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Abstract

We propose a stylized model of a problem-solving organization whose internal com-
munication structure is given by a …xed network. Problems arrive randomly anywhere
in this network and must …nd their way to their respective “specialized solvers”by
relying on local information alone. The organization handles multiple problems simul-
taneously. For this reason, the process may be subject to congestion. We provide a
characterization of the threshold of collapse of the network and of the stock of ‡oat-
ing problems (or average delay) that prevails below that threshold. We build upon
this characterization to address a design problem: the determination of what kind of
network architecture optimizes performance for any given problem arrival rate. We
conclude that, for low arrival rates, the optimal network is very polarized (i.e. star-like
or “centralized”), whereas it is largely homogenous (or “decentralized”) for high arrival
rates. We also show that, if an auxiliary assumption holds, the transition between these
two opposite structures is sharp and they are the only ones to ever qualify as optimal.
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1 Introduction
E¢cient information transmission is one of the most pressing problems faced by orga-
nizations, say …rms. This is specially important in modern economies, for at least two
reasons. One is that more …rms now are pure knowledge-based out…ts (think of large
engineering, consulting, research and development or …nancial services enterprises).
The other is that with an ever increasing stock of knowledge, most individuals cannot
be reasonably expected to master signi…cant fractions of that knowledge.
Thus, the amount of available knowledge, plus the limitations inherent to the human

mind, make knowledge specialization a necessity. Yet there is another limitation that
comes with specialization. We not only ignore certain things, but also ignore who knows
them. Without this limitation, it would be simple to deal with information transmission
within organizations (barring incentive problems, from which we abstract). Suppose
anybody in an organization had a problem she could not solve. She would only need
to contact the expert in the topic, who would then deal with it. Some classes of
problems are, arguably, simple enough that this mode of information transmission
would be su¢cient. This paper deals with classes of problems where being aware of
the knowledge sets of others is a scarce resource.
In this context, we explore what is the most e¢cient form of organizing communica-

tion. The organization is modelled as a network, whose objective is to solve problems.
The individuals are the nodes of this network and they have the ability to solve a
particular class of problems. New problems originate at randomly chosen nodes, and
for every problem there is another, independently chosen, node within the organiza-
tion who can solve it. The (mutual) knowledge of two individuals about each other’s
abilities are the links of this network. That is, individuals only know whether they can
solve a problem that arrives to them (either because the problem originates with them,
or because another member of the organization handed it to them), or whether any of
their directly linked neighbors can do it. The search algorithm that routes information
through the organization can only use that knowledge. Our aim is to …nd the best way
to connect the nodes, given a …xed number of links and an algorithm with purely local
knowledge.
The fundamental relationship we uncover is a trade-o¤ between decreasing the

average distance between nodes and the countervailing e¤ect on performance induced
by problem overload and congestion. If congestion were not an issue, the optimal
organizational structure would be very polarized. If one node were connected with all
the rest, and that node were the only one with which the others were connected (a
star-like organization), any problem could reach its solution in, at most, two steps.
The number of links required for this would be one less than the number of nodes.
The drawback of this organizational form is that it would collapse when the average
number of problems arriving to an organization per period were larger than the number
of problems the center could handle per period.
Motivated by these considerations, our …rst contribution is to solve (given any orga-

nizational structure) for the smallest rate of problem generation such that the average
stock of unsolved pending problems in the organization diverges to in…nity, that is, the
network collapses. Furthermore, for arrival rates of new problems that are smaller than
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this critical value, we determine its average stock of ‡oating problems. This stock, in
turn, is directly related to the average length of time that each problem spends in the
organization. It can, thus, be interpreted as a measure of the “quality of the (problem-
solving) service” that the organization provides. Using this characterization of the
average delay, we then turn to considering what is the optimal organizational form
that minimizes the delay. For low rates of problem arrival, we conclude that it is a po-
larized (star-like or “centralized”) network, whereas for high ones it is an homogenous
(or “decentralized”) structure. Making an auxiliary assumption, we also …nd that the
degree of polarization of the optimal network varies monotonically (in a weakly non-
decreasing fashion) with the rate of problem arrival. In fact, our substantially stronger
…nding in this respect is that that transition between the extreme kinds of network
(i.e. the polarized and the homogenous) is abrupt, with only these two structures ever
arising as optimal.
As indicated, the latter results depend on an auxiliary assumption that pertains to

how the set of admissible networks translates into the corresponding set of so-called
“betweenness” (roughly, the betweenness of a node is a measure of the centrality be-
stowed on it by the search protocol). Speci…cally, it is posited that the lower frontier of
the “betweenness possibility set” displays the same curvature throughout (i.e. concave
or convex). Even though this assumption is plausible, it is very hard to check directly.
This is why we conclude the paper by exploring an array of di¤erent speci…c environ-
ments where the design issue is addressed numerically. In all of them, the optimal
network architectures are found to display the behavior predicted by the theoretical
analysis.
The paper is organized as follows. Section 2 describes the model. Section 3 carries

out the analysis by completing, in turn, the following steps: the study of a bench-
mark setup without congestion (Subsection 3.1), the analytical characterization of the
collapse threshold (Subsection 3.2), an analogous task for the problem load (Subsec-
tion 3.3), and the organizational design problem (Subsection 3.4). Section 4 discusses
the related literature. Section 5 summarizes and discusses some avenues for further
research.

