢) Athough in the class of environments considered there exist many fair
allocations which are not equal income Walrasian allocations, we show
that a mechanism that selects any of these necessarily has strictly larger
informational requirements. In other words, if we insist on mechanisms
with message spaces of minimal dimension, then the Walrasian mechanism
from equal incomes is in fact the unique candidate.

2 Structure of the argument

To establish the framework let us look at the classical problem of obtaining
Pareto optimal outcomes in an informationally efficient way. In the Walrasian
competitive mechanism only net trades and prices must be known to check
that a given outcome is Pareto efficient. But this information is compatible
with infinitely many different economies (represented by different Edgeworth
boxes and indifference curves) as shown in figure 1. The fact that there is no
need to distinguish between all of these is the basis for the strong result that a
finite dimensional message space (of dimension n(¢ — 1)) is sufficient to select
Pareto efficient allocations over an infinite dimensional class of economies.
The Walrasian mechanism achieves this in an informationally decentralized
way. In a decentralized mechanism, the decision process is decomposed into
two phases. In the first phase there is a communication process. Because of
the assumed initial dispersion of information, messages sent by agents depend
only on messages of other agents and on their own characteristics. This impor-
tant feature of the communication process implies that the so called “crossing
condition” has to be satisfied: if two economies have the same equilibrium mes-
sage, any “crossed economy” in which one agent from one of the two initial
economies is “switched” with an agent from the other, must have the same




equilibrium message ®. For a given mechanism the translation of the equilib-
rium message into an action (net trade) is precisely prescribed by an outcome
function, 2 = h{m). Hence, if two economies have the same equilibrium mes-
sage m, then the mechanism leads to the same action 2z for both. These two
characteristics of any informationally decentralized mechanism have important
implications that we will discuss. '

Consider a mechanism that selects Pareto optimal outcomes and two econo-
mies which have the same equilibrium message. Then two facts are necessarily
true. First, the common outcome z of the mechanism leads to an allocation
which is Pareto efficient for both economies. Second, this very same trade z
must also be the outcome of the mechanism for any of the “crossed” economies
because of the “crossing condition”. Therefore the trade z must lead to final
allocations which are Pareto efficient not only in the two initial economies, but
also in all the “crossed” economies. This is illustrated in figure 1, where an
economy is represented by the Edgeworth box ABCD and the continuous indif-
ference curves shown there. The point w represents the initial endowments and
z the trade leading to the final allocation 2. A second economy is represented
by the Edgeworth box EFGH and the dotted indifference curves respectively. It
is easily seen that both economies have the same equilibrium message (p, z) and
that the trade 2 leads to an allocation x which is Pareto efficient for both. Now
consider the crossed economy in which we take the first agent from the first
economy and the second agent from the second economy. The Edgeworth box
for this economy is given by AIGK and the relevant indifference curves are one
continuous and the other dotted. It is immediately seen that for this “crossed
economy” the trade z still leads to a Pareto efficient allocation, as was to be
expected from our previous argument. It is clear that the same competitive
message is compatible with Edgeworth boxes of completely different sizes. This
means that the equilibrium message does not reveal the “size” of the economy
since no agent has any idea about the aggregate initial endowments.

Now, suppose that we are interested in a mechanism whose outcomes are
not only Pareto optimal, but also fair. The competitive mechanism does not
guarantee such outcomes. Notice that the allocation z happens to be fair for
the economy EFGH, but not for ABCD. It seems clear that, to check whether
an allocation is fair as well as being efficient, some information concerning the
“size” of the Edgeworth box is needed. Indeed, the information needed turns
out to be more than that of the competitive mechanism, but not very much.

At given prices let agents simply add their incomes to their information on
net trades and prices, that is one real number per individual. Then let them
maximize their utilities subject to the average income constraint. This mecha-
nism guarantees fair and Pareto efficient allocations and has an né-dimensional
message space. Next we show that these are the minimal informational require-
ments of any decentralized mechanism that selects fair and efficient outcomes.
The basic argument is fairly simple. Think of a class of economies in which all
consumers have the same utility function, a Cobb Douglas with unit coefficients
for example. This very specific class E*, which we shall refer to as the class of

5See section 3 for a formal statement of this property.
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Figure 1: Nlustration of the crossing condition

“canonical” economies, with its associated “canonical” utility function, will be
particularly useful in what follows. It is clear that the only fair efficient alloca-
tion in such an economy is to give each agent the same bundle, i.e., to choose
the allocation at the center of the Edgeworth box. To identify an economy in
this class requires only the complete description of the initial bundles of all n
agents , i.e., n bundles of £ goods. Thus its dimension is né.

Now we claim that, in any informationally decentralized mechanism, two
different economies in that subclass E* must use different messages. Indeed,
suppose that we have a mechanism for which two different economies share the
same equilibrium message m. Consequently, the outcome of the mechanism in
both economies must also be the same trade z. Consider the situation depicted
in figure 2. We have two different economies, represented by the two Edgeworth
boxes ABCD and EFGH, which have the same trade z as the outcome®. This
outcome is fair because the final allocation point x obtained with the trade 2
from the initial endowment point w is the center of the box for both economies.
However, by the crossing condition, the “crossed economies” will have the same
equilibrium message and consequently they must have the same outcome 2. It
is easily seen that, with the same trade, the final outcome x for the crossed
economy given by the Edgeworth box EJCK is not fair because it is not in the
center. The same argument holds for the other crossed economy: z is not at the
center of AIGL. Therefore every economy in the subclass considered must use
different messages. Hence the message space has to be at least as “big” as the
n{-dimensional class of environments. If some regularity conditions are satisfied
the dimension of the message space cannot be smaller than nf. This establishes
the informational efficiency of the equal income Walrasian mechanism.

