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Australian Asian Options

Abstract

We study European options on the ratio of the stock price to its average and

viceversa. Some of these options are traded in the Australian Stock Exchange

since 1992, thus we call them Australian Asian options. For geometric av-

erages, we obtain closed-form expressions for option prices. For arithmetic

means, we use different approximations that produce very similar results.
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1 Introduction

Asian options are options on average values of asset prices. Their prices

depend on the asset price history over the averaging period. Therefore, they

are considered path-dependent claims.

These derivatives are traded in over-the-counter markets1 and it is usually

argued that they provide the following advantages: (a) they are cheaper than

standard European ones as the average is less volatile than the asset price

itself, (b) this type of options prevents manipulation of the underlying asset

price at the maturity date and (c) they are the adequate hedging instrument

for traders who act continuously over finite periods.

Options on the ratio of the stock price to its average (or viceversa) are

particular cases of Asian options. They have recently appeared as special

types of variable purchase options (VPOs). VPOs were first issued in 1992

and have been traded since then on the Australian Stock Exchange. A VPO

is an option that gives its holder the right to buy at maturity a stochastic

number of shares that depends on the terminal stock price. This option can

have more complex features like caps and floors on the number of shares.

Handley (2000) provides a detailed description of VPOs as well as pricing

formulae. He also describes Asian VPOs, in which the number of shares that

can be bought at maturity depends on the average stock price. These options

are shown to be equivalent to options on the ratio of the stock price to its

average. Alternatively, we could define Asian VPOs in such a way that they

are equivalent to options on the ratio of the average of the stock price to the

stock price itself.

In this paper we price such options using both geometric and arithmetic
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(discrete- and continuous-time) means of stock prices that are assumed to

follow a lognormal process.2 When the average is computed on geometric

basis, these ratios are lognormally distributed at maturity, thus we obtain

Black-Scholes-type formulae to price options.

However, when the average is computed on arithmetic basis, the risk-

neutral distribution of these ratios is, in general, unknown and we can not

obtain closed-form expressions for the prices of these options.3 This happens

because the arithmetic average is the convolution of correlated lognormal

random variables and its distribution is unknown.4

Some of the approaches that have been followed in the literature to study

the pricing and hedging of arithmetic Asian options are:

• Numerical approximations

— Finite different schemes. In this case, a partial difference pric-

ing equation is obtained and then solved numerically. See, for

instance, Kemna and Vorst (1990), Rogers and Shi (1995), Alziari

et al (1997) or Hansen and Jorgensen (2000).5

— Monte Carlo simulations. Here, variance reductions technique are

commonly used to reduce standard errors. For example, Kemna

and Vorst (1990) use the closed-form expressions for prices of geo-

metric Asian options as control variables to price arithmetic ones

with Monte Carlo.6

• General numerical methods. Some examples are the fast Fourier trans-
form proposed in Carverhill and Clewlow (1990), the conditioning ap-

proach suggested in Curran (1994), Rogers and Shi (1995) and Nielsen
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and Sandmann (1996, 1999, 2001), and the accelerated simulation

method presented in Vázquez-Abad and Dufresne (1998).

• Pseudo-analytic characterizations. this is the case of Yor (1992, 1993),
Geman and Yor (1993), De Schepper et al (1994), Eydeland and Ge-

man (1995), Fu et al (1999) and Shirakawa (1999), who use the theory

of Bessel processes and the inversion of a Laplace transform. Alterna-

tively, Ju (1997) employs A Fourier transform, while Dufresne (2000)

suggests a Laguerre expansion.

• Analytical approximations. Jarrow and Rudd (1982) apply Edgeworth
series expansion to the problem of option pricing when the risk-neutral

distribution of the underlying asset at maturity is not known. Typ-

ically, up to fourth order moments are used to approximate the true

probability density function. This method has been also used by Turn-

bull and Wakeman (1991), Ritchken et al (1993) and Jacques (1996).

Some authors use only the first and second order moments in the

Edgeworth series expansion, obtaining what is called the Wilkinson

approximation.7 This is equivalent to assume that the true distribu-

tion is actually lognormal, so that Black-Scholes-type formulae can be

used to price options. See Levy and Turnbull (1992) for a numerical

comparison of the accuracy of these expansions. Other analytical ap-

proximations can be seen in Bouaziz et al (1994), Vorst (1990, 1992,

1996), Nielsen and Sandmann (1998), Posner and Milevsky (1998) and

Chung et al (2001).

A different type of analytical approximation is presented in Milevsky
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and Posner (1998) who use the fact that the infinite sum of correlated

lognormal random variables is reciprocal gamma distributed to obtain

a closed-form solution for the value of arithmetic Asian options.8 This

formula is exact only when the average is computed continuously.

In this paper we price arithmetic Australian Asian options using both the

Wilkinson approximation and the gamma distribution. We also use Monte

Carlo simulation with antithetic variables. The results show that option

prices obtained with the three methods are quite similar. This is true even

when the number of monitoring dates used to compute the average is small.

Hence, in practice, it does not seem to be necessary to use higher order

moments in the Edgeworth expansion nor to require a large number of mon-

itoring dates in the gamma approximation to the option pricing problem.

The rest of the paper is organized as follows. Section 2 describes some

statistical results that are used in the paper. In Section 3 we generalize

the Black-Scholes formula for option prices. Section 4 presents closed-form

expressions for the prices of geometric Australian Asian options and Section

5 presents approximations to the value of arithmetic ones. Finally, Section 6

summarizes and concludes.

2 Previous Statistical Results

The following Lemma specifies several features of the lognormal distribution

that will be useful to find later results:
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Lemma 1

1. Let Y = ln(X) be a normal random variable with mean m and variance

s2. Then, X follows a lognormal distribution, that is, X ∼ Λ(m, s2).

Its density function is given by

f(x) =
1

sx
√
2π
exp

−12
Ã
lnx−m

s

!2 , x > 0 (1)

Moreover, it is verified that

E(X) = exp
½
m+

1

2
s2
¾

(2)

V (X) = [E(X)]2
h
es

2 − 1
i

(3)

E(X−1) = exp{−2m} E(X) (4)

V (X−1) = [E(X−1)]2
h
es

2 − 1
i

(5)

2. The expectation of the truncated lognormal variable

X̃ =

 X if X ≥ K
0 if X < K

, K ∈ IR+

is given by

E(X̃) = E(X) N(s−D), D =
lnK −m

s

where N(.) denotes the distribution function of a standard normal vari-

able.

Proof: See Appendix.

The following Lemma will be useful to compute the moments of ratios

involving arithmetic average asset prices:
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Lemma 2 (Mood et al (1974))

Let X and Y be two random variables. Then, it is verified that

E
µ
X

Y

¶
' E(X)

E(Y )
− 1

(E(Y ))2
Cov(X, Y ) +

E(X)

(E(Y ))3
V (Y )

V
µ
X

Y

¶
'

Ã
E(X)

E(Y )

!2 Ã
V (X)

(E(X))2
+

V (Y )

(E(Y ))2
− 2 Cov(X,Y )

E(X)E(Y )

!

Proof: See Mood et al, p. 181.

3 The Generalized Black-Scholes Model

Uncertainty is modelled by a filtered probability space (Ω, IF, P ). The set of

trading dates is t ∈ [0, T ]. Let Z = { Zt | t ∈ [0, T ]} be the price process for
the underlying asset. The assumptions of the pricing model are as follows:

1. Markets are frictionless

(a) No transaction costs when trading the stock or the option

(b) No taxes

(c) No penalties to short selling

(d) All assets are perfectly divisible

2. Security trading is in continuous time

3. The term structure of interest rates is flat and known with certainty.

Let β = { βt; t ∈ [0, T ] } be the value process for a banking account
defined by

dβt = rβtdt, (6)

where t ∈ [0, T ], β0 = 1 and the risk-free interest rate, r, is constant
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4. The asset offers a continuous dividend yield of δ in the interval [0, T ]

5. The asset price follows a GBM process

dZt = µZZtdt+ σZZtdWt, (7)

where (Zt, t) ∈ (0,∞) × [0, T ], µZ and σZ are constants and Wt is a

standard Wiener process. Usually, σ2Z is referred to as the logarithmic

variance parameter of the asset.

Under the risk-neutral probability measure, the process (7) becomes

dZt = αZZtdt+ σZZtdWt

where αZ is the (constant) risk-neutral drift of the process.