2 The model
Our organization will be modelled as a network, or more precisely by an undirected
graph. In this graph, the nodes are the individual members of the organization. Let
N = f1; 2; :::; ng be the set of all individual nodes: Each individual can solve some
speci…c class of problems. A link between two nodes i and j implies that both in-
dividuals know the set of problems that the other individual in the pair can solve.
Formally, for each pair of nodes i and j, we de…ne gij 2 f0; 1g: The condition gij = 1
is taken to imply that the two nodes are linked, whereas gij = 0 implies that the two
nodes are not linked. Since the graph is undirected, gij = 1 if and only if gji = 1: Let
¡ = fN; (gij)ni;j=1g be a given network. Then, the set of neighbors of any given agent
i 2 N , denoted by Ni, is given by Ni = fj 2 N : gij = 1g:
The mission of this organization is to solve problems. At each point in time, mod-

3



elled continuously, problems make their …rst appearance in an organization at an in-
dependent rate ½ at each node: Each problem starting at i 2 N has an “address”
indicating the node k where it is to be solved. We, thus, implicitly assume that indi-
vidual knowledge is su¢ciently speci…c that each problem can be solved by only one
person.1 Let us then refer to “problem k” as any problem that can be solved only at
node k: Typically, of course, k will be di¤erent from the node where it arrives.
We now have to de…ne the rules by which the problem travels through the organi-

zation. If the node where the problem arrives, either at the beginning of the process or
at some intermediate step, can solve it, then it will do so and the problem disappears
from the organization. We will now specify the rules determining further travel, when
the node which receives the problem cannot solve it. But …rst notice that there may
be several problems “waiting” at node i, at any point in time. Not all of them may
be chosen to travel further at one particular time. The rules through which “queues”
are managed will be speci…ed in section 3.1. We will now explain how problems that
are chosen to travel further “decide” a destination. Denote by pkij the probability with
which a problem k being at node i will go to node j if chosen to be sent forward.2

Once a problem k is at (faced by) node i, one the following two alternative rules
are applied:

² If k 2 Ni, the problem is sent to k with pkik = 1 and it is solved immediately.

² If k =2 Ni; the problem is sent to some j 2 Ni with some probability pkij. (Of
course,

P
j2Ni p

k
ij = 1:)

Any problem proceeds as above until solved. The …rst rule should not be contro-
versial. The second rule assumes that the knowledge that individuals can use to route
problems is the identity of their neighbors, and the …nal destination. This implicitly
allows them to have the underlying network geography in mind, but not exploit the
knowledge of what is the current state of congestion (even at the level of …rst neigh-
bors). Such an assumption is taken here for convenience, and we presume that little
of interest would be changed by relaxing it.
The network combined with the protocol that guides the problems lead to a collec-

tion of communication (pseudo-stochastic) matrices

fP k ´ (pkij)i;j2Ngk2N : (1)

These matrices de…ne the stochastic process that governs the steps (or direction) fol-
lowed by the each problem k. In line with the previous discussion, they are assumed
to display the following features:

pkij = 0 if j =2 Ni
pkik = 1 if k 2 Ni
pkkj = 0 8j 2 N:

1In the literature review we discuss alternative approaches.
2Since the problem is supposed not yet to be solved, we are implicitly assuming that i 6= k: However, if

we had i = k, it is formally convenient to simply make the corresponding travel probabilities uniformly zero,
i.e. pkkj = 0 for all k 2 N:
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We may compute, for each r 2 N:

qkij(r) =
X

l1;l2;:::;lr¡1

pkil1p
k
l1l2 ¢ ¢ ¢ pklr¡1j

as the probability of a problem k currently in i to be in node j after r steps. Or, using
matrix notation, we may simply de…ne Qk(r) as the matrix whose ijth element is qkij(r)
so that:

Qk(r) = (P k)r = Pk
(r times)¢ ¢ ¢ P k

To be sure, note that the above probabilities only govern the direction of movement
of the packages, but not necessarily the time they spend unsolved. To address the latter,
we need to superimpose on the above “congestion-blind” formulation the processing
delays which may impede swift movement of packages across nodes in the presence of
waiting queues.

