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Abstract 
 

This paper compares five small area estimators. We use Monte Carlo 
simulation in the context of both  artificial and real populations.  In addition 
to the direct and indirect estimators, we consider the optimal composite 
estimator with population weights, and two composite estimators with 
estimated weights: one that assumes homogeneity of within area variance and 
squared bias and one that uses area-specific estimates of variance and 
squared bias.    In the study with real population, we found that among the 
feasible estimators, the best choice is the one that uses area-specific estimates 
of variance and squared bias.    
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1 Introduction 
 
Official statistics is faced with the need to generate estimates for small administrative 
units; while working with relatively small samples and within stringent budgetary limit.  
This conflict has been accentuated in recent years:  on the one hand, politics is 
becoming more and more local, necessitating better local information; on the other 
hand, the public service nature of official statistics makes it more and more clear that 
producing quality work in this sphere involves not only optimising some theoretical 
parameters but also applying appropriate methodological strategies to achieve a 
positive cost/benefit relationship for society.  Within this context, the vital nature and 
relevance that small area statistics have had in the 1990s is understandable, as is the 
interest generated by official regional statistics. 
 
There is a varied methodology on developing small area estimators.  The reader can 
consult Platek, Rao, Särndal and Singh (1987), Isaki (1990), Ghosh and Rao (1994), 
and Singh, Gambino and Mantel (1994) to gain an overview of them.  An initial 
classification divides the different existing methods into two categories: traditional and 
model-based.  Traditional models include direct and indirect estimators and their 
combinations.  Traditional direct estimators use only data from the small area being 
examined.  Usually they are unbiased, but their exhibit a high degree of variation. 
Traditional indirect and model-based estimators are more precise since they also use 
observations from related or neighbouring areas.  Indirect estimators are obtained 
through unbiased large area estimators.  Based on them, it is possible to derive 
estimators for smaller areas under the assumption that they exhibit the same structure 
(with regard to the phenomenon being studied) as the initial large area.  If this condition 
is not met, biased estimators could result.  Traditional composite estimators are linear 
combinations of direct and indirect estimators.  Model-based estimators can be 
interpreted as composite estimators, but unlike the traditional estimators, the weighting 
factors depend on the structure of the estimator’s co-variances.  More information on 
this topic can be obtained from  Cressie (1995), Datta et al. (1999), Farrell, MacGibbon 
and Tomberlin (1997), Ghosh and Rao (1994), Pfeffermann and Barnard (1991), 
Raghunathan (1993), Singh, Mantel and Thomas (1994), Singh, Stukel and 
Pfeffermann (1998), and Thomas, Longford and Rolph (1994). 
 
In a previous study (see Costa, Satorra and Ventura, 2002), we began to examine these 
improved estimators, starting with a scenario in which we have two estimators, neither 
of which is entirely satisfactory: 

� a direct estimator, obtained through the sample data pertaining to the small 
area; unbiased but in general not very precise. 

� an indirect (synthetic) estimator, obtained through auxiliary information from 
other areas, periods or statistical sources; with smaller variance but generally 
biased. 

 
Statistical theory of small area estimation proposes a way of combining both estimators 
in a linear fashion so that the resulting estimator represents a compromise between the 
absence of bias and minimal variance.  The resulting composite estimator is the linear 
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combination of the direct and indirect estimator that minimises mean squared error 
(MSE). 
 
In our previous study, in which the autonomous regions in Spain are the small areas, the 
following results were obtained: 1) When the small area is centred and quite large (such 
as Catalonia), the composite estimator is as efficient as the indirect (or synthetic) one, 
in that it has a very low bias; 2) The composite estimator works well in general, 
especially in medium-sized and large areas.  In our previous work, we wished to study 
in more detail the behaviour of composite estimates, but the information with which we 
were working, the National Statistical Institute (INE)’s Survey of the Active Population 
(EPA), is a complex survey that makes analysis difficult.  For this reason, we decided 
to learn more about composite estimators in a simpler context in which we could carry 
out a Monte Carlo experiment.  This is the objective of the present article. 
 