In the preceding argument we have been considering a very specific class of

®Since utility functions are assumed to be Cobb-Douglas, the flatter, (solid), indifference
curves correspond to the bigger Edgeworth box. However along a ray given by the diagonal
of the boxes the normalized utility gradients are always the same.
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Figure 2: A subclass of economies with the uniqueness property

environments in which all agents have identical preferences. The information
needed to attain fair efficient allocations within that restricted class is the same
as that of the equal income Walrasian mechanism. Of course, for this class
there are other mechanisms which use the same amount of information. Think,
for example, of a mechanism in which every agent simply announces his own
bundle. The average bundle can then be computed and the appropriate trades
assigned to every agent. In this particular class of economies, this mechanism
is essentially equivalent to the equal income Walrasian one because it yields
precisely the same outcomes. The latter mechanism, however, has a satisfactory
performance, i.e. gives both efficiency and fairness, over a much larger class of
environments in which agents can have different utility functions, whilst the
“bundle announcing” mechanism generally yields outcomes which are not even
Pareto efficient.

It is important to note that the equilibrium message ( prices, trades and
individual incomes) for the equal income Walrasian mechanism does not re-
veal the particular Edgeworth box describing the economy. This must be so
since, as we have seen, to specify the box completely requires né-dimensional
messages. However, to ensure efficiency in the general case, one needs to com-
municate supporting prices and in order to keep the message space to the same
dimension, some information about the Edgeworth box must be sacrificed. This
is illustrated in figure 3, where a whole class of Edgeworth boxes compatible
with the same equal income Walrasian equilibrium message is shown : the
upper-right corner of the box can be located at any point on a segment of the
aggregate income budget line, 2A2B, which is clearly twice that facing each of
the two individuals. The only condition is that the final outcome z should be
non-negative for both inndividuals.

Finally, in section 6, we show that the only mechanism with minimal in-
formational requirements achieving fair efficient outcomes is the equal income
Walrasian one. Here we will sketch the argument used in the formal proof .
Firstly, recall that if Pareto efficient outcomes are to be obtained in classical
environments at least the information concerning supporting prices and com-
petitive net trades must be conveyed. Furthermore, if fairness is required, as
we have seen, some information about the total resources (the size of the Edge-
worth box) is needed. This can be obtained by eliciting agents’ incomes, for
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Figure 4: A mechanism which is not equal income Walrasian

“canonical” function. The initial endowments are then modified accordingly
so as to preserve the same trade. The transition from the economy € to e* is
illustrated in figure 5 for agent k.

Now the essential point is that, in the similar economy e* we construct,
there is envy. Consider the situation in figure 6.

Each of the agents constructed in this way, has endowments w*, the canon-
ical utility function u*, and the same income as before. Clearly, however, agent
¢ is now envious of agent k. Thus 2 is not an equilibrium trade for e* which
is a contradiction with the way in which it was chosen. Thus unequal income
final allocations cannot be equilibrium outcomes. The problem is clear. Any
mechanism which would permit the sort of situation in figure 4 as an outcome
must be able to distinguish between that and the situation in figure 6. This
requires more information about the utility function and would therefore be
more informationally demanding than the equal income Walrasian mechanism.
This means that it cannot have been informationally efficient in the first place.

3 Informationally decentralized mechanisms

Consider an exchange economy with ¢ commodities, and a set of agents & =
{1,2,...,n}. Every agent i € S is characterized by a utility function »*, and
an initial endowment w*. The i-th agent’s characteristics are denoted by e* =
{(u*,w"). An economy is denoted by the n-tuple e = (e!,e?,...,e"). The class of
possible economies, denoted by F, reflects the a priori knowledge available on
the agents’ characteristics. We shall specify a class of environments by putting
some restrictions on utility functions. In order to ensure that equilibrium prices
are strictly positive, we shall postulate a special type of strict monotonicity, in




Figure 5: Construction of a similar economy

Figure 6: Envy in the similar economy




IT = (M, u, h) is privacy preserving over the class of economies F if for every i €
Sand every éand e in E, pu(e)Nu(é) # 0 implies u(e)Nu(€) = u(e®:é)Nu(EQ;€)
whenever € ®; € and é ®; é belong to . This means that if m is an equilibrium
message for both € and & in £ than it must also be an equilibrium message
for any “crossed” economy. If the class of economies F is a cartesian product
E = E'x E?x...x E™, then the privacy property can be characterized in terms
of “coordinate” correspondences®, as established by the following proposition
due to Mount and Reiter.

Proposition 3.1 (Mount and Reiter[29],Lemma 5, p.171) Let the class
of economies E be the cartesian product E = E' x E? x ... x E*, Then a
mechanism II = (M, u, h) is privacy preserving on E if and only if for every
i €  there exists a correspondence ' E' — M such that for every e € E,

e) 1.1“‘ e)

In this case, in a privacy preserving mechanism every agent can check in-
dependently whether a given message is an equilibrium message by looking at
their own characteristics, m € u'(e*). The initial dispersion of information (ev-
ery agent is assumed to know his own characteristics) and the so-called privacy
property (according to which the knowledge of other agents’ characteristics is
only conveyed through formal messages) are the basic ingredients of the concept
of informational decentralization. In what follows, a mechanism satisfying the
privacy property will be said to be informationally decentralized.