3 Analysis

3.1 Steady-state analysis and the threat of collapse
Now, let us return to the case which has motivated our approach, where each agent/node
has limited processing capability. Speci…cally, we assume that the nodes behave as
queues. This means that they have unlimited storage capacity but process problems,
in expected terms, at a constant rate per instant of time, which we normalize to unity.
Thus, under the maintained assumption of stationarity, the number of pending prob-
lems standing in a queue behaves like an in…nite-state Markov process and the arrivals
and departures from each node i follow Poisson processes. As long as the ‡uctuations
have …nite variance, the overall process displays well-de…ned steady state probabilities
and averages.
Thus suppose that the process reaches a steady state and let us describe its char-

acteristics. Denote by akij the stationary arrival rate to node j of problems which
appeared in the network at node i with destination k, and let ±kij stand for the sta-
tionary departure rate of problems from node j of problems which appeared in the
network at node i with destination k. Then, since the arrival rate to a node is the sum
of the arrival rate from the outside of the system (new problems) plus arrival rates
from other nodes we have:3

akij =

½ ½
n¡1 +

Pn
l=1 ±

k
ilp
k
lj , when j 6= k

0, when j = k
(2)

3The queuing network considered here is closely related to what is known in the Operations Research
literature as a multi-class Jackson network (see e.g. Chao, Miyazawa and Pinedo 1999). These networks
are known to generate an ergodic Markov process whose invariant distribution is a product measure. This
property is also satis…ed in our case and permits analyzing the ‡ow of problems faced by each node as a
composition of independent Poisson processes. Consequently, the arrival rates from di¤erent sources can be
made to add up to a combined arrival rate, as postulated in (2).
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The second line is zero, since we assume that problems that reach their destination
get solved, so they do not get added to the queue. But given that in steady state all
problems that arrive to a node eventually depart from it in …nite time, we must have
that akij = ±

k
ij for all i; j; k and therefore:

akij =

½ ½
n¡1 +

Pn
l=1 a

k
ilp
k
lj, when j 6= k

0, when j = k:
(3)

Let Rk be a diagonal matrix such that rkij = 1 for i = j 6= k and rkij = 0 otherwise.
Now, making Ak ´ (akij)i;j2N ; we can write the equations (3) in matrix form as follows:

Ak =
½

n¡ 1R
k +AkP kRk

Ak =
½

n¡ 1R
k(I ¡ P kRk)¡1

In order to interpret the induced arrival rates, let us consider a (…ctitious) scenario,
in which time is discrete and the number of nodes visited by a problem is equivalent
to the time it spends in the network. That is, all problems arriving to a node on any
given period are always dispatched prior to entering the following period without delay.
Further assume, in order to …x ideas, that, for every k and i; a problem k is created
in i with probability one at each period. Then, the probability qkij(r) de…ned at the
end of section 2 can be trivially reinterpreted as the probability that, at any given
time t(¸ r); there is a problem k which originated r periods ago in node node i that is
currently faced by node j: With this interpretation in mind, the expression

bkij ´
½ P1

r=0 q
k
ij(r), when j 6= k

0, when j = k

can be viewed as the limiting (or steady-state) expected number of problems k which
arose in i sometime in the past and are currently passing through j at some “distant”
period t.4 Let Bk denote the matrix (bkij)i;j2N for any given k: Then, compactly, we
may write in matrix form:

Bk =
1X
r=0

Qk(r)Rk =
1X
r=0

(P k)rRk = (I ¡ P k)¡1Rk

Based on these magnitudes, let us de…ne the (algorithmic) betweenness of any par-
ticular node j by:

¯j ´
nX
i=1

nX
k=1

bkij

That is, we simply add over all possible origins i and destinations k: In line with
the previous discussion, one can interpret ¯j as the expected number of problems (of

4We have bkik = 0, since we assumed that problems that reach their destination are solved immediately.
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any kind, and with any origin) that are going through node j in the long run.5 The
magnitude embodied by each ¯j abstracts from considerations of congestion. We will
see, nevertheless, that this magnitudes bears a very strong connection with the behavior
of the model, in particular concerning the arrival rates displayed in Ak.
To make this connection, we need to carry out the following derivations. Notice

…rst that since pkkj = 0 for all j, we have that RkP k = P k. Postmultiplying both
matrices by Rk, this implies that:

¡RkP kRk = ¡P kRk

Adding Rk on both sides and then isolating the common factor Rk also on both sides
we have:

Rk
h
I ¡ P kRk

i
=
h
I ¡ P k

i
Rk

Now, premultiplying both sides by
£
I ¡ P k¤¡1 and postmultiplying £I ¡ P kRk¤¡1h

I ¡ P k
i¡1

Rk = Rk
h
I ¡ P kRk

i¡1
so that Ak = ½

n¡1B
k. This implies that if we denote by ®j =

Pn
i=1

Pn
k=1 a

k
ij the total

arrival rate of problems to a node (from every origin i and destination k), then

®j =
½

n¡ 1¯j (4)

i.e. the total problem arrival rate faced by any node is proportional to its betweenness.
Recall that we have normalized the departure rate of problems from each non-

idle node to 1. Under these conditions, the length of the queue is expected to grow
without bound if, and only if, the expected number of problems arriving every period
to the queue is larger than the expected number of problems that can be processed
in each period. Therefore, relying on (4), we can formulate matters in terms of the
corresponding betweenness and state that a particular node j collapses, provided no
other does, i¤