Specifically, we decided that we needed to estimate the optimal weighting factors, not 
an easy task given that the variances and co-variances of the estimators must 
themselves be estimated, as must their bias.  For this reason we concentrated on a 
comparative analysis of the direct and indirect estimators with three composite 
estimators:  one that has optimal weighting factors (theoretical), and two that use 
estimated weighting factors.  One of the estimators based on estimated weighting 
factors uses the hypothesis of homogeneity of bias and variance for all the areas (this is 
the so-called classic composite estimator).  The other estimates the area-specific biases 
and variances (this is the so-called alternative composite estimator).  The 
characteristics of these estimators are studied in relation to the distribution of the mean 
squared error (MSE) and in a scenario with varied sample sizes. 
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2  The small area estimators     
 
Consider the random variables ( )2ˆ , , 1, 2, ,j jN jθ θ σ =∼ … J ( 2

* *
ˆ ,N and )*θ θ σ∼ , and 

jγ  the covariance between ˆ
jθ  and *̂θ .  Our objective is to estimate jθ  using ˆ

jθ  and *̂θ .  
It is well known that the best linear composite estimator of jθ  (in the sense of 
minimising the MSE) is  
 ( )*̂

ˆ1j j j jθ π θ π θ= + −�  
with  

( )
2

2 2 2
* * 2

j j
j

j j

σ γ
π

jθ θ σ σ γ

−
=

− + + −
 

For simplicity, assume that the covariance 0jγ =  and the 2
*σ  is negligible.  We also 

assume that ( )2
*,j N bθ θ∼ j .  The value of jπ  that minimises the MSE is  

 
( )

2

2 2
j

j
j jb
σ

π
σ

=
+

 (1) 

In practice, the values of the variance and bias are unknown (they are population-based 
parameters), and they thus must be estimated if we wish to approach the optimal value 
of jπ in (1). 
 
The quantity of interest for an area can be estimated “naive”, using the sample mean of 
observations in the small area  (direct estimator), or the mean of the observations of the 
entire population sample (indirect estimator).  The direct estimator uses only the 
information on the area j being examined, while the indirect estimator is based on the 
sample information gathered in all the areas.  It is obvious that the direct estimator is 
unbiased for the mean of the area.  Nevertheless, it has a high variance (given that if the 
area is small only few of the observations fall in this area).  In contrast, the indirect 
estimator, based on the sample from the entire population, will have a low variance 
(given the large sample size), but it will suffer from bias when estimating the 
characteristics of a certain area, which will almost certainly differ from the common 
characteristics of the entire population. 
 
An estimator that combines the qualities of the direct and indirect estimators with 
optimal weighting factors is the composite estimator that uses the value jπ  as specified 
in (1). This estimator constitutes a reference in our study, and it is called the theoretical 
composite estimator (theor).  Nevertheless, this estimator is not feasible in practice 
because it depends on the weighting factor jπ , a value that in turn depends on   
unknown population parameters.  
 
There are several procedures for estimating these population parameters, all of which 
lead to different small area estimators.  In the present study, we investigate the classic 
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composite estimator (class) and the alternative composite estimator (altern) which are 
described below: 
 

1. Classic composite estimator. 
The classic composite estimator assumes that the areas share the same within-area 
variance and a common estimate for the squared bias.  Specifically, we assume 
components of variance specification ( )2ˆ , , 1, 2, ,j jN jθ θ σ =∼ … J  with 

. ( )2
*,j N bθ θ∼

Here we use a weighted mean of the sample variances from each area as an estimate 
of the baseline data variance.  Thus we define the pooled within -variance 

 
( )
( )

2

12

1
                   

J

j j
j

n s
s

n J
=

−
=

−

∑
 (2) 

in which n  is the size of the entire sample,  is the sample size of the small area 

(in our real population example, the county)  and  is the sample variance of the 

baseline data of the small area 

jn
2
js

j . Under the assumption that 2
j

2σ σ= for all of j , 

the estimator of 2
jσ  is 2

js n . 

For the squared bias ( )2

* jθ θ− , we define the common estimator  

 ( 2
2

*
1

1 ˆ ˆ
J

j
j

b
J )θ θ

=

= −∑  (3) 

which is the mean squared difference of the direct and indirect estimators.      
 
We could also have used a weighted mean of the individual biases; however, the 
properties of each bias estimator are somewhat different.  Specifically, in the case in 
which we preferred to use the weighted mean of the individual biases, b  would be 
the estimator of a combination of variances between and within groups.   