The problem that we want to address is the minimal amount of information
contained in M which is sufficient to guarantee that the mechanism yields fair
outcomes over the class of classical economies®. Furthermore, we would like
to know which are the properties that an informationally efficient (i.e., using
minimal message spaces) mechanism must necessarily have.

4 The equal income Walrasian mechanism

Let D = {p e R, : Zf;:lp,- = 1} denote the £ — 1-dimensional simplex and
define the message space

mn

Mw:{(p,z,r)eAfo”xR”:Zz =0 and pz ——Zr —r*

i=1

where p is a vector of normalized prices, z is a n-tuple of net trades and r =
(r',r?,...,7™) is the vector of initial incomes (or values of initial endowments).
Now, for every agent, define the correspondence i, : E* — M, as follows: a
message (P, Z,7) is an equilibrium message from the point of view of agent i,
that is (p, z,7) € i, (e'), if the following two conditions are satisfied:

8See Chander |7} for a discussion of this more general definition of the privacy property
and its relation to the original definition by Mount and Reiter[29].

9By classical economies, we understand the class of economies satisfying the conditions
sufficient to guarantee the existence and optimality of a competitive equilibrium.
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which monotonicity is not necessarily strict on the boundary (as is the case
with Cobb-Douglas preferences). Hence, the set of possible utility functions is
defined as follows.

To every real valued continuous utility function u on R’ we associate a set
x{u) defined as :

() = R:, iffor any 7, {x € R, :u(z) > u(Z)} C RL,
Rt otherwise.

We can define the general class of environments E¢ as follows:

U = {u:R’. — R:uis is continuous,strictly monotone on x(u) and strictly quasiconca¥d)

E' = {(e',€?,....e"): forallieQ,u' €U, v € R and ) w' >0}

i=1

We shall also consider a more restricted class of utility functions which
satisfy a boundary condition, namely,

U = {ued :vz{x e R, ru(2) >u(@)} CRL. (2)
E* = {ee EY:Viu ey}

Let z* denote the consumption vector of the i-th agent and let z* = 2* — o’
denote the net trade vector. Let x = (z!,2%,...,2") and z = (z!,2?,...,2")
denote respectively the n-tuples of consumption and net trades. The set of
possible outcomes of a resource allocation mechanism is given by the set of
feasible net trades Z = {z € R*™ : Y, z* = 0}. The Pareto optimality
correspondence P : E — Z assigns to every economy e € E the set of Pareto
optimal trades, i.e. those which when added to the initial endowments give
a Pareto optimal allocation. For brevity we call a trade fair if the resulting
allocation is both Pareto optimal and envy-free 7. Hence a net trade z is fair
for the economy e € E if z € P(e) and for all agents i and k, u*(z*) > u'(z*),
where z* = w' + 2* | that is, there is no agent who envies other agent. Let
F : E — Z denote the correspondence that assigns to every economy e € E the
set of fair trades.

Following Mount and Reiter[29], an allocation mechanism is a triple II =
(M, u, h), where M is a set of abstract messages, u : E — M is a message
correspondence that assigns to every economy the set of equilibrium messages,
and h : M — Z is the outcome function, that assigns to every equilibrium
message the corresponding net trade. An allocation mechanism is decisive over
the class of economies FE if for every e € E, u(e) # 0. An allocation mechanism
is fair over the class of economies F if it is decisive and for every e € E, and
every z € hlu(e)], z € F(e).

Given € and ¢ in E, the “crossed” economy (€*,é?,...,&""1 &', et ... é")is
denoted by e®; é, for i € ¥, while é = €®¢ é. A resource allocation mechanism

"Thus we do not follow the terminology used by Schmeidler and Vind|35].
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uw(w' 4+ 2') > ui(w' + 2) for all 2* € R® such that p(w* +2*) = 2 y0_, 7
ﬁwi — Fi
(3)
According to the second condition,every agent checks whether the proposed
initial income 7 corresponds to the value of his initial endowments at the going
prices. According to the first condition, the agent maximizes utility subject
to the average income constraint. This last magnitude can be computed by
the agent from the messages sent by others. The message correspondence and
outcome function are then defined as

;u'w(e) - ﬂuiu(ei) and hw(p,z,r) =z
=1

Hence, the equal income Walrasian mechanism is given by Il,, = (M, ttw, hw)-
It is easily verified that M,, is a smooth né-dimensional manifold.

5 Informational requirements for fair allocations

In this section we study the minimal amount of information - as measured
by the dimension of the message space - that is required to guarantee that an
informationally decentralized mechanism leads to fair outcomes over the general
class of environments E£9. Let us define the canonical subclass of economies £*.
An economy is a member of £* if all agents have identical preferences which
can be represented by a Cobb-Douglas utility function with unit coefficients.
More specifically,

£
E*={ee £ :u'(2') = [[2}} (4)
j=1

Thus, in an economy with n agents and £ commodities, every environment
in the subclass E* is completely specified by né-dimensional vectors of initial
endowments. Hence dimE* = nf. Now we shall show that the fair correspon-
dence F restricted to E* is a single-valued function. Given a utility function
u € U9 let us denote by F(u) C EY the class of economies in which initial
endowments are arbitrary but all agents have the same utility function u.