½

n¡ 1¯j > 1;

which implies that the maximum ½ consistent with no node collapsing in the network
is:

½c =
n¡ 1
¯¤

(5)

where ¯¤ ´ maxj ¯j is the maximum betweenness.
At this point, it may be useful to provide a concrete example that naturally …ts in

our theoretical framework. Consider a scenario where:
5Note that the present notion of betweenness is algorithmic-based, in the sense that it is associated to

the particular search protocol used by the organization. Thus, it is to be distinguished from the more usual
notion of topological betweenness (Freeman 1977, Newman 2001), which assumes that the search algorithm
at work is globally e¢cient and is able to identify the minimal distance paths between nodes.
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(a) the probabilities pkij that de…ne the communication protocol of the organization
are unbiased in the following sense: For all i; j; k 2 N; such that i 6= k and
k =2 Ni,6

pkij =
1

jNij :

(b) For every problem k awaiting at node i; this problem is processed with indepen-
dent probability equal to 1

qi
; where qi stands for the number of problems in the

queue.7

Any scenario satisfying (a)-(b) is consistent with our maintained assumptions, i.e. its
communication protocol can be described by a corresponding set of matrices as in
(1) and the nodes behave as queues (they process an expected number of problems
equal to unity). Notice that assumption (a) precludes the possibility that a problem is
routed taking into account its …nal destination. This is consistent with our philosophy
that the links represent the mutual knowledge of two individuals about each other’s
abilities. Thus, the absence of a link with k implies that individual i (with k =2 Ni)
has no knowledge of the “best” direction of movement. In the concluding remarks we
discuss what can happen when this assumption is relaxed.

3.2 Organizational performance
Assume that for all i 2 N , ½

n¡1¯i < 1, that is, the expected number of arrivals to all
nodes is smaller than the expected number of exit opportunities. This, as explained,
averts the possibility of collapse. However, the fact that, in expected terms, the number
of unsolved problems cannot grow unboundedly does not rule out the possibility that
queues of positive length might persist throughout the network. To understand this
intuitively, note that the (unavoidable) ‡uctuations that are forever present along the
process induce inherently asymmetric e¤ects on the length of queues. On the one
hand, when no problems stand in the queue of a certain node, the queue can obviously
become no shorter. Instead, no matter how long a queue might be, there is always
positive probability that it increases even further. In heuristic terms, one could describe
the basis of this asymmetry as follows: whereas upward ‡uctuations always increase
congestion, downwards ‡uctuations cannot “anticipatorily save” on it. This, in the
end, implies that queues of some positive length should be expected to persist even in
the long-run.
Thus, let us maintain the assumption that ½ < ½c: Then, the arrivals and departures

from each node i follow Poisson processes with rates equal to ®i = ½ ¯i
n¡1 and unity,

respectively. Denote by pim the steady state probability of a queue of size m in node

6Recall that, if k 2 Ni; it was required that pkik = 1:
7We could easily handle non-random disciplines for problem delivery, like FIFO (First-In-First-Out).

The advantage of a random discipline is that is minimizes the amount of memory needed for numerical
computation (as the algorithm does not need to keep track of an order of arrival to the queue at each node).
Thus, it speeds up the simulations we perform in the next section.

8



i (i.e. the probability that there is a load of m pending problems being faced by node
i): The induced probability distribution (pim)1m=0 must satisfy:8

®ipi;m¡1 + pi;m+1 = (®i + 1)pim (m = 1; 2; :::)

pi1 = ®ipi0

The left-hand side of the …rst equation is the mean ‡ow rate into the state m: That is,
it adds the transition rate from state m¡ 1 to state m (the queue has m¡ 1 elements
and a new problem arrives) plus the rate from m + 1 to m (the queue has m + 1
elements and a problem is solved). There are no other possible transitions into state
m, since the arrival or departure of two problems at the same time has probability zero
in a continuous-time Poisson process. On the other hand, the right-hand side of the
…rst equation represents the ‡ow out from state m, i.e. it adds the rates at which a
queue that has m problems receives one more, or solves one. In sum, therefore, the
…rst equation only says that in a steady state the ‡ow into any given state has to be
equal to the ‡ow out of that state. The second equation is just like the …rst one, except
that it re‡ects the simple fact that a queue in state m = 0 cannot go to state m = ¡1,
since a problem can only be tackled when it arises.
The solution to the system of equations above can be checked to be:

pim = (1¡ ®i)®mi ; m = 0; 1; 2; : : :

Therefore, the expectation for the length of the queue at node i in the steady state,
which we denote by ¸i; is:

¸i =
1X
m=0

m(1¡ ®i)®mi =
®i

1¡ ®i :