The solution for this process is given by

Zt = Z0 exp
½µ
αZ − 1

2
σ2Z

¶
t+ σZWt

¾

Therefore, Zt follows a lognormal process. Moreover, it is straightforward to

show that

[lnZu] | Zt ∼ N
µ
ln(Zt) +

µ
αZ − 1

2
σ2Z

¶
(u− t), σ2Z(u− t)

¶
, u > t (8)

Lemma 3 The moments of the variable Zt under the risk-neutral measure

are the following:

E(Zt) = Z0e
αZt

V (Zt) = [E(Zt)]
2
h
eσ

2
Zt − 1

i
Cov(Zt, Zs) = Z20e

αZ(t+s)
h
eσ

2
Zs − 1

i
, s < t
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Proof: See Appendix.

Obviously, for s = t, we obtain

Cov(Zt, Zt) = Z
2
0e
αZ(t+t)

h
eσ

2
Zt − 1

i
= Z20e

2αZ t
h
eσ

2
Zt − 1

i
= V (Zt)

The following proposition generalizes the Black-Scholes option pricing

formula:

Proposition 1 The price at time 0 of an European call option on Z that

matures at time T and with strike price K is given by

C(Z, 0, T,K) = e−rTE(ZT )N(d1)−Ke−rTN(d2) (9)

where

d1 =
ln
³
e−αZTE(ZT )/K

´
+
³
αZ +

1
2
σ2Z
´
T

σZ
√
T

d2 = d1 − σZ
√
T

Proof: See Appendix.

The prices of European put options can be easily obtained using the put-

call parity:

P (Z, 0, T,K) = C(Z, 0, T,K)− e−rTE(ZT ) +Ke−rT (10)

Let St denote the stock price at time t. We suppose that St follows the

risk-neutral process

dSt = (r − q)Stdt+ σStdWt, (11)
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where q is the continuous dividend yield of the stock and σ is a constant.

The solution for this process is given by

St = S0 exp
½µ
r − q − 1

2
σ2
¶
t+ σWt

¾
(12)

Note that application of Proposition 1 to the stock price process (11) leads

to the Black-Scholes formula adjusted by dividends, as derived by Merton

(1973).

4 Geometric Australian Asian Options

We consider n monitoring dates so that the time interval [0, T ] is partitioned

in the following way:

{t0 = 0 < t1 < t2 < · · · < tn = T}, ti − ti−1 = T

n
= ∆t, ∀ i = 1, · · · , n.

Let S = { Sti ≡ Si, i = 0, 1, · · · , n } be the price process for the stock.
We define the geometric mean of the n stock prices S1, · · · , Sn as

Gn = (S1 · · ·Sn) 1
n =

Ã
nY
i=1

Si

! 1
n

, G0 ≡ S0

Using (12), we have

Gn = S0 exp

(µ
r − q − 1

2
σ2
¶
n+ 1

2
∆t+

σ

n

nX
i=1

Wti

)
(13)

Looking at (12) and (13), and using tn = n∆t, we have

Sn
Gn

= exp

(µ
r − q − 1

2
σ2
¶
n− 1
2
∆t+

σ

n

"
n Wtn −

nX
i=1

Wti

#)
(14)

Gn
Sn

= exp

(
−
µ
r − q − 1

2
σ2
¶
n− 1
2
∆t− σ

n

"
n Wtn −

nX
i=1

Wti

#)
(15)
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It is clear from (13)-(15) that the geometric average and both ratios are

lognormally distributed. Consequently, we can apply Proposition 2 to price

options on these assets after computing their moments. We now state a

Lemma that will be useful to obtain these prices.

Lemma 4 Given the Brownian motions Wti, i = 1, · · · , n, it is verified that

V

Ã
nX
i=1

Wti

!
=

(n+ 1)
³
n+ 1

2

´
n

3
∆t

V

Ã
n Wtn −

nX
i=1

Wti

!
=

(n− 1)
³
n− 1

2

´
n

3
∆t

Proof: See Appendix.

Proposition 2 We consider European call options on Sn/Gn and Gn/Sn

that mature at time T and with strike price K. The prices at time 0 of

these options are given by expression (9), where the expected value and the

logarithmic variance of the asset at maturity are given by the following table:9

Zn E(Zn) σ2ZT

Gn S0 exp
n³
r − q − n−1

6n
σ2
´
n+1
2n
T
o

(n+1)(n+ 1
2)

3n2 σ2T

Sn/Gn exp
n³
r − q − n+1

6n
σ2
´
n−1
2n
T
o (n−1)(n− 1

2)
3n2 σ2T

Gn/Sn exp
n
−
³
r − q − 5n−1

6n
σ2
´
n−1
2n
T
o (n−1)(n− 1

2)
3n2 σ2T

Proof: See Appendix.

The expression obtained in this Proposition is the Black-Scholes formula

with a volatility parameter σZ and a continuous dividend yield δ = r − αZn
as given by the next table:
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Zn δ

Gn
³
n−1
n+1
r + q + n−1

6n
σ2
´
n+1
2n

Sn/Gn
³
n+1
n−1r + q +

n+1
6n
σ2
´
n−1
2n

Gn/Sn
³
3n−1
n−1 r − q − 5n−1

6n
σ2
´
n−1
2n

Note that the prices of Australian Asian options do not depend on the

current stock price, S0.

Obviously, when Zn = Sn, we obtain the Black-Scholes formula which

does not depend on the partition of the time interval. When Zn = Gn, we

get the price derived by Turnbull and Wakeman (1991) and Ritchken et al

(1993).

The effect of the number of monitoring dates (n) on the expected value of

the asset is not clear, since it depends on the relationship among r, q and σ.

However, the effect of n on the logarithmic variance, σ2ZT , is quite obvious

as can be seen in Figure 1. The parameter values are σ = 0.2 and T = 1.

[ Insert Figure 1 about here ]

We observe the following facts:

• The logarithmic variance of the stock price is constant.

• The logarithmic variance of Gn is equal to that of the stock price when
n = 1. Then it decreases with n, and converges to σ2

3
T , the logarithmic

variance of the continuous geometric average, obtained by Kemna and

Vorst (1990).

• The logarithmic variances of Sn/Gn and Gn/Sn are equal. This is due
to the relationship between the variances of a lognormal variable and
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its reciprocal (see expressions (3)-(5)). This variance increases with n

and converges to σ2

3
T .

It can also be of interest to study the effect of σ and T on option prices.

We leave this analysis for the case of continuous-time means.

Tables 1 and 2 show call and put option prices respectively (multiplied

by 100) for different cases and monitoring dates. Call prices are computed

using Proposition 2. Put prices are obtained applying expression (10). The

interest rate is 10 % and the stock dividend yield is 3 %. We include the

stock price (Sn) and its geometric average (Gn) as underlying assets as a

reference. In both cases, we assume that the initial stock price (S0) is 1.

[ Insert Tables 1 and 2 about here ]

We see that the value of the Australian Asian options are relatively similar

to those of geometric Asian options.

For one monitoring date andGn = ST , we see that options onGn have the

same value as those on the stock. Moreover, Australian options are equal to

options on the unity, and their values are given by exp{−rT}max{1−K, 0}.
Interestingly, option prices do not necessarily increase with the volatility

of the stock price (σ) either. This is also true for standard geometric Asian

options. For example, from Table 1 we have that when T = 0.5, K = 0.8,

and n = 1, 000 the call option on Gn has a value of 20.548 and 20.538 for

σ = 0.2 and 0.4, respectively.10

We see that option prices do not necessarily increase with time to maturity

(T ). For example, when σ = 0.2,K = 0.8, and n = 100, Table 1 shows that
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the call option on Gn/Sn has a value of 18.161 and 16.580 for maturities of

0.5 and 1.0 years, respectively.

The tables show that option prices do not change monotonically with n.

For instance, in Table 1 we have that when σ = 0.2, T = 0.5, and K = 1.1,

call options prices on Gn are 3.175, 0.905, and 0.737, when n = 1, 10 and

100, respectively.

The effect of a change in the exercise price (K) is as expected: call prices

decrease and put prices increase with K.

As additional reference, the Black-Scholes call option prices (dividend

yield = 0) in the four cases studied in Table 1 are 24.027, 27.993, 26.081, and

3.743, and the Black-Scholes put option prices corresponding to Table 2 are

3.400, 3.753, 8.703, and 8.378, respectively.

We now define the continuous geometric average of the stock price over

the interval [0, T ] as

GT = exp

(
1

T

Z T

0
ln(St) dt

)

Using (12), we have

GT = S0 exp

(
1

2

µ
r − q − 1

2
σ2
¶
T +

σ

T

Z T

0
Wtdt

)
(16)

Looking at (12) and (16), we have

ST
GT

= exp

(
1

2

µ
r − q − 1

2
σ2
¶
T +

σ

T

"
T WT −

Z T

0
Wtdt

#)
(17)

GT
ST

= exp

(
−1
2

µ
r − q − 1

2
σ2
¶
T − σ

T

"
T WT −

Z T

0
Wtdt

#)
(18)

We now state a Lemma that will be useful to compute the prices of options

on these assets.
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Lemma 5 Given the Brownian motions Wt, t ∈ [0, T ], it is verified that

V

ÃZ T

0
Wtdt

!
= V

Ã
T WT −

Z T

0
Wtdt

!
=
T 3

3

Proof: See Appendix.