Lemma 5.1 Let e € E(u) be an economy where all agents have identical utili-
ties so that ' = u for all i. Suppose further that z € F(e). Then for all agents
k €3 we must have w* + 25 = 1377 W'

Proor:It suffices to show that for all i and k in 3, w* + 28 = w* + 2. It is
clear that, since all agents have the same utility function u, fairness implies
that u{w® + 2*) = u(w* + 2*) for all i and k in 3. Suppose that there exist two
agents i and k such that w* + z* # w* + z*. Then we can construct a new trade
z which is Pareto superior to z. Indeed, define




o Wi —wi4 g Wi R Wk 42
2t = and 2" =

2 2

while 27 = 27 for all other agents. Then, the new final consumption vectors
satisfy & = 2% = 2(2* + 2*). By strict quasiconcavity of the common utility
function u it follows that u(w® + 2) > u(w® + 2*) and w(w* + 2¥) > u(W* + 2¥),
while all other agents are indifferent since they receive the same consumption
vector. Moreover, since 2° + 25 = 2* + z* it follows that % is a feasible trade.
This contradiction completes the proof.

Lemma 5.1 implies that in an economy with identical individuals with
strictly quasiconcave utillity functions, the only fair allocation is the equal divi-
sion of total endowments. In particular, this is true for our canonical subclass
E*. Now we shall show the basic theorem of this section.

Proposition 5.2 (Informational Efficiency Theorem) Suppose that 1 =
(M, 1, h) is a resource allocation mechanism on EY such that:

a) it is fair on EY,

b) it is informationally decentralized,

c) the message space M is a manifold,

d) when restricted to E* the message correspondence is locally threaded'® at
some point e.

Then the dimension of the message space is at least as large as that of the equal
income Walrasian mechanism defined in section 4, that is, dim M > dim M,,.

PRrRoor: We first show that the restriction of i to £/* is an injective correspon-
dence. Suppose that m € j(€) @; (€). We have to show that this implies e = €.
Since the mechanism is assumed to be informationally decentralized, it follows
from the privacy property that m € pu(é ®; e) N u(e ®; €) for all . But if the
mechanism is fair this implies that the outcome z = h(m) satisfies

&2

th =04 forallked
S+ =of+iFforall ke

[
Il

e F(emgé)

Hence @* = &*. Since the argument can be replicated for any other agent,it is
clear that the initial endowments are the same in both economies and therefore
€ = é. Using assumption d, let U be an open neighborhood of eand f: U — M
a continuous function such that f(e) € u(e) foralle € U. Then f is a continuous
injection from U to f|U]. Since U and M are manifolds, we can use Theorem

Wiet X and Y be topological spaces. A correspondence ¥ : X — Y is said to be locally
threaded at T € X if there caists a neighborhood U of x and a continvous function f : U — 'Y
such that f(z) € ¥(z) forallz e U




18 in Kelley [23]to conclude that f is a homeomorphism between U and f[U].
Then dim M, =nfé = dimU < dim M.

The intuition behind this result is clear: the message space has to contain
at least as much information as the subclass of environments E* because every
environment in E* must have a different message. Therefore the message space
has to contain enough information so as to distinguish between members of
E™. Notice that in order to guarantee Pareto optimal allocations the minimal
informational requirements are those of the Walrasian competitive process, i.e.,
n{¢ — 1). The preceding result suggests the possibility of realizing a stronger
optimality correspondence through mechanisms which require every agent to
send just an additional real number. In the following proposition we show that
the equal income Walrasian mechanism defined in section 4 is an information-
ally decentralized process satisfying all the assumptions of the informational
efficiency theorem and whose message space is of dimension n/.

Corollary 5.3 The equal income Walrasian mechanism is informationally ef-
ficient on E9.

Proor: It is clear from the construction of I, = (M., fiw, f,) that it is
informationally decentralized and that M, is a manifold of dimension né. It is
also clear that, from the conditions defining the class E¢, it can be shown that
the competitive equilibrium from average income exists, is Pareto optimal and
envy-free. Finally, the correspondence w,, when restricted to £* is a continuous
function and thus it is locally threaded at any e € £~.