2

     
Thus, the estimator of jπ  is: 

 
2

2 2

/
ˆ

/j

jc

j

s n
s n b

π =
+

,  (4) 

and the composite estimator obtained through the sample data is  
 ( )*̂ˆ ˆ1c c c

j j j
ˆ

jθ π θ π θ= + −�  (5) 
 
 
2. Alternative composite estimator  
Another way of calculating the composite estimator uses direct estimators of each 
area’s variance and bias.  In this way the estimator of jπ  is: 
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Note that ( )2

*
ˆ ˆ

jθ θ− is biased for ( 2
*j )θ θ− , but is unbiased for 2

j bσ 2
j+ , as   
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   The composite estimator obtained through the sample data has the same form as (5), 
with ˆ a

jπ  replacing ˆ c
jπ ; 

 ( )*̂ˆ ˆ1a a a
j j j

ˆ
jθ π θ π θ= + −�  (7) 

If necessary the weight ˆ a
jπ  is truncated to one.    

 
Thus, we consider five estimators:  the direct ˆ

jθ , the indirect *̂θ  (based on the entire 

sample), the theoretical composite t
jθ�  based on the optimal weights in expression (1), 

the classic composite c
jθ�  based on the weights of expression (4) and the alternative 

composite a
jθ�  based on the weights of expression (6). 

 
3 Monte Carlo study in an artificial population  
 
 
In this section, we investigate the estimators defined in Section 2 using Monte Carlo 
methods.  By generating artificial populations we   explore the effect that different 
population characteristics have on the behaviour of the estimators.  Some of the 
conclusions drawn in this section are validated through a Monte Carlo simulation in the 
context of a real population.   
 
 
The artificial population is defined by the following components of variance model 

1, 2, , 1, 2, ,ij j ij jx a z y i n j J= + + = =… …  
where  ij  denotes individual i  in the area j ,  denotes the number of individuals in 
the sample of area 

jn
j , and  denotes the number of areas considered.  In addition, 

assume that  is distributed with a mean 0 and variance b , independent of , which 

has mean 0 and variance 

J

jz 2
ijy

2
j( )xσ . The specific values of the model parameters and the 

characteristics of the design used in the study are 2 1, 10b a= =  and = 8, with J
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identical sample sizes, .  The common sample size  varies between 5 and 45.  

We consider two settings for 

*
jn n= *n

2( ) jxσ :  i) common for all the areas, 2( ) jxσ = 30; and ii) 

values specific for each area; 2( ) jxσ

2
j

 varies from 30 to 240.   

jz

*

 
We studied the effect of a change in the value of the within-area variance (for 2b  =1).  
The variation of ( )xσ  influences the value of the intra-class correlation cci , which 
varies between 0.05 and 0.30.  The variation in the distribution, of  (variation among 
groups) and  (variation within the area), is also considered.   At the same time, we 
investigated different types of distribution within and between areas, as well as the total 
number of areas in the population. 

ijy

 
In summary, we considered the following factors:  

i) Sample size n (small, medium or large)  
ii) Coefficient of intra-class correlation 
iii) Homogeneity of the variances within areas 
iv) Distribution of the within and between variation 

 
The number of Monte Carlo replications for each combination of factors considered is 
6000.  In all the cases, we estimated the mean parameter for a specific area.  We assess 
the MSE when estimating this area parameter.   
 
The results of the Monte Carlo study are discussed next.  Figures 1-4 show the variation 
of the MSE of the different estimators analysed (theor, class, altern, direct and 
indirect) when we change either the sample size  (Figures 1 to 3) or the magnitude of 
the intra-class correlation coefficient cci  (Figure 4).   

*n
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Figure 1: MSE of the estimators as a function of the sample size :  identical within-area 
variances.       

*n

 
Figure 1 shows the results in the case of normality with identical within-area variances, 
when we vary the common sample size .   The population values used are  and 

, common to all the areas.  From Figure 1 we conclude that the MSE is 
minimal for the theor estimator, maximal in the case of the direct estimator (except for 
large sample sizes, in which the MSE of the direct estimator can be less than that of the 
indirect estimator), and that the combined classic and alternative estimators have almost 
identical MSE, with an intermediate value between the theor and direct estimators.  
MSE are in a wide range for small sample sizes, but it is largely bridged as the sample 
size grows.  The indirect estimator has a MSE greater than that of any of the other 
estimators for large sample size, but for small sample sizes it behaves similarly to the 
theor estimator.  Nevertheless, the wide range of sample sizes for which the indirect 
estimator is better than the direct estimator should be noted.    