Proposition 3 We consider European call options on ST/GT and GT/ST

that mature at time T and with strike price K. The prices at time 0 of

these options are given by expression (9), where the expected value and the

logarithmic variance of the asset at maturity are given by the following table:11

ZT E(ZT ) σ2ZT

ST S0 exp{(r − q)T} σ2T

GT S0 exp
n
1
2

³
r − q − 1

6
σ2
´
T
o

σ2

3
T

ST/GT exp
n
1
2

³
r − q − 1

6
σ2
´
T
o

σ2

3
T

GT/ST exp
n
−1
2

³
r − q − 5

6
σ2
´
T
o

σ2

3
T

Proof: See Appendix.

The option pricing formula given in this Proposition corresponds to a

continuous dividend yield δ = r − αZT as given by the next table:
ZT δ

ST q

GT , ST/GT
1
2

³
r + q + 1

6
σ2
´

GT/ST
1
2

³
3r − q − 5

6
σ2
´

Notice that:

• The logarithmic variances of both ratios are equal to the one derived by
Kemna and Vorst (1990) for the continuous geometric average. The in-

tuition for this result is that, with infinite monitoring dates, the volatil-

ity of the ratio depends only on the volatility of the average. This value
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increases with σ and is one third of the variance in the Black-Scholes

formula.

• The expected value of GT is S0 times the expected value of ST/GT .

• The expected values of ST/GT andGT/ST do not depend on the current
stock price, S0.

• The expected values of GT and ST/GT are smaller than that of ST .

Figure 2 shows E(ZT ) as a function of σ. The parameter values are

r = 10%, q = 3%, T = 1. We assume S0 = 1.2.

[ Insert Figure 2 about here ]

We observe that the expected values of GT and ST/GT decrease with σ,

while the expected value of GT/ST increases with σ.
12

Since the logarithmic variance of the assets studied increase with σ, and

their expected values also depend on σ, we have that option prices can de-

crease with volatility or time to maturity. This surprising result is analyzed

next with more detail.

a) Theta

To study the effect of a change in T on option prices, we compute the

corresponding partial derivative. Replacing the expected value and the loga-

rithmic variance of the asset at maturity in (9) as given in Proposition 1 and

differentiating with respect to T , we get

∂C(.)

∂T
= e−rT

"
(αZT − r)E(ZT )N(d1) +KrN(d2) +

σZ

2
√
T
E(ZT )N

0(d1)

#
(19)
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If q > 0, we have that αZT − r < 0 for all the assets except for GT/ST .
Consequently, the effect of T on call options on these assets is undetermined.

If q = 0, we have that αsT − r = 0, and the stock call price increases with T .
For the ratio GT/ST , we have that αZT − r > 0 ⇔ r < 1

3

³
q + 5

6
σ2
´
. In this

case, an increase in T leads to a higher call option price.

To analyze the effect of an increase of T on the put price, we use the

put-call parity (10) and the derivative obtained in (19) to get

∂P (.)

∂T
= e−rT

"
(r − αZT )E(ZT )N(−d1)−KrN(−d2) +

σZ

2
√
T
E(ZT )N

0(d1)

#
(20)

The sign of this derivative can be positive or negative, depending on the

parameter values. For all the assets except GT/ST , we have r − αZT ≥ 0.

Then, for these assets, the effect of T on the put price depends on how large

is the second term into brackets. If the exercise price is low enough, the put

price will increase with T , while for large strikes the opposite will take place.

For the ratio GT/ST , we have that r − αZT > 0 ⇔ r > 1
3

³
q + 5

6
σ2
´
. In this

case, an increase in T can lead to a higher put price if the exercise price is

small.

Figure 3 plots geometric Australian option prices as a function of time to

maturity. The averages are computed with infinite monitoring dates. The

parameters are: r = 0.1, q = 0.03, σ = 0.2, K = 0.8 for calls and K = 1.2

for puts.

[ Insert Figure 3 about here ]

We see that, in this case, the price of a call option on ST/GT increases

with T . However, the price of a call option on GT/ST decreases with T . The

16



latter result is due to the fact that r > 1
3

³
q + 5

6
σ2
´
, so that αZT − r < 0 and

∂C(.)/∂T can be negative.

Since the exercise price for the put options is relatively high (K = 1.2),

we see that the price of the put option on ST/GT decreases with T . The same

occurs for a put option on GT/ST when time to maturity is small (between

0 and 0.65 years). For higher T , the put price increases. When T > 1.5,

the put price decreases again. Interestingly, if we reduce the exercise price

to K = 1.1, the put price increases for all T .

b) Vega

Replacing the expected value and the logarithmic variance of the asset

at maturity in (9) as given in Proposition 1 and differentiating the resulting

expression with respect to σ, we obtain that the effect of a change in σ on

the price of a call option is given by

νC =
∂C(.)

∂σ
= e−rTE(ZT )

√
T

"
∂αZ
∂σ

√
TN(d1) +

∂σZ
∂σ

N 0(d1)

#
(21)

The partial derivatives into brackets are:

ZT
∂αZ
∂σ

∂σZ
∂σ

ST 0 1

GT −1
6
σ 1√

3

ST/GT −1
6
σ 1√

3

GT/ST
5
6
σ 1√

3

Therefore, we obtain

νC(ST ) =
∂C(.)

∂σ
= S0

√
TN 0(d1) > 0
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νC(GT ) =
∂C(.)

∂σ
= e−rTE(GT )

√
T

"
−1
6
σ
√
TN(d1) +

1√
3
N 0(d1)

#

νC(ST/GT ) =
∂C(.)

∂σ
= e−rTE(ST/GT )

√
T

"
−1
6
σ
√
TN(d1) +

1√
3
N 0(d1)

#

νC(GT/ST ) =
∂C(.)

∂σ
= e−rTE(GT/ST )

√
T

"
5

6
σ
√
TN(d1) +

1√
3
N 0(d1)

#
> 0

It is straightforward to show that

νC(GT ) < 0⇔ N 0(d1)
σN(d1)

<
1

2

s
T

3

νC(ST/GT ) < 0⇔ N 0(d1)
σN(d1)

<
1

2

s
T

3

Hence, the vega of a call option on in the Kemna and Vorst (1990) model

and the vega of a geometric Australian asian call option on ST/GT can be

negative. As shown later, this can occur for reasonable parameter values.

To analyze the effect of an increase of σ on the put price, we use the

put-call parity (10) and the derivative obtained in (21) to obtain

νP =
∂P (.)

∂σ
= e−rTE(ZT )

√
T

"
∂σZ
∂σ

N 0(d1)− ∂αZ
∂σ

√
TN(−d1)

#
(22)

Therefore, the vega of put options on our assets are:

νP (ST ) =
∂P (.)

∂σ
= S0

√
TN 0(d1) > 0

νP (GT ) =
∂P (.)

∂σ
= e−rTE(GT )

√
T

"
1

6
σ
√
TN(−d1) + 1√

3
N 0(d1)

#
> 0

νP (ST/GT ) =
∂P (.)

∂σ
= e−rTE(ST/GT )

√
T

"
1

6
σ
√
TN(−d1) + 1√

3
N 0(d1)

#
> 0

νP (GT/ST ) =
∂P (.)

∂σ
= e−rTE(GT/ST )

√
T

"
−5
6
σ
√
TN(−d1) + 1√

3
N 0(d1)

#

It is clear that

νP (GT/ST ) < 0⇔ N 0(d1)
σN(−d1) <

5

2

s
T

3
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As before, this inequality can hold for reasonable parameter values.

Figure 4 exhibits geometric Australian option prices as a function of

volatility (σ). The averages are computed with infinite monitoring dates.

The parameters are: r = 0.1, q = 0.03, T = 0.1, K = 0.8 for calls and

K = 1.1 for puts.

[ Insert Figure 4 about here ]

We see that the price of the call option on ST/GT first decreases and then

increases with volatility. The vega of this option is zero when σ = 0.67. As

expected, the price of the call option on GT/ST and a put option on ST/GT

always increase with σ. However, the price of the put option on GT/ST first

decreases and then increases with volatility. The vega of this option is zero

when sigma = 0.36.

To summarize the results, both call and put geometric Australian option

prices can increase and decrease with either time to maturity or volatility.