Over the whole network, the total expected length of the queues, i.e. the expected
size of what might be called the stock of ‡oating problems is (using (4))

¸(½) =
X
i2N

¸i(½) =
X
i2N

½
¯i
n¡1

1¡ ½ ¯i
n¡1

: (6)

This magnitude, in turn, has its mirror image in the time dimension, where it shows
as the average delay, say ¢(½); involved in solving problems. By the so-called Little’s
Law,9 it follows that

¢(½) =
1

n½
¸(½):

8See Allen (1990) for a good introduction to queueing theory.
9Proofs for this Law can be found in Little (1961) and Stidham (1974). A simple proof, which we adapt

from Bentley (2000) is the following. De…ne X(T ) = C(T )=T , as the rate of problems solved up to a certain
period T , where C(T ) is the number of problems solved up to that period. Let Z(t) denote the stock of
problems in the system at time t 2 [0; T ]. Let W (T ) be the area under Z(t) from 0 to T , which represents
the total aggregated waiting time over all problems in the system in that interval. The mean waiting time
per problem solved is de…ned as R(T ) = W (T )=C(T ). The mean number of problems in the system is the
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Intuitively, this merely re‡ects an “accounting identity”: on average, the stock of
‡oating problems ¸(½) is to be viewed as the result of the mean delay ¢(½) displayed
by each of the n½ problems arising in the network per unit of time.

3.3 Designing the network for optimal performance
Once we understand the dynamics of a given network, we can address the issue of
what is the optimal network layout of an organization, given that it involves some
pre-speci…ed set of nodes and has a given number of links at its disposal.
First, we introduce some notation. Given any network ¡, denote by ¸¡; ½¡c ; ¯

¡
i ; the

value that the variables ¸; ½c; ¯i take for this network. Now let U stand for the set
of all networks that can be constructed with a certain number of nodes and links, and
denote by ¸¤ the lower envelope of f¸¡g¡2U ; i.e.

¸¤(½) ´ min
¡2U

¸¡(½)

with

N ¤(½) ´ argmin
¡2U

¸¡(½):

Since

¸¡(½) =
X
i2N

½
¯¡i
n¡1

1¡ ½ ¯¡i
n¡1

(7)

it obviously follows that

¸¤(0) = 0

lim
½"¹½c

¸¤(½) = 1:

For any ½ < ¹½c ´ max¡2U ½¡c , the lower envelope ¸¤(½) de…nes the optimal performance
(i.e. lowest stock of ‡oating problems) displayed by an organization which faces the
demands (nodes) and limitations (links) embodied by U : Correspondingly, N ¤(½) spec-
i…es the optimal network architectures (in general not unique) that underlie such an
optimal performance. Our aim here is to characterize the topological properties of the
networks in N ¤(½) for each ½ < ¹½c: In particular, for any such network ¡ (and their
corresponding ¯¡i ); we shall focus on its polarization µ(¡); which is de…ned as follows:

µ(¡) =
maxi2N ¯¡i ¡


¯¡i
®

¯¡i
®

average height of Z(t); which is L(T ) = W (T )=T . Clearly, L(T ) = R(T )X(T ). On the other hand, by
de…nition, we have that limT!1L(T ) = ¸; and limT!1R(T ) = ¢: Since, in a steady state, the average
number of exits from the system per unit of time must equal the number that enter the system, it follows
that limT!1X(T ) = n½: Thus, ¸ = ¢ ¢ n½; which is the desired conclusion.
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For the moment, let us maintain the tentative assumption that, for each ½ < ¹½c; all
networks associated toN ¤(½) display the same polarization and denote this value µ¤(½):
It is intuitive that the following two properties should hold for an optimal network.

First, for ½ low, congestion is not expected to be an issue. Thus, optimality should
involve minimizing distance, which is achieved by a network with the highest polar-
ization: a star (or star-like) network. That is, for low values of ½; we would expect
µ¤(½) to take the highest possible value. On the other hand, as ½ draws close to the
maximum value given by ¹½c; congestion must become the crucial factor, and optimality
should involve a balanced (symmetric) network. That is, µ¤(½) would take the smallest
possible value for such high ½.
To cast the previous discussion in more formal terms, note that, for low ½ (i.e. as

½ # 0); the performance of a network ¡ can be approximated as follows:

¸¡(½) =
X
i2N

½
¯¡i
n¡1

1¡ ½ ¯¡i
n¡1

t ½

n¡ 1
X
i2N

¯¡i :

Therefore, for low ½ (“slightly above” zero), the task of …nding the optimal networks in
¡¤(½) involves singling out those networks ¡ that minimize the aggregate betweennessP
i2N ¯