*n 2 1b =
2( ) 30jxσ =

Now consider the case in which there is heterogeneity in the within-area variance 
2( ) jxσ .  The results are presented in Figure 2.  Here 2( ) jxσ  varies between 30 and 240 

in the eight areas considered.  We can consider the two extreme cases in which the area 
examined has variance 30 and 240, respectively.   
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Figure 2: MSE of the estimators as a function of the sample size :  non-identical within-area 
variances  (area examined, the one with the smallest variance). 

*n

 
This figure shows how the classic estimator improves considerably its performance 
with respect to the other alternative feasible estimators. Note that the MSE of class is, 
for all sample size, very close to the MSE of theor. For the smallest sample sizes, the 
class even improves slightly the performance of the theor estimator1.   It is remarkable 
that the altern, which is mean to account for variation of within-area variance and 
square bias, performs slightly worst than class for all sample sizes considered 
 
The results in Figure 2 correspond to the case in which the area examined has the 
smallest variances, 30, compared to the largest, 240. In Figure 3, we show the results 
for the complementary case when the variance of the area examined is 240.   
 
 
 
 

                                                 
1 This is due to the fact that for small sample sizes and this non-identical within-area case, the variance of 
the indirect estimator is not negligible. The denominator of class of expression (4) has a positive bias that 
partially accounts for such variance. 
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Figure 3: Variation of the MSE of the estimators as a function of the sample size , with 
heterogeneity in variances  (area examined, the one with the greatest variance). 

*n

In contrast to Figure 2, the indirect estimator exhibits behaviour quite similar to that of 
the optimal composite estimator (theor), while the two feasible composite estimators, 
class and altern, are close to each other.   
 
One aspect of the population that could affect the behaviour of the different estimators 
is the ratio  of variance within the areas with respect to the total variation.  The intra-
class correlation coefficient cci , is equal to 1- .  Note that cci

r
r 0=  indicates that the 

entire variation comes from among the areas, while cci =1 indicates that the entire 
variation is   within the areas.    Figure 4 shows the variation in the MSE when we vary 

 while maintaining the sample size constant.  The population parameters used in the 
simulation are 
cci

2 1b =  and 2( ) jxσ , constant for all the areas, with values that fluctuate 

between 2.5 (  close to zero) and 50 (  near 0.3).  The sample size is  = 10 and 
the total number of areas is = 20. 

cci cci *n
J
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Figure 4: Variation in the MSE of the different estimators with regard to the intra-class correlation 
coefficient cci   

 
The MSEs of the different estimators now converge as cci (the “area effect”) increases. 
The theoretical combined estimator (theor) outperforms the other estimators, even 
though its advantage over the direct estimator decreases toward zero as the cci 
increases.  The   MSE of the indirect estimator remains constant despite variation of the 
cci, and the classic composite estimator (class) outperforms the direct estimator and 
converges with the theoretical composite (theor) as the intra-class correlation increases.  
The alternative and classic composite estimators exhibit similar behaviour, with a slight 
advantage for the classic.  There is a substantial difference among the MSEs of the 
different estimators, with the indirect clearly outperforming the direct and the classic 
composite estimators when cci is small.    
 
Without documenting further simulations in the same detail, we note that the same 
conclusions were obtained when: a) we violate the normality assumption of the within 
and between area variation (letting this distribution be a chi-squared distribution with 1 
degrees of freedom, i.e. a highly right skewed distribution); and, c) when we increase 
the value of  of the number of areas of the population.   J
 
4 Simulation study on a real population 
 
In this section we study the behaviour of the composite estimator through a Monte 
Carlo simulation in which we extract multiple samples from a known population.  To 
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do this, we use data from the Labour Force Census of Enterprises affiliated with the 
Social Security system in Catalonia.  This census contains data on the number of 
employees from each enterprise surveyed who are registered with Social Security.  The 
census was carried out in each of the four quarters between the years 1992 and 2000 
(inclusive).  We limit the analysis to one year, 2000. 
 
This database contains 243,184 observations from year 2000, divided into 12 groups 
according to the economic sector, and 41 counties (Catalan “comarques”), the location 
of a few enterprises was not clarified, they have been excluded from this analysis. 
 
We have eliminated the sector-based classification and have focused solely on the 
division by counties.  Table 1 shows the number of enterprises per county and the mean 
and variance of individual affiliates per enterprise.  The distribution of enterprises is 
quite uneven, as it is mainly concentrated in densely populated areas. 
 