This is clearly seen in Figure 5, that shows option prices as a function of both

variables. The parameter values are: r = 0.1, q = 0.03, n =∞, K = 0.8 for

the call option and K = 1.1 for the put option.

[ Insert Figure 5 about here ]

Finally, Tables 1 and 2 present geometric option prices when n =∞. Note
that the option on Sn/Gn is equivalent to the option on Gn. This happens

because we are taking S0 = 1. We see that option prices for continuous aver-

ages are almost identical to those for discrete averages with 1,000 monitoring

dates. For example, from Table 2 we have that when σ = 0.2, T = 1, K = 1.0
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and n =∞, the put options on Gn, Sn/Gn, and Gn/Sn have values of 2.935,
2.935, and 5.002, respectively, while that when n = 1, 000 those prices are

2.937, 2.933, and 5.000, respectively.

5 Arithmetic Australian Asian Options

We define the discrete arithmetic mean of the n stock prices S1, · · · , Sn as

An =
1

n
(S1 + · · ·+ Sn) = 1

n

nX
i=1

Si, A0 ≡ S0 (23)

The continuous counterpart is given by

AT =
1

T

Z T

0
St dt (24)

As mentioned previously, the distribution of An is unknown. Therefore,

we can not apply Proposition 1 to price options. As described in the following

sections, two ways to overcome this problem are:

• To approximate the true distribution with an alternative one.

• To approximate the distribution of An with that of AT .

5.1 Pricing the Options with the Edgeworth / Wilkin-

son Approximation

To price options, we approximate the risk-neutral distribution of the un-

derlying asset at maturity with a tractable distribution. We perform this

approximation by expanding the true distribution around the approximating

one. This approach is called generalized Edgeworth series expansion. The
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coefficients of this expansion are function of the moments of the true and

approximating distribution. Considering up to four terms in this expansion

and specifying the approximating distribution to be lognormal, we will show

that the (approximate) option price is equal to the Black-Scholes price plus

three adjustment terms. These terms depend, respectively, on the difference

between the variance, skewness, and kurtosis of the true and the lognormal

distribution. The intuition is that the first four moments of the distribution

are enough to reflect the effects of the distribution on option prices.

More concretely, we approximate the true probability distribution, F (s),

with an approximating distribution, A(s). It is assumed that both distri-

butions have continuous density functions, f(s) and a(s). We employ the

following notation:

αj(F ) =
Z ∞

−∞
sjf(s)ds

µj(F ) =
Z ∞

−∞
(s− α1(F ))jf(s)ds

Ψ(F, t) =
Z ∞

−∞
eitsf(s)ds, i =

√−1

where αj(F ) and µj(F ) are, respectively, the j-th non-central and central

moments of F and Ψ(F, t) is the characteristic function of F .13

Following Stuart and Ord (1987), the cumulants kj(F ) of the distribution

F are defined by the identity in t

exp

 ∞X
j=1

kj(F )
tj

j!

 = ∞X
j=0

αj(F )
tj

j!

or, equivalently

lnΨ(F, t) =
∞X
j=1

kj(F )
(it)j

j!
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For practical purposes, we only need the first four cumulants in the Edge-

worth series expansion. These cumulants are, respectively, the mean, the

variance, the coefficient of skewness and the excess of kurtosis:

k1(F ) = α1(F ), k2(F ) = µ2(F )

k3(F ) = µ3(F ), k4(F ) = µ4(F )− 3µ22(F )

Jarrow and Rudd (1982) prove the following series expansion for f(s)

around a(s):

f(s) = a(s) +
k2(F )− k2(A)

2!

d2a(s)

ds2
− k3(F )− k3(A)

3!

d3a(s)

ds3

+
k4(F )− k4(A) + 3(k2(F )− k2(A))2

4!

d4a(s)

ds4
+ ε(s) (25)

where, by construction, k1(F ) is set equal to k1(A).

The difference between f(s) and a(s) depends on the cumulants of both

distributions with weighting factors given by the derivatives of a(s). The

terms on the right-hand side of (25) reflect any difference in variance, skew-

ness and kurtosis and variance between f(s) and a(s). The residual error,

ε(s), includes any remaining difference.

Now, we employ (25) to obtain an approximate option price. Using f(s)

as the true distribution of the asset price at maturity, we obtain the expected

value at maturity of an option on this asset. Then, this expansion provides

an approximated expected value for the option at maturity in terms of the

approximating distribution, a(s).

In a risk-neutral world, the true price of the call option, C(F ), is obtained

by discounting its expected value at the risk-free rate:

C(F ) = e−rT
Z ∞

−∞
max{ST −K, 0} dF (ST )
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Using (25) and a little algebra, this price becomes

C(F ) = C(A) + e−rT
k2(F )− k2(A)

2!
a(K)− e−rT k3(F )− k3(A)

3!

da

dST

¯̄̄̄
¯
K

+e−rT
k4(F )− k4(A) + 3(k2(F )− k2(A))2

4!

d2a

dS2T

¯̄̄̄
¯
K

+ ε(K) (26)

where

C(A) = e−rT
Z ∞

−∞
max{ST −K, 0} dA(ST )

A natural candidate for the approximating distribution is the lognormal

one. In this case, C(A) is equal to the Black-Scholes option price.

Equation (26) shows that the true option price is equal to C(A) plus three

adjustment terms. As before, these terms correct for difference in variance,

skewness and kurtosis and variance between the distributions F and A while

the term ε(K) includes the residual error.

As mentioned in the Introduction, the Wilkinson approximation is a par-

ticular case of the Edgeworth expansion, where just the first two cumulants

are used.

5.2 Pricing the Options with the Gamma Distribution

It is known that the infinite sum of lognormal distributions is a reciprocal

gamma distribution. Using this distribution as state-price density function,

Milevsky and Posner (1998) obtain a closed-form expression for the price of

arithmetic Asians options. The solution is the same as the Black-Scholes

formula where the normal distribution is replaced by the gamma one.

We briefly summarize the main characteristics of the gamma distribution.

Let X be gamma distributed with parameters α and β, that is, X ∼ Γ(α, β).
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Its density function is given by

g(x) =
β−αxα−1 exp

n
−x
β

o
Γ(α)

, x > 0

where Γ(x) is the gamma function, defined as

Γ(x) =
Z ∞

0
tx−1e−tdt

The mean and variance of the gamma distribution are

E(X) = αβ, V (X) = αβ2.

If we define Y = 1
X
, then Y follows a reciprocal gamma distribution. Its

first two non-central moments are

M1 = E(Y ) =
1

β(α− 1)
M2 = E(Y 2) =

1

β2(α− 1)(α− 2)
The variance is given by

V (Y ) =M2 −M2
1 =

1

β2(α− 1)2(α− 2)
It is straightforward to obtain the following relationships:

α =
2M2 −M2

1

M2 −M2
1

, β =
M2 −M2

1

M1M2
(27)

Hence, to price option, we must obtain the first two risk-neutral moments

(M1,M2) of the underlying asset at maturity. Then, we compute α and β

using (27). Finally, we use the cumulative density function of the gamma

distribution as N(.) in the Black-Scholes formula

In the next section, we compute the moments of the arithmetic mean

and the ratios to price options on these assets with the methods previously

described.
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5.3 Computation of Moments

The following Lemma summarizes several properties of the stock price that

will be used later:

Lemma 6 For i, j = 1, 2, · · · , n and k ∈ IR, we have

E(Ski ) = Sk0 exp

(
k

Ã
r − q + k − 1

2
σ2
!
i∆t

)
(28)

E(SiS
k
j ) = E(Si)E(S

k
j ) exp{kσ2min{i, j}∆t} (29)

E(SiSjS
k
n) = E(SiSj)E(S

k
n) exp{kσ2(i+ j)∆t} (30)

Moreover, for k ∈ IR, we have

E(AnS
k
n) =

S0
n
E(Skn) h1(r

∗) (31)

E(A2nS
k
n) =

µ
S0
n

¶2
E(Skn)[2f1(r

∗ + σ2)(h1(2r∗ + σ2)− h1(r∗))− h1(2r∗ + σ2)]
(32)

where

h1(x) =
nX
i=1

exi∆t = f1(x)
³
exn∆t − 1

´
, x 6= 0, h1(0) = n (33)

f1(x) =
ex∆t

ex∆t − 1 , x 6= 0 (34)

r∗ = r − q + kσ2 (35)

Proof: See Appendix.