6 The uniqueness theorem in the special class of
economies

In this section we follow the basic strategy of the proof given by Jordan for
the uniqueness of the competitive mechanism in achieving efficiency in classical
environments. Our proof differs from his in several essential respects, and it
is worth indicating the differences between our problem and his, and the way
in which our proof is adapted to handle them. Firstly, in his problem the
equality of supporting hyperplanes is necessary for efficiency. In our case the
analogous condition, equality of incomes and of supporting hyperplanes, is not
necessary for achieving fairness and efficiency. Secondly, we construct a class
of economies, those with what we have called “canonical” preferences for all
individuals, where the fair outcome is unique and is also efficient. There is
no equivalent in the ordinary efficiency problem. Thirdly, when considering
the problem of how much information is necessary to discriminate between
different economies, Jordan was free to modify total income in order to change
the curvature of indifference curves of a given Cobb-Douglas utility function.
We do not have this possibility, and so have to use a different construction.
The theorem is proved first for a class of economies E in which all agents
have the same utility function and then extended to more general economies.
We define several binary relations on the class of economies E: the similarity
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relation S, induced by a mechanism II, the message relation 7, induced by
a mechanism II, and the message relation 7y, induced by the equal income
Walrasian mechanism. Two economies are similar relative to a mechanism IT if
they have the same equilibrium net trades, the same slopes of their indifference
curves at these trades and the same value of initial endowments. Two economies
are “message related” by a mechanism II if both have the same equilibrium
message under II. The basic strategy of the proof is to show that if II is a fair
mechanism with minimal informational requirements the three binary relations
induce the same partitions on the class of economies E. The proof hinges on
the fact that every equivalence class contains one and only one member of the
canonical class £* so that in an informationally efficient mechanism, where the
message partitions should not be finer, what happens in £* must be essentially
the same as what happens everywhere. Now, it turns out that in the canonical
class the equal income Walrasian outcome is the only fair outcome. This fact
is later used to show that any informationally efficient mechanism is essentially
the same as the equal income Walrasian because the outcomes are the same
and the message spaces homeomorphic.

Let us start by defining rigorously the similarity relation. Given a mecha-
nism IT = (M, i, h) define the correspondence ¥, : EY — A x R™ x R™ that
assigns a price-trade-income-tuple to every environment. Let S(u*,w' + 2*) de-
note the set of all normalized prices supporting the utility u* at the allocation
w*+ 2" For any given e € E9, we say that (p,z,7) € U, (e) if and only if for all i

z € hlu(e)
p € S\ +2Y) (5)
ro=

Hence, the image under ¥, of a given environment is given by the out-
comes of the given mechanism, the normalized supporting pricevector at the
corresponding final consumption points and the vector of values of initial en-
dowments of the n agents. Notice that ¥, depends upon the mechanism.

Two economies € and é in EY are said to be similar relative to mechanism
IT = (M, i, h) if their images under ¥, have a nonempty intersection, that is,
V.(e)N W, (é) # 0. In this case we write €S.é. It is easily verified that if
the message correspondence of the mechanism, g, is a function on E and the
allocations are interior,then V¥, is a function given by:

z = hlju(e)]

Du(w* + 2%)
p | Dur(wt + 2%)]| ©)
r o= put

Moreover, S, is an equivalence relation that induces a partition of £ into
equivalence classes. The k-th agent of two similar economies, e* and é was
represented in figure 5.
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Now, we define a special class of utility functions which, in a sense, are
similar to Cobb-Douglas, but whose indifference curves can be made arbitrarily
flat!!. We define it as follows. Let @ be a Cobb-Douglas utility function and
consider the indifference curve going through @* + z*. For any given ray, let 3?
be the intersection of the indifference curve and thhis ray, and y* the intersection
of the supporting hyperplane at @* + z*¥ and the ray, as shown in figure 7. Then
the indifference curve of the new utility function u cuts the given ray at a point
y* = Myl 4+ (1= N)y? for 0 < XA < 1. By choosing the appropriate weight A,
the new indifference curve can be made as flat as desired. Construct the utility
function by just blowing up (or down) this indifference curve. The class {° of
utility functions defined in this way is nicely behaved: all functions are smooth,
homothetic, indifference curves are asymtotic to the coordinate axes and can
be made arbitrarily flat.

Figure 7: Construction of a flatter indifference map

Lt us define the following classes of economies that will be of some interest.

E' = {ec EY:Vi,u' e U’}
E() = {e€ EY:Viu =u}
E = U{E(u) cu €U}

The class E* includes all economies with heterogeneous agents whose utili-
ties are flattened” Cobb-Douglas functions. E(u) contains economies in which

HThat is, locally as close to a given supporting hyperplane as desired.
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all agents have the same given utility function u. Finally the class E includes
all economies in wich all agents have the same utility function.
Now let us define some properties that the mechanisms might have:

F : The mechanism is fair, that is, leads always to final allocations which are
Pareto optimal and envy-free.

I : The mechanism is informationally decentralized, that is, the message cor-
respondence has the privacy property.

C : For every utility function u € {*, the restriction of the message correspon-
dence p to the subclass of economies E(u) in which all agents have the
same utility function u, is a continuous function.

O : For every utility function in the special class u € 4°, the image of the
subclass, p[E(u)], is a closed subset of M.

M : The message space is of minimal dimension, that is, M is a connected
manifold of dimension né.

All these conditions, but O, are standard in the literature. In Jordan [22],
condition O is assumed to hold for a class of economies with heterogeneous
agents with Cobb-Douglas utility functions. Here we assume that it holds in
a class of economies in which all agents have the same utility function u € {°.
Notice that, by Lemma 5.1, in this class the performance function satisfies these
properties since it is a nicely behaved single-valued function.

We start by showing that the subclass of environments E(u), where all
agents have the same utility function, generates the whole message space.

Proposition 6.1 Let II be a mechanism on E9 satisfying C,0,M. Then p|E(u))
M for allu € U°.

PRrOOF: Take e € F(u) and let U, be any open neighborhood of e. Consider
the mapping ¢ : E(u) — R™ given by the projection p(u,w) = w . This is
clearly a homeomorphism of E(u) into an open subset of R™ so that we shall
consider E(u) as an open subset of R*¢ . Using theorem A.1 in Greenberg {13]
we conclude that p|U,] is an open set in M which is homeomorphic to U.. Then
ulE(u)] = J{ulU.] : e € E(u)} is the union of open sets and so it is open. But
it is also closed by assumption. Since M is connected, it is the only open and
closed set'?, so that u|E(u)] = M q.e.d.