Next we present the results of the simulation for four sampling designs that differ in 
size, and compare the behaviour of the five estimators.  The sizes of the samples are 
10%, 5%, 1.68 %  (this   is the size used by Idescat in various surveys) and 1% of the 
population. 
 
4.1 Design of the Monte Carlo simulation 
 
Let  be the number of salaried workers in county 

kjx j  and enterprise k . This is 
referred to as the baseline data.  The total number of counties in Catalonia is . J

The parameters of interest are 
1

jN

j jk
k

jx Nθ
=

 
=   
 
∑ , Jj …,2,1= , the mean number of 

salaried workers per enterprise in each county,  are  the numbers of surveyed 
enterprises in county 

jN
j . With any sample we have a direct estimator 

(ˆ , var( )j jN )ˆ
jθ θ θ∼  for each county j and an indirect estimator ( )* *

ˆ ˆ, var( )N *θ θ θ∼ , 

which is common to all the counties.  
If the variance of jkx  is 2( ) jxσ , then 2ˆvar( ) ( )j j jx nθ σ=  , where   is the number of 
sample observations in county 

jn
j . 

 

 
 

 12



     

County Population 
size jθ  ( )2

*jθ θ−  
2( ) jxσ  

 Alt Camp 1282 8.73ª 0.09 3250.37 
 Alt Empordà 4712 5.28 14.11 294.27 
 Alt Penedès 3052 8.91 0.02 1686.24 
 Alt Urgell 745 4.71 18.70 158.25 
 Alta Ribagorça 140 4.59 19.73 205.38 
 Anoia 3264 7.86 1.37 801.64 
 Bages 5698 8.24 0.63 1356.90 
 Baix Camp 5530 6.47 6.59 479.54 
 Baix Ebre 2237 6.31 7.41 534.40 
 Baix Empordà 4634 5.44 12.92 425.17 
 Baix Llobregat 20541 9.73 0.48 1642.46 
 Baix Penedès 2197 5.26 14.23 171.82 
 Barcelonès 88331 10.63 2.55 10314.88 
 Berguedà 1397 5.44 12.90 196.15 
 Cerdanya 788 3.71 28.34 71.93 
 Conca de Barberà 611 8.29 0.56 1388.95 
 Garraf 3466 6.28 7.62 685.91 
 Garrigues 516 5.24 14.42 96.89 
 Garrotxa 1909 7.51 2.33 419.72 
 Gironès 6369 9.82 0.62 2037.47 
 Maresme 11718 6.46 6.64 605.07 
 Montsià 1918 5.61 11.73 246.00 
 Noguera 1128 5.12 15.30 93.29 
 Osona 5494 7.09 3.77 774.65 
 Pallars Jussà 410 4.37 21.76 130.37 
 Pallars Sobirà 272 4.06 24.76 55.46 
 Pla d'Urgell 1106 6.59 5.95 271.85 
 Pla de l'Estany 1160 6.07 8.79 143.37 
 Priorat 254 4.11 24.26 180.17 
 Ribera d'Ebre 620 5.71 11.07 418.72 
 Ripollès 959 7.87 1.35 875.92 
 Segarra 594 10.87 3.35 8171.41 
 Segrià 7096 7.74 1.69 714.23 
 Selva 4586 7.11 3.70 610.20 
 Solsonès 508 5.58 11.93 157.58 
 Tarragonès 7440 9.42 0.15 1675.66 
 Terra Alta 297 4.25 22.87 40.28 
 Urgell 1178 6.28 7.59 312.25 
 Val d'Aran 503 5.28 14.08 270.11 
 Vallès Occidental 26683 10.34 1.71 3026.89 
 Vallès Oriental 11795 8.45 0.34 832.68 
The mean number of affiliates in the whole of Catalonia, *θ ,  is 9.04. 
The parameter cci  is 0.0008. 

 
Table 1: Population values of area means, bias and variances   
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Our simulation exercise allows us to develop an optimal theoretical composite 
estimator, since we can evaluate expression (1). 
 
We also evaluate a classic composite estimator and an alternative composite estimator 
as defined in section 2. 
 
We replicate 1,000 proportional samples from the enterprise census and apply the five 
estimators.  The results are summarised in Tables 2 to 6.   
 