¡
i . It is easy to verify that this minimization is attained by a star-like network

where the polarization is maximal,10 as indeed suggested above.
Instead, for high ½ (i.e. as ½ " ½¡c ); the stock of ‡oating problems (which rises

unboundedly with ½) is of the following order:11

¸¡(½) » O
0@max
i2N

1

1¡ ½ ¯¡i
n¡1

1A = O
Ã

1

1¡ ½
n¡1 maxi2N ¯

¡
i

!
:

This implies that, for high ½ (“slightly below” ¹½c); optimal performance is achieved by
networks ¡ with a minimum value for maxi ¯¡i . Thus, as suggested in our discussion,
the optimal network in this case is to be an homogenous one, where the maximum
betweenness is minimized and thus polarization is minimal.
As ½ rises from very low levels to values close to ¹½c; it is natural to conjecture that

the optimal level of polarization µ¤(½) should vary in a monotonic (non-increasing)
fashion. To check the validity of this conjecture, it is useful to turn our attention to
the form of the objective function ¸¡(½) which is minimized over ¡ 2 U (cf. (7)). A
…rst useful observation in this respect is that the dependence of this function on ¡ is
solely channeled through the corresponding vector of induced betweenness ¯¡: Thus,
for each ½ < ¹½c, we may equivalently reformulate the optimization problem underlying

10To see this simply note the following. First, the topological betweenness is never higher than the
algorithmic betweenness – recall Footnote 5. Second, the topological betweenness is minimized at a star
network, where the average (topological) distance is minimized. Third, at a star network, both notions of
betweenness (topological and algorithmic) coincide.
11We say that f(½) » O (g(½)) if 0 < lim½!½¡c

f(½)
g(½) <1.
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Figure 1: Optimal betweenness pro…le ¯¤(½) as ½ passes from a relatively low ½ = ½1 to
a higher ½ = ½2: In the …rst case, the optimal pro…le lies at the tangency between the
corresponding level curve and the lower frontier of B that lies in the bisectrix of the positive
orthant. For the higher ½; the level curves display less marked curvature and the optimal
pro…le occurs at the two extreme betweenness points where the corresponding level curve
and the lower frontier of B meet in each of the two axes.

µ¤(½) as follows:

min
¯2B

¸¯(½) ´
X
i2N

½
¯i
n¡1

1¡ ½ ¯i
n¡1

:

Then, to proceed formally, we would need a su¢ciently detailed characterization of the
range of feasible betweenness vectors

B ´ f¯ = (¯i)i2N 2 Rn+ : ¯ = ¯¡ for some ¡ 2 Ug
that can be spanned by the set of admissible networks U . This, unfortunately, seems
an especially di¢cult task, given the complex combinatorial considerations involved.
We may hope, however, to shed some light on the problem if we rely on the following
two simple features of the situation. First, we note that ¸¯(½) is an increasing and
convex function on Rn+ whose curvature increases with ½. Thus, in particular, its level
curves f¯ : ¸¯(½) = Kg pass from being linear when ½ = 0 to displaying a “right-angle
kink” at points of uniform betweenness (i.e. in the bisectrix) as ½!1 (cf. Figure 1).
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A second important observation derives from an already explained fact: the sum of
betweenness is minimized over the set B at star-like con…gurations. To help formalize
the implications of this fact, suppose that “perfect-star” networks with just one node
i at the hub and all other nodes j 6= i as symmetric pure spokes are admissible con…g-
urations in the set U : Then, if we denote such star networks by ¡i; it follows that the
set B must lie above the following hyperplane in Rn:

H ´ f¯ = (¯i)i2N 2 Rn :
nX
i=1

¯i = ¯
b¡i for any i 2 Ng:

Let us now make the plausible assumption12 that the lower frontier of B; i.e.

@B ´ f¯ = (¯i)i2N :
£
¯0 2 B, ¯0i < ¯i for some i 2 N

¤) £
¯0j ¸ ¯j for some j 2 N

¤
does not change curvature throughout the space Rn+: (An illustration of the situation is
again provided in Figure 1 for the bidimensional case.) Then, combining the above con-
siderations, it readily follows that, as suggested above, the polarization µ¤(½) associated
to the optimal network depends on ½ in a weakly monotonic (non-decreasing) fashion.
But the analysis can go much farther than this anticipated dependence and arrive at
the following startling conclusion. As the problem rate ½ rises (and the “bending” of
the level curves becomes progressively more acute) there is a threshold transition from
the case where the optimal network displays a polarized betweenness (i.e. it is star-like)
to a situation where the betweenness vector is essentially symmetric (and the network
is basically homogenous). Thus, what this analysis suggests is that, as ½ changes, there
is a qualitative “discontinuous” change in the optimal network that basically reduces
the range of optimal con…gurations to two extreme cases: a fully centralized and a fully
decentralized network.
We have checked the conclusions derived from this analysis (in particular, the va-

lidity of our simplifying assumptions) by exploring matters numerically in a variety of
computationally amenable contexts. The results are shown in Figure 2 for the leading
scenario described in Subsection 3.1 and a range of di¤erent possible speci…cations of
U (i.e. di¤erent number of nodes and possible links).