The following Lemma gives the moments of An, Sn/An and An/Sn:
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Lemma 7

1. The moments of the variable An are given by

E(An) =
S0
n
h1(r − q) (36)

Cov(An, Sn) =
S0
n
E(Sn)[h1(r − q + σ2)− h1(r − q)] (37)

V (An) =
µ
S0
n

¶2
[2f1(r − q + σ2)(h1(2(r − q) + σ2)− h1(r − q))

−h1(2(r − q) + σ2)− (h1(r − q))2] (38)

2. The moments of the variable Sn/An, n ≥ 2 can be approximated by

E
µ
Sn
An

¶
' E(Sn)

E(An)
− 1

(E(An))2
Cov(An, Sn) +

E(Sn)

(E(An))3
V (An)

V
µ
Sn
An

¶
'

Ã
E(Sn)

E(An)

!2 Ã
V (Sn)

(E(Sn))2
+

V (An)

(E(An))2
− 2 Cov(An, Sn)

E(Sn)E(An)

!

with E(An),Cov(An, Sn) and V (An) as given by (36)-(38).

3. The moments of the variable An/Sn, n ≥ 2 are given by

E
µ
An
Sn

¶
=

1

n
exp{−n(r − q − σ2)∆t} h1(r − q − σ2) (39)

V
µ
An
Sn

¶
=

µ
1

n

¶2
exp{−n(2(r − q)− 3σ2)∆t}

×[2f1(r − q − σ2)(h1(2(r − q)− 3σ2)− h1(r − q − 2σ2))
−h1(2(r − q)− 3σ2)− exp{−nσ2∆t}h21(r − q − σ2)](40)

with h1(.) and f1(.) as given by (33) and (34), respectively.

Proof: See Appendix.
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Remark 1 Several particular cases can be highlighted:

1. If r = q − σ2, the moments of the variable An are given by

E(An) =
S0
n
h1(−σ2)

Cov(An, Sn) =
S0
n
E(Sn)(n− h1(−σ2))

V (An) = 2
µ
S0
n

¶2
f1(σ

2)e−(n+1)σ
2∆t

nX
i=1

³
cosh(σ2i∆t)− 1

´

2. If r = q + σ2, the moments of the variable An/Sn, n ≥ 2 are given by

E
µ
An
Sn

¶
= 1

V
µ
An
Sn

¶
=

µ
1

n

¶2 h
(2f1(σ

2)− 1)
³
e−σ

2∆th1(σ
2)− n

´
− n(n− 1)

i

Proof: See Appendix.

The following Lemma gives the moments of AT , ST/AT and AT/ST :

Lemma 8 For k ∈ IR, we have

E(ATS
k
T ) =

S0
T
E(SkT )Φ(r

∗) (41)

E(A2TS
k
T ) = 2

µ
S0
T

¶2
E(SkT )

Φ(2r∗ + σ2)− Φ(r∗)
r∗ + σ2

(42)

with

Φ(x) =
exp{xT}− 1

x
, x 6= 0, Φ(0) = T (43)

and r∗ as given by (35).

Proof: See Appendix.
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Lemma 9

1. The moments of the variable AT are given by

E(AT ) =
S0
T
Φ(r − q) (44)

Cov(AT , ST ) =
S0
T
E(ST )[Φ(r − q + σ2)− Φ(r − q)] (45)

V (AT ) =
µ
S0
T

¶2 "
2
Φ(2(r − q) + σ2)− Φ(r − q)

r − q + σ2 − (Φ(r − q))2
#

(46)

2. The moments of the variable ST/AT can be approximated by

E
µ
ST
AT

¶
' E(ST )

E(AT )
− 1

(E(AT ))2
Cov(AT , ST ) +

E(ST )

(E(AT ))3
V (AT )

V
µ
ST
AT

¶
'

Ã
E(ST )

E(AT )

!2 Ã
V (ST )

(E(ST ))2
+

V (AT )

(E(AT ))2
− 2 Cov(AT , ST )

E(ST )E(AT )

!

with E(AT ),Cov(AT , ST ) and V (AT ) as given by (44)-(46).

3. The moments of the variable AT/ST are given by

E
µ
AT
ST

¶
=

1

T
Φ(σ2 − (r − q)) (47)

V
µ
AT
ST

¶
=

µ
1

T

¶2
exp{−(2(r − q)− 3σ2)T}

×
"
2
Φ(2(r − q)− 3σ2)− Φ(r − q − 2σ2)

r − q − σ2
− exp{−σ2T}Φ2(r − q − σ2)

i
(48)

Proof: See Appendix.
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Remark 2 Several particular cases can be highlighted:

1. If r = q − σ2, the moments of the variable AT are given by

E(AT ) =
S0
T
Φ(−σ2)

Cov(AT , ST ) =
S0
T
E(ST )[T − Φ(−σ2)]

V (AT ) = 2
µ
S0
T

¶2 e−σ2T

σ4
(sinh(σ2T )− σ2T )

2. If r = q + σ2, the moments of the variable AT/ST are given by

E
µ
AT
ST

¶
= 1

V
µ
AT
ST

¶
=

µ
1

T

¶2 "
2
Φ(σ2)− T

σ2
− T 2

#

with Φ(.) as given by (43).

Proof: See Appendix.

Tables 3 and 4 show arithmetic call and put option prices (multiplied by

100) for different monitoring dates. The interest rate is 10 % and the stock

dividend yield is 3 %. We price options on An, Sn/An and An/Sn with three

methods: Monte Carlo simulation,14 Wilkinson approximation, and gamma

distribution.

[ Insert Tables 3 and 4 about here ]

In the tables, we see that derivative prices with the three methods are very

close. For example, in Table 3 we have that when σ = 0.20, T = 0.5, K = 0.8,

and n = 1, 000, the values of call options on An/Sn are 18.319, 18.324, and

18.321, respectively. Thus, Edgeworth expansions do not seem to be needed.
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To price options on Sn/An with both the Wilkinson approximation and

the gamma distribution, we have computed its moments using the approx-

imation of Mood et al (1974). In the tables we see that those prices are

very similar to the ones obtained with Monte Carlo, so that the approxima-

tions seem to work pretty well. For example, in Table 3 we see that when

σ = 0.2, T = 0.5, K = 0.8, and n = 1, 000, the values of call options using the

Wilkinson approximation and the gamma distribution are 20.375 and 20.374,

respectively, while the value obtained with Monte Carlo simulation is 20.377.

When the average is computed in continuous time (number of monitoring

dates = ∞) we cannot use Monte Carlo simulation. However, as mentioned
before, using 1,000 monitoring dates produces option prices very similar to

those using continuous average. In Table 4 we see that the values of put

options on Sn/An using the Wilkinson approximation and the gamma distri-

bution are 8.863 and 8.887, respectively, for both 1,000 and ∞ monitoring

dates.

To understand better why the three method produce very similar results,

we plot the risk-neutral probability density function of the arithmetic stock

price average in Figure 6.

[ Insert Figure 6 about here ]

The parameter values are: r = 0.1, q = 0, σ = 0.2, T = 1, S0 = 100 and

n =∞. The expected value of the average price is 105.17, and the variance
152.74. For n = ∞ the true density function is reciprocal gamma, with

parameters α = 74.42 and β = 1.29E-4. This function is approximated with

a lognormal distribution with the same moments. The density function is
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also estimated with Monte Carlo simulation, using a set of 50 runs of 10,000

paths with 1,000 time steps. We see that, for the parameter values used,

the density functions are remarkably similar, hence the price of options on

arithmetic stock prices must be close.

6 Conclusions

Australian Asian options are options on the ratio of the stock price to its

average or viceversa. They show up in variable purchase options, recently

studied by Handley (2000).

If the stock price follows a geometric Brownian motion and the average

is defined on geometric basis, these ratios also follow a geometric Brownian

motion. Thus, we are able to obtain closed-form expressions for the price of

the options. However, when the average is defined on arithmetic basis, the

risk-neutral distributions of these ratios at maturity are unknown. Hence, to

price the options we use a particular case of Edgeworth expansion (known

as Wilkinson approximation) as well as a gamma approximation (following

Milevsky and Posner (1998)). We compare the results with those obtained

with Monte Carlo simulations, and we find that option prices are very similar

in the three cases.
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Appendix

Proof of Lemma 1

1. For proving expressions (2)-(3), see Johnson and Kotz (1970), p. 115.

As X−1 = e−Y , application of (2)-(3) gives

E(X−1) = exp
½
−m+ 1

2
s2
¾
= e−2mE(X)

V (X−1) = [E(X−1)]2
h
es

2 − 1
i

2. Consider the variable

X̃ =

 X if X ≥ K
0 if X < K

, K ∈ IR+

Using (1), the expectation of this variable is

E(X̃) =
Z ∞

K

1

s
√
2π
exp

−12
Ã
lnx−m

s

!2 dx
Defining the variable

y =
lnx−m

s
,

a little algebra leads to

E(X̃) = E(X)N(s−D)

where N(.) denotes the distribution function of a standard normal vari-

able and D = lnK−m
s

.
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Proof of Lemma 3

The expressions for the mean and variance follow from straightforward

application of (2)-(3) in Lemma 1 to St as given by (12).