Now we shall turn to a result whose intuition is the following. Given any
economy &, let m be an equilibrium message and (p, z,7) € ¥(€) an associated
price-trade-income vector (which is not necessarily the equal income Walrasian
message) where Z = h(m). Then given any equilibrium message m and any
consumer k we can construct an economy é such that:

a) The equilibrium message, and consequently the equilibrium trade, are the
same as in €.

2Gee page 53 in Kelley (23]
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b) Agent k in the second economy is very similar to agent k in the original
economy because the value of initial endowments has not changed and
the indifference surface at the consumption point £* in the first economy
is very similar in the sense that, although it has been bent to make it
flatter, the supporting hyperplane at the final consumption point is still
the same. '

c¢) All other agents change a lot and are modelled after agent k: they all
have the same utility function similar to k’s original utility function.

d) The new utility function is strictly quasi-concave, homothetic and can be
locally as close to its supporting hyperplane as desired.

Proposition 6.2 Let I1 = (M, u, h) be an allocation mechanism on E9 satisfy-
ing F,I,C,O,M. Then given any economy é € E9, any m € u(eé) and any agent
k, there exists a cannonical economy é such that:

a) All agents have the same homothetic utility function @ =€ U* so that
ée E).

b) The cannonical economy has the same equilibrium message, M = u(é)

c) ”—g%f;% = p, where p is the comon supporting hyperplane at the Pareto
optimal allocation w + h(m) .

d) The value of the initial endowments of the k-th agent has not changed,
i.e., po* = po* and &* + z* > 0.

Moreover, the utility function @ can be chosen to have indifference curves strictly
conver and as flat as desired.

PrOOF: Let z = h(m) be the equilibrium outcome of the mechanism and
consider the point chosen by the k-th consumer, @* + z*. Since p(w* + z2¥) > 0,
we can choose an initial endowment for the k-th agent such that

a) po* = pok
b) O +2zF >0

¥ is an interior allocation, there exists a Cobb-Douglas

Now, since @F + 2
utility function 4 whose supporting hyperplane at @* + z* is the same as that
of the original utility function u*. By choosing the parameter A as close to one
as desired, we can generate a utility function 4 in the special class 4° as flat
as desired and such that the normalized utility gradient equals the given price

vector,

Du(oF + z5)
[|Da(@* + 2%)||

3

So we get a situation such as that represented in figure 7. Consider now the
class of economies E(u) in which all agents have the same utility function .
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By Proposition 6.1 there exists an economy é € E(i) such that u(é) = m .
This new economy satisfies assertions a and b of the proposition. Moreover, it
has the same equilibrium trade as before, Z = h(m).

Now we establish assertion c¢). By the crossing condition m € u(é ®; €), so
that m is also an equilibrium message for the old economy with the new k-th
agent. That means that the allocation (& + 2) & (w + Z) is a Pareto optimal
allocation for the mixed economy é ®; €. Assertion c) follows because it is a
necessary condition for optimality.

Finally, we have to show statement d), namely, @* = &*. First, note that
by Lemma 5.1 in the subclass of economies E(i) the only fair allocation is
the center of the Edgeworth box, so that the final consumption of all agents
equals ¢ = @' + z* for all i. But then p supports the utility surface of i at
both ¢ = &* + z* and &* + z* . Then, by homotheticity of @, we know that ¢
must be proportional to @* + z*¥ . But this implies that they must be equal.
Otherwise we can construct the economy é ®, € which by the crossing condition
has the same equilibrium message and therefore the same equilibirum trade. In
this economy all final consumptions would also be on the same ray, as shown
in figure 8. If agent’s k final consumption does not coincide with the common
consumption ¢ then there is envy and this contradicts the assumption that II
is a fair mechanism. q.e.d.

Next Proposition establishes that if two economies have the same equilib-
rium message, then they are similar, that is, the message binary relation is finer
than the similarity relation.

Proposition 6.3 Let Il = (M,pu, h) be an allocation mechanism on E satis-
fying F,1,C,O0,M. Given any two economies &€ and € in E, m = pu(é) = u(é)
implies that € and é are similar,that is, ¥(€) = V(&)

PRroOOF: The net trade z = h(m) is an equilibrium trade for both economies
€ and €. Then the allocation @ + z is Pareto optimal in € and the allocation
@ + z is Pareto optimal in €. By the crossing condition m € u(€) @« 1(€)so,
since the mechanism is fair, the allocation (@ + 2) @, (w + z) is a Pareto optimal
allocation for the mixed economy € ®; . Then

Du(o* +z¥)  Du(w* +z°)

= : ~_ for all 1.
IDa@s +25]  Du@ + ) o o

ﬁ:

because it is a necessary condition for optimality. So in order to show that the
two economies are similar it remains to be proved that po* = p&* so that agents
have the same values of initial endowments in both economies.