4.2 Results of the simulation 
 
Tables 2 through 5 summarise the results of the simulations for four scenarios.  These 
scenarios differ in the sample size.  In Table 2, the sample size is large, large sample 
size: precisely 24,295 observations in each total sample, which corresponds to 10% of 
the population.  In Table 3, 5% of the population is sampled, resulting in 12,059 sample 
observations (medium-sized).  The third sample represents slightly more than 1.68% of 
the population, yielding an average of 100 county observations (small sized).  
However, the sample was extracted proportionally and the observations per county are 
distributed between a minimum of two in the county of Alta Ribagorça and a maximum 
of 1,490 in the county of el Barcelonès.  The total number of observations from 
Catalonia is 4,100.  Table 5 shows the fourth sample, which represents 1% of the 
population (very small sized).  The total number of observations is only 2,431. 
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  Sample distribution means Weights Root  mean square deviation 
 Sample 

size Direct Theoretical 
composite 

Classic 
composite 

Alternative 
composite Theoretical Classic 

estimate 
Alternative 
estimate Direct  Indirect Theoretical 

composite 
Classic 

composite 
Alternative 
composite 

Alt Camp 128             8.50 9.03 8.93 7.74 1.00 0.66 0.58 21.46 0.26 0.26 3.55 3.39
Alt Empordà 471             5.28 5.44 6.70 5.51 0.04 0.37 0.09 0.55 14.25 0.53 2.61 1.19
Alt Penedès 305             8.89 9.03 8.99 8.61 1.00 0.47 0.77 5.09 0.19 0.19 1.65 1.19
Alt Urgell 74             4.78 5.21 8.04 5.14 0.10 0.77 0.20 2.09 18.83 1.93 11.68 3.70
Alta Ribagorça 14             4.66 6.53 8.78 4.27 0.43 0.94 0.22 13.76 19.86 8.28 17.83 6.42
Anoia 326             7.76 8.58 8.37 8.08 0.64 0.45 0.63 2.13 1.53 0.85 1.03 1.52
Bages 569             8.27 8.87 8.55 8.33 0.79 0.33 0.66 2.30 0.79 0.62 1.24 0.94
Baix Camp 553             6.44 6.74 7.34 6.83 0.12 0.34 0.23 0.72 6.74 0.65 1.30 1.35
Baix Ebre 223             6.32 6.98 7.81 6.77 0.24 0.54 0.36 2.01 7.56 1.63 3.03 2.84
Baix Empordà 463             5.42 5.66 6.80 5.73 0.07 0.38 0.14 0.81 13.06 0.76 2.55 1.75
Baix Llobregat 2054             9.76 9.30 9.68 9.32 0.63 0.13 0.78 0.71 0.65 0.37 0.57 0.53
Baix Penedès 219             5.23 5.43 7.33 5.50 0.05 0.54 0.09 0.70 14.36 0.66 4.89 1.21
Barcelonès 8833             10.63 10.13 10.56 9.99 0.31 0.03 0.45 1.07 2.73 0.94 0.97 1.21
Berguedà 139             5.41 5.76 7.78 5.87 0.10 0.65 0.20 1.23 13.04 1.11 6.03 2.37
Cerdanya 78             3.73 3.90 7.76 3.95 0.03 0.76 0.06 0.88 28.46 0.86 17.04 1.59
Conca de Barberà 61             8.33 9.01 8.96 7.46 0.98 0.80 0.56 21.65 0.72 0.71 2.10 5.28
Garraf 346             6.25 6.82 7.50 6.84 0.21 0.44 0.38 1.66 7.76 1.36 2.34 2.98
Garrigues 51             5.22 5.66 8.36 5.78 0.11 0.82 0.24 1.70 14.55 1.51 10.16 3.21
Garrotxa 190             7.57 8.28 8.44 7.84 0.49 0.58 0.56 2.24 2.49 1.24 1.48 1.68
Gironès 636             9.85 9.16 9.62 9.22 0.84 0.31 0.84 2.87 0.80 0.65 1.51 1.18
Maresme 1171             6.47 6.65 7.00 6.70 0.07 0.20 0.15 0.47 6.79 0.45 0.71 0.84
Montsià 191             5.59 5.93 7.60 5.96 0.10 0.58 0.19 1.12 11.87 1.01 4.56 2.07
Noguera 112             5.09 5.30 7.83 5.40 0.05 0.69 0.09 0.70 15.44 0.66 7.86 1.11
Osona 549             7.09 7.62 7.77 7.47 0.27 0.34 0.42 1.18 3.93 0.93 1.16 1.71
Pallars Jussà 41             4.36 4.96 8.35 4.90 0.13 0.85 0.22 2.77 21.88 2.45 16.29 5.13
Pallars Sobirà 27             4.00 4.38 8.52 4.57 0.08 0.90 0.17 1.86 24.89 1.69 20.22 3.82
Pla d'Urgell 110             6.60 7.31 8.31 7.08 0.29 0.69 0.44 2.10 6.10 1.58 3.42 2.85
Pla de l'Estany 116             6.09 6.45 8.13 6.53 0.12 0.68 0.26 1.01 8.94 0.93 4.67 1.99
Priorat 25             4.16 5.27 8.57 4.00 0.23 0.90 0.12 6.92 24.38 5.48 20.25 3.48
Ribera d'Ebre 62             5.65 6.93 8.36 5.93 0.38 0.80 0.32 5.45 11.21 3.64 7.63 4.42
Ripollès 95             7.79 8.87 8.70 7.71 0.87 0.72 0.64 8.41 1.51 1.28 1.63 3.53
Segarra 59             10.88 9.07 10.04 6.89 0.98 0.80 0.43 129.05 3.54 3.46 17.53 23.75
Segrià 709             7.69 8.19 8.11 8.08 0.37 0.29 0.55 0.91 1.85 0.61 0.69 1.04
Selva 458             7.14 7.64 7.88 7.53 0.26 0.38 0.42 1.20 3.85 0.94 1.22 1.59
Solsonès 50             5.64 6.34 8.44 6.11 0.21 0.82 0.31 2.92 12.07 2.43 8.61 3.64
Tarragonès 744             9.46 9.06 9.38 9.00 0.94 0.28 0.83 2.04 0.32 0.30 1.14 0.93
Terra Alta 29             4.26 4.52 8.49 4.60 0.06 0.89 0.11 1.24 23.00 1.18 18.35 2.25
Urgell 117             6.28 6.99 8.17 6.64 0.26 0.68 0.33 2.35 7.74 1.82 4.18 2.62
Val d'Aran 50             5.30 6.34 8.41 5.51 0.28 0.83 0.27 4.96 14.22 3.71 10.25 4.53
Vallès Occidental 2668             10.31 9.80 10.20 9.76 0.40 0.10 0.63 0.97 1.90 0.72 0.82 1.09
Vallès Oriental 1179             8.43 8.83 57 8.62 0.67 0.2 0.71 0.60 0.51 0.29 0.43 0.43