To obtain Cov(Zt, Zs), we assume s < t. We first compute E(ZtZs):

E(ZtZs) = Z20E
µ
exp

½µ
αZ − 1

2
σ2Z

¶
(t+ s) + σZ(Wt +Ws)

¾¶
= Z20 exp

½µ
αZ − 1

2
σ2Z

¶
(t+ s) +

1

2
σ2ZV (Wt +Ws)

¾
= Z20 exp

½µ
αZ − 1

2
σ2Z

¶
(t+ s) +

1

2
σ2Z(t+ s + 2s)

¾
= Z20 exp{αZ(t+ s) + σ2Zs}

where we have used (2) in Lemma 1. Then,

Cov(Zt, Zs) = E(ZtZs)− E(Zt)E(Zs) = Z20eαZ(t+s)+σ
2
Zs −

³
Z0e

αZ t
´
(Z0e

αZs)

= Z20e
αZ(t+s)

h
eσ

2
Zs − 1

i
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Proof of Proposition 1

We split the option payoff in two components:

1. The “contingent exercise payment”, a claim with payoff

C1(Z, T, T.K) = −K I{ZT≥K} =

 −K if ZT ≥ K
0 if ZT < K

2. The “contingent receipt of the stock”, a claim with payoff

C2(Z, T, T,K) = ZT I{ZT≥K} =

 ZT if ZT ≥ K
0 if ZT < K

We will compute the two components of the option:

C1(Z, 0, T,K) = E
h
e−rTC1(Z, T, T,K) | Ft

i
= −Ke−rT P (ZT ≥ K)(49)

C2(Z, 0, T,K) = E
h
e−rTC2(Z, T, T,K) | Ft

i
= e−rT E[ZT | ZT ≥ K]

(50)

Equation (8) implies

ln
³
e−αZTE(ZT )/ZT

´
+
³
αZ − 1

2
σ2Z
´
T

σZ
√
T

∼ N(0, 1)

and, then, it is verified that

P (ZT ≥ K) = N(d2) (51)

where

d2 =
ln(e−αZTE(ZT )/K) +

³
αZ − 1

2
σ2Z
´
T

σZ
√
T
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Part 2 in Lemma 1 and a little algebra leads to

E[ZT | ZT ≥ K] = E(ZT )N(d1) (52)

where d1 = d2 + σZ
√
T .

Including (51)-(52) into (49)-(50), we obtain the final expression for the

option price.
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Proof of Lemma 4

For n ≥ 2, we have

V

Ã
nX
i=1

Wti

!
= V

Ã
n−1X
i=1

Wti +Wtn

!

= V

Ã
n−1X
i=1

Wti

!
+ tn + 2

n−1X
i=1

Cov(Wti,Wtn)

= V

Ã
n−1X
i=1

Wti

!
+ n∆t+ 2

n−1X
i=1

i∆t

= V

Ã
n−1X
i=1

Wti

!
+ n2∆t

By induction, we get

V

Ã
nX
i=1

Wti

!
=

nX
i=1

i2 ∆t =
(n+ 1)

³
n+ 1

2

´
n

3
∆t

V

Ã
n Wtn −

nX
i=1

Wti

!

= V (n Wtn) + V

Ã
nX
i=1

Wti

!
− 2Cov

Ã
n Wtn,

nX
i=1

Wti

!

= n2V (Wtn) +
(n+ 1)

³
n+ 1

2

´
n

3
∆t− 2n

nX
i=1

Cov (Wtn ,Wti)

= n2tn +
(n+ 1)

³
n+ 1

2

´
n

3
∆t− 2n

nX
i=1

ti

=

n2 + (n+ 1)
³
n+ 1

2

´
3

− 2
nX
i=1

i

n∆t
=

(n− 1)
³
n− 1

2

´
n

3
∆t
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Proof of Proposition 2

These formulae are consequence of Proposition 1 and the moments of Zn

that we get now:

• Departing from (13) and applying (2)-(3) in Lemma 1 and Lemma 4,

we obtain the moments of Gn.

• The same procedure applied to (14) provides the moments of Sn/Gn.

• Comparing (14) and (15) and applying (4)-(5) in Lemma 1, we obtain
the moments of Gn/Sn.
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Proof of Lemma 5
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Proof of Proposition 3

These formulae are consequence of Proposition 1 and the moments of ZT

that we obtain now:

• Departing from (16) and applying (2)-(3) in Lemma 1 and Lemma 5,

we obtain the moments of GT .

• The same procedure applied to (17) provides the moments of ST/GT .

• Comparing (17) and (18) and applying (4)-(5) in Lemma 1, we obtain
the moments of GT/ST .
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Proof of Lemma 6

Using (12) and a little algebra, we have, for a, b, k ∈ IR,

E(Sai S
b
jS

k
n)

= Sa+b+k0 E
µ
exp

½µ
r − q − 1

2
σ2
¶
(ati + btj + ktn) + σ(aWti + bWtj + kWtn)

¾¶
= Sa0 exp

½µ
r − q + a− 1

2
σ2
¶
ai∆t

¾
Sb0 exp

(Ã
r − q + b− 1

2
σ2
!
bj∆t

)

×Sk0 exp
(Ã
r − q + k − 1

2
σ2
!
kn∆t

)
exp{abσ2min{i, j}∆t}

× exp{kσ2(ai+ bj)∆t} (53)

Several particular cases are the following:

b = k = 0 ⇒ E(Sai ) = S
a
0 exp

½µ
r − q + a− 1

2
σ2
¶
ai∆t

¾
a = k = 0 ⇒ E(Sbj) = S

b
0 exp

(Ã
r − q + b− 1

2
σ2
!
bj∆t

)

a = b = 0 ⇒ E(Skn) = S
k
0 exp

(Ã
r − q + k − 1

2
σ2
!
kn∆t

)

Plugging these expressions into (53), we get

E(Sai S
b
jS

k
n) = E(S

a
i )E(S

b
j)E(S

k
n) exp{abσ2min{i, j}∆t} exp{kσ2(ai+ bj)∆t}

For k = 0, we get

E(Sai S
b
j) = E(S

a
i )E(S

b
j) exp{abσ2min{i, j}∆t} (54)

and, then,

E(Sai S
b
jS

k
n) = E(S

a
i S

b
j)E(S

k
n) exp{kσ2(ai+ bj)∆t} (55)

Using (54) with a = 1, b = k and (55) with a = b = 1, we obtain E(SiS
k
j )

and E(SiSjS
k
n), respectively.
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• Mean of AnSkn

E(AnS
k
n) = E

Ã
1

n

nX
i=1

SiS
k
n

!
=
1

n

nX
i=1

E(SiS
k
n)

Using (29) with j = n, we have

E(AnS
k
n) =

1

n

nX
i=1

E(Si)E(S
k
n)e

kσ2i∆t =
1

n
E(Skn)

nX
i=1

S0e
(r−q+kσ2)i∆t

=
S0
n
E(Skn) h1(r

∗)

with h1(.) as given by (33) and r
∗ = r − q + kσ2.

• Mean of A2nSkn

E(A2nS
k
n) = E

Ã 1
n

nX
i=1

Si

!2
Skn


=

µ
1

n

¶2
E
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SiSjS
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n
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1

n

¶2 nX
i,j=1

E(SiSjS
k
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µ
1

n
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nX
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E(SiSj)e
kσ2(i+j)∆t (56)

where the last equation results from (30).

We define

z∗n =
nX

i,j=1

E(SiSj)e
kσ2(i+j)∆t

Then, we have

z∗n =
n−1X
i,j=1

E(SiSj)e
kσ2(i+j)∆t + 2

nX
i=1

E(SiSn)e
kσ2(i+n)∆t − E(SnSn)e2kσ2n∆t
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nX
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After some algebra, we get the recurrence law

z∗n = z
∗
n−1 + S

2
0

h
2f1(r

∗ + σ2)
³
e(2r

∗+σ2)n∆t − er∗n∆t
´
− e(2r∗+σ2)n∆t

i
(57)

If we compute z∗1 either by its definition or using (57) and compare

both results, we obtain z∗0 = 0.