Suppose that for some agent k, po* < po*.As shown in figure 7, by Propo-
sition 6.2 we can construct an economy é € F(u) with a identical homothetic
utility function @ for all agents flat enough so that u(¢) < a(@* + z*), where
¢ =w*+2zF =0+ 7 is the common final consumption obtained by all agents
in the economy é. Now take the economy é and substitute the k-th original
agent so that we get the economy é®, é. By the crossing condition we still have
the same equilibrium message and net trade, so that in this new economy all
agents, except k, get ¢ = @' + z* , while agent k gets &% + z*. As can be seen
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Figure 8: Unequal incomes generate envy




in figure 8 agent k is envied by all others and the mechanism is not fair. This
contradiction completes the proof.

When restricted to E, the single-valuedness of the message correspondence
implies that the message relation 7, and the similarity relation S, are equiva-
lence relations. The next Lemma establishes that, if S is the similarity relation,
there exists a bijection between the quotient space F/S and the subclass of en-
vironments E*, defined in (4). This means that in every equivalence class there
is one and only one element of E*, which can be considered its canonical rep-
resentation.

Lemma 6.4 Suppose that 11 = (M, u,h) is an allocation mechanism on EY
satisfying F,I,C,0,M. Given any economy é € E there erists a unique e* € E*
which is similar to it, €éSre*. Moreover m = ju(e*) = u(e).

PROOF: By proposition 6.1, given m = u(é), there exists e* € E* such that
m = u(e*). By proposition 6.3, € and e~ are similar. Furthermore e* is uniquely
determined. Since the utility function of all the consumers is a Cobb- Douglas
with unit coefficients, the price vector p uniquely determines the ray along
which all final allocations must lie. The fact that in this economy the only
fair allocation is the center of the Edgeworth box implies that this ray is its
diagonal. The fact that total income is given uniquely determines the box.
Finally, initial endowments of every agent are determined in such a way that the
given equilibrium net trade leads to the center of the box. Hence the economy
e* is completely specified. Formally, if € is any economy and (p, z,7) = ¥(€),
the unique similar economy in £* is given by

o TP

W= ——— —Z

. pjg
As shown in proposition 5.2, when restricted to E*, the equal income walrasian
message correspondence is au injective continuous function and the uniqueness
of e* follows.

Notice that Lemma 6.4 implies in particular that if two economies in E*
are similar, they are the same. We get as an immediate corollary that in an
informationally efficient mechanism two similar economies in the class £ must
use the same message.

..

RN

Corollary 6.5 Let I1 = (M, u, h) be an allocation mechanism on E9 satisfying
FLC,OM. If two economies € and € in I are similar they have the same
equilibrium message, m = u(e) = p(é).

Proposition 6.3 and Corollary 6.5 imply that in the class E the message
relation and the similarity relation are exactly the same so that p(€) = p(é)
if and only if ¥(e) = ¥(€) . Therefore, as long as we preserve similarity, we
can alter agents’ characteristics without changing the equilibrium outcomes of
the mechanism. The following proposition establishes that if a mechanism I1
is informationally efficient, the partition induced by the similarity relation Sy
is the same as that induced by the equal income Walrasian message relation
T . In particular, the outcome of the mechanism must be the equal income
Walrasian one.




Proposition 6.6 Let I1 = (M, i, h) be an allocation mechanism on E9 satis-
fying F,I,C,0,M. Then pi.,(€) = U(é) for allé € E.

ProOF: If & € E there exists some @ € 4 such that @* = @ for all agents
i €{1,2,..,n}. By Lemma 5.1 we know that there is a unique fair allocation
for this economy, namely,
1~
-k ~1
== w

Hence, we must have

2 = hy|lw(8)] = hlu(@))

and this implies u,, (&) = ¥(é) q.e.d.

Hence, if I1 is an informationally efficient mechanism, the partitions of the
class E induced by the similarity relation S,, the mechanism’s message relation
T and the equal income Walrasian message relation T, are identical. Now we
shall use this fact to show that every decentralized mechanism with a minimal
message space is essentially the same as the equal income Walrasian mecha-
nism I, = (M, ftw, hyy) in the sense that it can be transformed into it by a
homeomorphism ¢ as shown in figure 9.

[

Figure 9: The basic homeomorphism

Y

Proposition 6.7 Let I1 = (M, u, h) be an allocation mechanism on E satis-
fying F,I,C,O,M. Then there exists « homeomorphism ¢ : M — M, such that

a) @, (€') = plui(e))] for all € = (v, w’) € Y* x R
b) hw =popu
¢) hyop=~nh

Proor: By Proposition 5.2, for any u € 4, the restriction of u and y,, to E(u)
is an injective function. By Proposition 6.1 u[E(u)] = p[E(u)] = M. Then,
for any m € M there exists a unique economy e € E(u) such that u(e) = m.
Call it y(m).

Define ¢ : M — M, as the function given by ¢(m) = ¥[y(m)]. This
is indeed a function because, in view of Proposition 6.3 and Corollary 6.5 it
follows that

p(e) = u(e) & Y(e) = () (7




so that the image of a message m is independent of the utility © € 4° chosen
as reference. Using the definition of ¢, Proposition 6.6, and Proposition 6.1 as
applied to the equal income Walrasian mechanism we get

p[M] = V[E(W)] = po|E(w)] = M,

so that ¢ maps M onto M,,. Now we show that it is injective. By assumption
C, i is a single-valued function on E(u). Then 7 is injective, that is, if m # m
then y(m) # v(m). As shown in Proposition 5.2, the message correspondence
i restricted to E* is injective, so that u(y(m)) # u(y(m)). From 7 it follows
that ¥(y(m)) # ¥(y(m)) and by definition of ¢ we get ¢(m) # p(m) proving
injectiveness. Hence, ¢ is a bijection.