Figure 2 plots the value of µ¤(½) as a function of ½; for organizations that di¤er
in the number of links (64, 96, 128, 160). The organizational size is kept constant
at N = 32. The value of µ¤(½) was obtained through algorithmic search over the
set of admissible networks.13 In all cases, we observe that the degree of polarization

12We ignore at present how restrictive this assumption really is, although we conjecture that it may be
a su¢ciently good approximation of the situation when the problem at hand is large enough, i.e. there
are su¢ciently many nodes and the considerations pertaining to “node indvisibility” are of second-order
importance. As reported below, the simulations conducted in di¤erent (small) contexts provide indirect
evidence in support of this conjecture.
13Let us explain the method used to perform the numerical search for the optimal network. We use

generalized simulated annealing, as described in Penna (1995) and Tsallis and Stariolo (1994). Starting
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Figure 2: Polarization of the optimal structure as a function of ½, for networks of size n = 32
and di¤erent number of links m = 64; 96; 128; 160: The star-like con…guration (top left) is
optimal for low ½ , while an homogeneous con…guration (bottom left) is optimal for high ½ .

associated to the optimal architecture depends on ½ as predicted by theoretical model,
i.e. it is non-increasing in ½ and displays an abrupt change between the two extreme
topologies – i.e. star-like and homogenous – as ½ varies. Moreover, throughout the
whole range of ½, only these two topologies ever qualify as optimal.

4 Related literature
In the last few years there has been a booming interdisciplinary interest in the study of
networks. Social scientists have been working steadily on this topic, but also physicists
interested in the dynamics of complex systems, or biochemists studying autocatalytic
networks and the origin of life. This vast line of research has been motivated by the

from a given initial network con…guration, random rewiring of individual links are performed. The cost
¸¡(½) is then evaluated. The change is accepted with a certain probability that depends on a computational
temperature. This temperature is decreased with time so that the system tends to explore regions of the
con…guration state with lower and lower costs.
Regarding the cooling, at a given temperature, each node of the network is allowed to try a rewiring. Then

the temperature is decreased by 1%, and the process is repeated until a minimum temperature is reached
or, alternatively, the system has remained unchanged after a signi…cantly large amount of rewiring trials.
Di¤erent sets of initial conditions are explored: for a given value of ½, the optimization process is started

from random initial con…gurations and also from networks that turned out to be optimal at similar values
of ½. Of all the realizations, only the network with a smallest cost is considered as optimal.
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belief that social, physical, or biological models that ignore the topological structure of
interaction are often unable to give account of many interesting phenomena. The in-
creasing importance of the world wide web for scienti…c, governmental and commercial
purposes is another powerful source of interest in this topic.
Our paper belongs most directly to the literature on the economics of organiza-

tions. In a sense, our analysis re‡ects the same informational considerations that
have long lied at the core of the controversies on the merits and drawbacks of economic
(de)centralization.14 However, rather than highlighting how the richness of information
or the cost of communication bears on the problem, our analysis displays a somewhat
di¤erent focus. We stress that limitations on the ability to process a large amount of
information simultaneously raises the threat of organizational collapse or at least long
delays in the organization tackling the required tasks.
There is a recent strand of the economic literature that is motivated by similar

concerns and also identi…es organizations with networks whose objective is to process
information. The paper initiating this line of research was Radner (1992), then fol-
lowed, among others, by Bolton and Dewatripoint (1994), and van Zandt (1999). Their
work mostly abstracts from search issues. The information that ‡ows in an organiza-
tion is such that any of its members can process it. Typically, there are advantages in
terms of processing time if di¤erent bits of the same problem are processed in parallel.
But, in this case, the di¤erent bits must be combined in order to obtain the …nal out-
put, and the required communication brings about a coordination problem. The main
trade-o¤ here is the one between parallelization and coordination costs. The organiza-
tion consists, thus, of a rather mechanical process of combining disperse information.
Sah and Stiglitz (1986) and Visser (2000) also study an analogous design problem,
their main focus being on the contrast between the performance of a hierarchic and a
poliarchic organization.
Closer in spirit to our work is Garicano (2000). In his model, each individual spe-

cializes in solving a certain type of problems. If she cannot solve a problem that reaches
her, there is another person to whom she must deliver that problem. The task of the or-
ganization designer is twofold. First, she must assign knowledge sets to each individual
in the organization. Then, she must design the routes through which unsolved prob-
lems must travel. Both knowledge acquisition and communication are costly. There
is, then, a fundamental trade-o¤ between acquiring knowledge and communicating it.
The solution to this trade-o¤ is to organize workers along a hierarchy. All problems
are …rst given to the workers lowest in the hierarchy, who have the knowledge about
the most ordinary problems. Those relatively uncommon problems that they cannot
solve are then transferred to individuals in the next higher level, and so on.15