Using (57) for different values of n, we obtain

z∗n = S
2
0

h
2f1(r

∗ + σ2)(h1(2r∗ + σ2)− h1(r∗))− h1(2r∗ + σ2)
i

Plugging this expression into (56), we have

E(A2nS
k
n) =

µ
S0
n

¶2
E(Skn)[2f1(r

∗+σ2)(h1(2r∗+σ2)−h1(r∗))−h1(2r∗+σ2)]
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Proof of Lemma 7

1. Moments of the arithmetic average An

(a) Mean of An:

Apply (31) with k = 0.

(b) Covariance of An with Sn:

Apply (31) for k = 1 and (36).

(c) Variance of An:

Apply (32) for k = 0 and (36).

2. Moments of the variable Sn/An:

Apply part 2 in Lemma 2 with X = Sn, Y = An.

3. Moments of the variable An/Sn

(a) Mean of An/Sn:

Apply (28) for i = n, k = −1 and (31) for k = −1.

(b) Variance of An/Sn:

Apply (28) for i = n, k = −2, (32) for k = −2 and (39).
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Proof of Remark 1

1. Replace r = q − σ2 into (36)-(37) to obtain E(An) and Cov(An, Sn).
To compute V (An), we will need the following relationships, satisfied

by the functions h1(.) and f1(.) (see (33)-(34)):

h1(−a) = exp{−(n+ 1)a∆t}h1(a) (58)

f1(−a) = − exp{−a∆t}f1(a) (59)

1 + h1(a) = f1(−a)
h
1− e(n+1)a∆t

i
(60)

f1(b) = exp{(b− a)∆t}e
a∆t − 1
eb∆t − 1f1(a) (61)

Looking at (38), we need to compute

f1(r − q + σ2)[h1(2(r − q) + σ2)− h1(r − q)]

Defining x = r − q + σ2 and using (61), this expression becomes

f1(x)f1(x−σ2)
"
ex∆t

e(x−σ
2)∆t − 1

e(2x−σ2)∆t − 1
³
e(2x−σ

2)n∆t − 1
´
−
³
e(2x−σ

2)∆t − 1
´#

Taking limits when x → 0 and applying (59) and some algebra, we

obtain

f1(σ
2)
h
h1(−σ2)− ne−(n+1)σ2∆t

i
Replacing this result into (38) and using (58) and (60), we obtain

V (An) =
µ
S0
n

¶2
f1(σ

2)e−(n+1)σ
2∆t[h1(σ

2)− 2n+ h1(−σ2)]

It can be seen that, as expected, this variance is positive since

h1(σ
2)− 2n+ h1(−σ2) = 2

nX
i=1

³
cosh(σ2i∆t)− 1

´
> 0
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2. Replace r = q + σ2 into (39) and use h1(0) = n to obtain E(An/Sn).

To compute V (An/Sn), looking at (40), we need to compute

f1(r − q − σ2)[h1(2(r − q)− 3σ2)− h1(r − q − 2σ2)]

Defining x = r − q − σ2 and applying the same procedure as in part 2
of this remark, this expression becomes

f1(σ
2)
h
h1(−σ2)− ne−(n+1)σ2∆t

i
Replacing this result into (40) and using (58), we obtain

V
µ
An
Sn

¶
=
µ
1

n

¶2 h
(2f1(σ

2)− 1)
³
e−σ

2∆th1(σ
2)− n

´
− n(n− 1)

i
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Proof of Lemma 8

• Mean of ATSkT

E(ATS
k
T ) = E

Ã
1

T

Z T

0
St dt S

k
T

!
=
1

T

Z T

0
E(StS

k
T ) dt

Using (29) with j = n, we have

E(ATS
k
T ) =

1

T

Z T

0
E(St)E(S

k
T ) exp{kσ2t} dt

=
1

T
E(SkT )

Z T

0
S0 exp{(r − q)t} exp{kσ2t} dt

=
S0
T
E(SkT )Φ(r

∗)

with Φ(.) as given by (43) and r∗ = r − q + kσ2.

• Mean of A2TSkT
Use (24) and apply (29)-(30).
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Proof of Lemma 9

1. Moments of the arithmetic average AT

(a) Mean of AT :

Apply (41) with k = 0.

(b) Covariance of AT with ST :

Apply (41) for k = 1 and (44).

(c) Variance of AT :

Apply (42) for k = 0 and (44).

2. Moments of the variable ST/AT

Apply part 2 in Lemma 2 with X = ST , Y = AT .

3. Moments of the variable AT/ST

(a) Mean of AT/ST

Apply (28) for i = n, k = −1 and (41) for k = −1.

(b) Variance of AT/ST

Apply (28) for i = n, k = −2, (42) for k = −2 and (47).
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Proof of Remark 2

1. Replace r = q − σ2 into (44)-(45) to obtain E(AT ) and Cov(AT , ST ).

To compute V (AT ), looking at (46), we need to compute

lim
r→q−σ2

Φ(2(r − q) + σ2)− Φ(r − q)
r − q + σ2

that is easily computed applying the L’Hôpital’s rule. Plugging this re-

sult into (46) and using the relationship Φ(−x) = e−xTΦ(x), we obtain

V (AT ) =
µ
S0
T

¶2 e−σ2T

σ2
[Φ(σ2)− 2T + Φ(−σ2)]

It can be seen that, as expected, this variance is positive since

Φ(σ2)− 2T + Φ(−σ2) = 2

σ2
[sinh(σ2T )− σ2T ] > 0

2. Replace r = q + σ2 into (47) and use Φ(0) = T to obtain E(AT/ST ).

To compute V (AT/ST ), looking at (48), we need to compute

lim
r→q+σ2

Φ(2(r − q)− 3σ2)− Φ(r − q − 2σ2)
r − q − σ2

Applying the L’Hôpital’s rule and plugging the result into (48), we

obtain

V
µ
AT
ST

¶
=
µ
1

T

¶2 "
2
Φ(σ2)− T

σ2
− T 2

#
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Footnotes

1. For several examples in the real life, see Bouaziz et al (1994) and Vorst (1996).

2. This is one of the main assumptions in the Black-Scholes model. See Armata (2001)

or Dinenis et al (2001) for valuation of Asian options outside the Black-Scholes

framework.

3. As will be indicated later, the distribution of the continuous-time average is known,

allowing us to obtain exact analytical expressions for option prices.

4. It may be worth noting that if these variables were perfectly correlated, then the

average would be lognormal. Alternatively, if these variables are i.i.d., applying the

central limit theorem, the distribution of the average would converge to the normal

one.

5. Other examples are Dewynne andWilmott (1995a, 1995b), He and Takahashi (1995-

96), Zvan et al (1998) or Shreve and Vec̃er (2000).

6. See also Haykov (1993), Corwin et al (1996) and Nielsen and Sandmann (1996).

7. See, for example, Levy (1992), Hansen and Jorgensen (2000) and Dinenis et al

(2001).

8. Merton (1975) and Majumdar and Radner (1991) are examples of papers in the

economic literature that deal with the gamma distribution.

9. For completeness, this table includes the geometric average.

10. Recall that these prices have been multiplied by 100.

11. For completeness, this table includes the stock price and its geometric average.

The formula for the geometric Asian option was first derived by Kemna and Vorst

(1990).

12. It can be shown that for σ large enough (σ >
p
6/5
p
2T ln(S0) + 3(r − q)), this

expected value is higher than E(ST ).

13. Analogous notation is employed for the approximating distribution A.

14. We use 10,000 simulations and antithetic variables to reduce standard errors.
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Table 1. Geometric Call option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 0.8 Sn 22.576 22.576 22.576 22.576 22.576

Gn 22.576 20.696 20.561 20.548 20.546

Sn/Gn 19.025 20.400 20.531 20.545 20.546

Gn/Sn 19.025 18.133 18.161 18.166 18.166

20 1 0.8 Sn 25.187 25.187 25.187 25.187 25.187

Gn 25.187 21.361 21.084 21.056 21.053

Sn/Gn 18.097 20.756 21.023 21.050 21.053

Gn/Sn 18.097 16.491 16.580 16.593 16.594

40 0.5 0.8 Sn 24.801 24.801 24.801 24.801 24.801

Gn 24.801 20.766 20.558 20.538 20.536

Sn/Gn 19.025 20.332 20.514 20.534 20.536

Gn/Sn 19.025 20.266 20.908 20.979 20.987

20 0.5 1.1 Sn 3.175 3.175 3.175 3.175 3.175

Gn 3.175 0.905 0.737 0.721 0.719

Sn/Gn 0 0.549 0.701 0.717 0.719

Gn/Sn 0 0.282 0.374 0.384 0.385

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on Sn and Gn we take S0 = 1. For options on Gn, derivative

prices can be computed with the Merton’s (1973) formula when n = 1, and

with the Kemna and Vorst’s (1990) formula when n =∞.
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Table 2. Geometric Put option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 1.0 Sn 3.930 3.930 3.930 3.930 3.930