In order to prove statement a) of the theorem given any agent & with utility
i let (p, z,7) € ¢[u(e')] and T € y'(e'). Let € be the unique economy in E(z)
such that u(€) = m. Then by definition of ¢ and Proposition 6.6

(,2,7) = p(m) = ¥(e) = nu(€) C p,(€")
Conversely, given any (, z,7) € u:,(€'), let & be the unique economy in E(i)
such that (p, z,7) = uw(é). Then

(D,2,7) = pu(8) = Y(e) = plu(e)] C plu'(e))
and statement a) of the Proposition is established. Since ¢ is a bijection,
statement b) follows directly.

To prove statement c), note that ¢(m) is a vector (p, z,r) such that z =
h(m). Since h,, is just a projection, h.(@(m)) = h(m) for all m.

Finally, it remains to show that ¢ and ¢~! are continuous. In order to
show that ¢~! is continuous let {(p¥,z",7")} be a sequence in M, converg-
ing to (p,z,7). We have to demonstrate that the sequence m”, where m” =
e~ (p¥, 2%, r¥) converges to m = p~(p, z,7). By taking

i I ¥

r +p'z _ i
pit ’

a; = 1

for all ¢, j and n, we define a sequence of economies ¢ = (w”, ") in the class
E* which converges to & = (w, &) given by

af = 1

for all 7, j and n. But by statement 2 of the present proposition m" =
e (p", 2, 1) = 7 (1w(e’) = u(e”) forallvand m = o™1(p, 2,7) = ¢~ (kw(€)) =
w(€). Since u is continuous, {€“} converges to € implies {m”} converges to

m = u(é). Hence ¢! is continuous. Since M and M,, are manifolds of the
same dimension, ¢! is in fact a homeomorphism '* from M,, onto M and the
proof is complete.

13See page 82 in Greenberg [13]




7 Extension of the uniqueness theorem

In this section we extend the uniqueness theorem to a general class of economies
in which agents may have different utilities.

Proposition 7.1 Let I1 = (M, u, h) be an allocation mechanism on E9 satis-
fying F,I,C,O,M. Then there exists a homeomorphism ¢ : M — M, such that
for alle e E9:

a) plu(e’)] C ui(et) for all e =)u',w* € U9 x RE
b) plule)] C py(e) for alle € E9
¢) hwop=~nh

The homeomorphism ¢ given in Proposition 6.7 satisfies statement ¢). To
show plut(e')] C i (e'), let m € u(é*) and let (p, z,7) = p(m). We have to
show that (p, Z, 7) is an equal income Walrasian equilibirum message for the i-th
agent, that is, we have to establish i) p is a supporting price of @' at (&* + Z*,
and ii) the equal income property is satisfied.

To show i) take any u € 4°. By Proposition 6.1 there exists é € E(%) such
that m = p(é). Then ¥(é) = (P, z,7) = pw(€). Now, by the crossing property
m € pu(é ®; é) so that the allocation (v + 2) ®, (& + %) is a Pareto optimal
allocation for the mixed economy. Assertion i) follows because it is a necessary
condition for optimality.

Suppose that the equal income property is not satisfied, so that for some
agent k, p(w* + z¥) < p(&* + z*). By Proposition 6.2 we can construct arn
economy é € E(u) with a identical homothetic utility function @ € 4U* for ali
agents such that:

a) the unique fair final consumption is given by ¢ = @* 4 z*

b) the utility is flat enough so that u(¢) < w(w* + %)
¢) m = p(é)

Now take the economy é and substitute the i-th original agent so that we
get the economy e ®; é. By the crossing condition we still have the same
equilibrium message and net trade, so that in this new economy all agents, but
k, get é = @* + z¥F | while agent i gets & + 3*. Agent 1 is envied by all others
and the mechanism is not fair. Statement 2 follows directly.

If preferences satisfy a boundary condition, the we get the following unique-
ness theorem

Proposition 7.2 Let I = (M, i, h) be an allocation mechanism on EY satisfy-
ing F,I,C,O0,M,B. Then there exists a homeomorphism ¢ : M — M, such that
for all e € E®:

a) plpi(e)] = ui,(e') for all agents
b) plule)] = pwle)




c) hpoop=h

PROOF: In view of proposition 7.1 it remains to be shown that ui(e') C
plui(et)]. Take any (p,z,7) € uk(e*). Define an economy é € E(u) such
that all agents have the same utility function & = u* and &* = @% + 2% — 3°.
Notice that the k-th agents’ characteristic has not changed, e¥ = é*. Now we
claim that (p, Z,7) is the unique equal income Walrasian equilibrium message,
(P, 2,7) = pw(€). This follows immediately from Proposition 5.1, according to
which the only fair allocation in this economy is the center of the Edgeworth box
and this is in fact the allocation obtained since & + z* = &% + z*F = @* + z* for
all i. By the preceeding proposition we know that ¢[u(é)] C u.(é) = (p, z, 7).
Hence o|u(é)] = (p,z,7). On the other hand, u(é) C u*(é*) = u*(e*). Hence
olu(é] C plu*(e*)]. Then we finally get the desired result (p,2,7) = p.(é) C
pluF(er)].
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