14This debate, for example, is nicely epitomized by the well-known work of Lange (1936, 1937) and Hayek
(1940). The central issues raised by these authors were later formulated and addressed formally by the
Theory of Mechanisms, as initiated by Hurwicz (1960). See van Zandt (1999) for a good survey on this
topic.
15Beggs (2001) introduces a model that is close (and produces similar conclusions) to Garicano (2000),

with two important di¤erences. From the conceptual point of view, the di¤erences between workers in
Beggs (2001) arises because of di¤erent ability (processing power) between individuals, rather than because
of specialization, as in Garicano (2000). From the technical point of view, Beggs (2001) uses an explicitly
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Despite the similarity in spirit, there is a crucial di¤erence between Garicano’s
(2000) model and ours. We assume that knowledge acquisition cannot be controlled or
designed and thus the organization planner must take the knowledge sets of workers
as given. This, in turn, creates a congestion problem in our set-up which does not
appear in his context. Since the planner in Garicano (2000) has control about what
every worker knows, the organization can be designed so that bottlenecks are avoided.
We feel that our model is relevant for …rms in which endowments of knowledge are not
easy to replicate in a standardized fashion. Even if a university wanted, it would be
hard to …nd two solvers of Fermat’s last conjecture for every ten solvers of standard
elliptic partial di¤erential equations. We conjecture that the high-level knowledge-
based organizations we used to motivate our paper present characteristics that make
them look more like those in our model.
A more technical literature has focused in the problem of search in complex net-

works. Watts and Strogatz (1998) pioneered the recent surge of interest in what has
been called small-worlds (see also Watts 2000, and Newman, Moore and Watts 2000).
This term refers to regular lattices where nodes have many local links (links that con-
nect nodes to neighbors in an underlying topological sense) and a few long-range links.
This kind of networks have the characteristic that the average distance between two
randomly chosen nodes is relatively low. This is so despite the fact that most connec-
tions are purely local. The small-worlds literature abstracts from search problems (and
also congestion), since distance here means minimal graph distance and thus implicitly
presumes global knowledge of the network. Albert and Barabási (2002) survey the
…ndings in the area.
Kleinberg (1999, 2000), on the other hand, does address search issues in the context

of complex networks. In his model, problems have to travel through a network looking
for its (known) destination. The search is helped by knowledge of the underlying
“geographic structure” (and the links of each node). This structure may be very
e¤ective in guiding search within a small-world type network. In contrast, it is not
useful in a random network (i.e. one whose links are completely random), despite
the fact that average distance is actually smaller. Kleinberg’s model helps to explain
the speed and e¤ectiveness of search in some large complex networks (e.g. the huge
world-wide web). It abstracts, however, from the congestion issues that are our main
interest here and that, undoubtedly, also represent a key consideration in many real-
world contexts. Arenas, Díaz-Guilera and Guimerà (2001) address problems similar to
those considered here and study, in particular, the trade-o¤ between congestion and
distance. They restrict, however, to a limited range of possible organizational forms,
namely hierarchies, which face no genuine issue of search. In a hierarchy, all problems
(which are aware of their destination) know the (…xed) route they have to travel.

stochastic model, and the techniques come mainly from queuing theory. The di¤erence between individuals
in our model occurs because of specialization, so in that sense we are closer to Garicano (2000). In the
technical respect, however, we are closer to Beggs (2001), which also makes a imporatnt use of queueing
theory.
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5 Summary and extensions
We have proposed an abstract model of a problem solving organization which (a) oper-
ates through local communication, (b) is forced to search restricted by local information
(c) is subject to the e¤ects of congestion. For this model, we provide an analytical char-
acterization of the threshold of collapse and the stock of ‡oating problems (or average
delay) below that threshold. We then build upon this characterization to start ad-
dressing a design problem, namely to …nd the network which optimizes performance
for any given problem arrival rate.
A number of extensions could be explored. An interesting one concerns studying

the e¤ect of a larger “information radius” on the performance of the organization.
That is, when designing the optimal organization, we assumed that individuals only
use information about their direct neighbors to route a problem. We are currently
undertaking research to relax this assumption. Individuals may use the knowledge of
their neighbors’connections (or even of individuals with higher order degrees of sepa-
ration). First, concerning the issues of congestion and delay, it is easy to see that the
analytical approach used here to characterize the congestion threshold and the average
delay may be applied unchanged for any information radius (remember we only started
use the assumption of …rst neighbors knowledge for the design problem). Turning then
to the issue of organizational design, preliminary numerical results suggest that, as one
would expect, the optimal network becomes less polarized as the information radius
expands. This is intuitive since, as the information of nodes becomes less local, the
informational advantages of a polarized network should correspondingly decrease.
Many other extensions could be easy to handle in our framework. For example, the

problems could be sent with higher (or even lower) probability to nodes with a larger
number of connections. Also, the rate at which problems originate at one node could
depend on the node where they can be solved, which may create local “communities”
of problem-solvers.
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