Gn 3.930 2.591 2.439 2.423 2.422

Sn/Gn 0 2.250 2.405 2.420 2.422

Gn/Sn 0 3.321 3.516 3.535 3.537

20 1 1.0 Sn 4.639 4.639 4.639 4.639 4.639

Gn 4.639 3.135 2.955 2.937 2.935

Sn/Gn 0 2.732 2.915 2.933 2.935

Gn/Sn 0 4.724 4.976 5.000 5.002

40 0.5 1.0 Sn 9.277 9.277 9.277 9.277 9.277

Gn 9.277 6.149 5.763 5.724 5.719

Sn/Gn 0 5.283 5.676 5.715 5.719

Gn/Sn 0 5.314 5.493 5.508 5.510

20 0.5 1.1 Sn 9.300 9.300 9.300 9.300 9.300

Gn 9.300 8.753 8.712 8.714 8.713

Sn/Gn 9.512 8.688 8.710 8.713 8.713

Gn/Sn 9.512 10.691 10.759 10.765 10.766

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on Sn and Gn we take S0 = 1. For options on Gn, derivative

prices can be computed with the Merton’s (1973) formula when n = 1, and

with the Kemna and Vorst’s (1990) formula when n =∞.
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Table 3. Arithmetic Call option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 0.8 An MC 22.551 20.737 20.731 20.723 -

An W 22.576 20.885 20.729 20.714 20.712

An GD 22.535 20.883 20.728 20.711 20.711

Sn/An MC 19.025 20.329 20.381 20.377 -

Sn/An W 19.025 20.209 20.360 20.375 20.377

Sn/An GD 19.025 20.208 20.358 20.374 20.375

An/Sn MC 19.025 18.332 18.317 18.319 -

An/Sn W 19.025 18.389 18.330 18.324 18.324

An/Sn GD 19.025 18.388 18.327 18.321 18.321

20 1 0.8 An MC 25.089 21.431 21.366 21.387 -

An W 25.187 21.736 21.418 21.387 21.384

An GD 25.059 21.716 21.404 21.373 21.370

Sn/An MC 18.097 20.642 20.730 20.766 -

Sn/An W 18.097 20.376 20.682 20.713 20.717

Sn/An GD 18.097 20.366 20.667 20.698 20.701

An/Sn MC 18.097 16.841 16.884 16.899 -

An/Sn W 18.097 16.964 16.887 16.880 16.883

An/Sn GD 18.097 16.947 16.862 16.855 16.857

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 3. Arithmetic Call option prices (cont.).

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
40 0.5 0.8 An MC 24.687 21.141 21.111 21.206 -

An W 24.801 21.468 21.188 21.161 21.158

An GD 24.400 21.358 21.099 21.074 21.071

Sn/An MC 19.025 19.853 20.011 19.987 -

Sn/An W 19.025 19.641 19.918 19.947 19.951

Sn/An GD 19.025 19.562 19.819 19.846 19.849

An/Sn MC 19.025 21.432 21.620 21.535 -

An/Sn W 19.025 21.276 21.569 21.599 21.620

An/Sn GD 19.025 21.213 21.489 21.517 21.535

20 0.5 1.1 An MC 3.141 0.802 0.756 0.757 -

An W 3.176 0.933 0.778 0.761 0.759

An GD 3.198 0.980 0.802 0.785 0.782

Sn/An MC 0 0.593 0.612 0.682 -

Sn/An W 0 0.528 0.681 0.698 0.699

Sn/An GD 0 0.549 0.705 0.721 0.722

An/Sn MC 0 0.389 0.404 0.413 -

An/Sn W 0 0.302 0.387 0.396 0.401

An/Sn GD 0 0.320 0.409 0.419 0.424

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 4. Arithmetic Put option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 1.0 An MC 3.930 2.331 2.417 2.387 -

An W 3.930 2.530 2.387 2.372 2.371

An GD 3.868 2.511 2.371 2.357 2.356

Sn/An MC 0 2.365 2.477 2.512 -

Sn/An W 0 2.342 2.490 2.505 2.506

Sn/An GD 0 2.330 2.475 2.491 2.494

An/Sn MC 0 3.328 3.440 3.408 -

An/Sn W 0 3.176 3.417 3.440 3.451

An/Sn GD 0 3.175 3.415 3.440 3.449

20 1 1.0 An MC 4.639 2.821 2.771 2.872 -

An W 4.639 3.038 2.875 2.859 2.857

An GD 4.479 2.991 2.834 2.819 2.817

Sn/An MC 0 3.043 2.994 3.055 -

Sn/An W 0 2.913 3.086 3.103 3.105

Sn/An GD 0 2.884 3.051 3.068 3.069

An/Sn MC 0 4.736 4.854 4.817 -

An/Sn W 0 4.436 4.775 4.809 4.833

An/Sn GD 0 4.433 4.770 4.803 4.827

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 4. Arithmetic Put option prices (cont.).

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
40 0.5 1.0 An MC 9.277 5.465 5.402 5.554 -

An W 9.277 5.874 5.525 5.490 5.487

An GD 8.971 5.792 5.457 5.423 5.419

Sn/An MC 0 5.855 6.000 5.988 -

Sn/An W 0 5.837 6.202 6.238 6.242

Sn/An GD 0 5.794 6.147 6.182 6.186

An/Sn MC 0 5.078 5.202 5.201 -

An/Sn W 0 4.880 5.193 5.224 5.290

An/Sn GD 0 4.822 5.124 5.154 5.217

20 0.5 1.1 An MC 9.300 8.571 8.581 8.576 -

An W 9.300 8.613 8.589 8.588 8.588

An GD 9.322 8.639 8.613 8.611 8.611

Sn/An MC 9.512 8.838 8.827 8.829 -

Sn/An W 9.512 8.858 8.862 8.863 8.863

Sn/An GD 9.512 8.879 8.886 8.887 8.887

An/Sn MC 9.512 10.586 10.626 10.617 -

An/Sn W 9.512 10.453 10.603 10.618 10.623

An/Sn GD 9.512 10.472 10.625 10.640 10.646

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Figure 1: Plot of the logarithmic variance (σ2ZT ) as function of n.

The parameter values are σ = 0.2 and T = 1. The figure depicts the loga-

rithmic variance of the stock price (dotted line), Gn (dashed line), GT (solid

line), Sn/Gn (dotted-dashed line), and Gn/Sn. These values are given by the

following table:

Zn σ2ZT

Sn σ2T

Gn
(n+1)(n+ 1

2)
3n2 σ2T

Sn/Gn
(n−1)(n− 1

2)
3n2 σ2T

Gn/Sn
(n−1)(n− 1

2)
3n2 σ2T
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Figure 2: Plot of the expected value E(ZT ) as function of σ
2. The

parameter values are r = 10%, q = 3%, σ = 0.2 and T = 1. We assume

S0 = 1.2. The figure depicts the expected values of the stock price (dotted

line), GT (dashed line), ST/GT (dotted-dashed line), and GT/ST (solid line).

These values are given by the following table:

ZT E(ZT )

ST S0 exp{(r − q)T}
GT S0 exp

n
1
2

³
r − q − 1

6
σ2
´
T
o

ST/GT exp
n
1
2

³
r − q − 1

6
σ2
´
T
o

GT/ST exp
n
−1
2

³
r − q − 5

6
σ2
´
T
o
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Figure 3: Geometric Australian option prices as a function of time

to maturity. The exercise price is K = 0.8 for calls and K = 1.2 for puts.

The other parameter values are: r = 0.1, q = 0.03, σ = 0.2, and n =∞.
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Figure 4: Geometric Australian option prices as a function of volatil-

ity (σ). The exercise price is K = 0.8 for calls and K = 1.1 for puts. The

other parameter values are: r = 0.1, q = 0.03, T = 0.1, and n =∞.
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Figure 5: Geometric Australian option prices as a function of time

to maturity and volatility (σ). The exercise price is K = 0.8 for the

call option and K = 1.1 for the put option. The other parameter values are:

r = 0.1, q = 0.03, and n =∞.
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Figure 6: Risk-neutral probability density function of the arith-

metic stock price average at maturity. The parameter values are:

r = 0.1, q = 0, σ = 0.2, T = 1, S0 = 100 and n = ∞. The expected
value of the average price is 105.17, and the variance 152.74. For n =∞ the

true density function is reciprocal gamma, with parameters α = 74.42 and

β = 1.29E-4. This function is approximated with a lognormal distribution

with the same moments. The density function is also estimated with Monte

Carlo simulation, using a set of 50 runs of 10,000 paths with 1,000 time steps.

68