Table 2:  Results of the simulation.  Large sample size (N= 24,295).
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  Sample distribution means Weights Root  mean square deviation 
 Sample 

size Direct Theoretical 
composite 

Classic 
composite 

Alternative 
composite Theoretical Classic 

estimate 
Alternative 
estimate Direct  Indirect Theoretical 

composite 
Classic 

composite 
Alternative 
composite 

Alt Camp 64             8.32 9.04 8.99 7.44 1.00 0.73 0.56 39.34 0.45 0.45 6.22 5.24
Alt Empordà 236             5.27 5.58 7.04 5.55 0.08 0.45 0.14 1.14 14.48 1.06 4.21 1.93
Alt Penedès 153             8.88 9.04 9.02 8.30 1.00 0.55 0.69 10.42 0.37 0.37 2.81 2.51
Alt Urgell 37             4.77 5.56 8.26 5.04 0.19 0.81 0.23 4.51 19.06 3.72 13.53 4.60
Alta Ribagorça 7             4.73 7.31 8.86 3.92 0.60 0.95 0.20 30.84 20.10 12.38 18.77 7.15
Anoia 163             7.67 8.74 8.45 7.76 0.78 0.54 0.58 4.30 1.73 1.19 1.67 2.22
Bages 285             8.29 8.95 8.66 8.17 0.88 0.41 0.64 5.19 0.98 0.86 2.26 1.84
Baix Camp 177             6.39 6.94 7.54 6.84 0.21 0.42 0.33 1.46 6.95 1.16 2.14 2.18
Baix Ebre 112             6.40 7.43 8.06 6.74 0.39 0.62 0.42 4.52 7.78 3.02 4.44 3.90
Baix Empordà 232             5.41 5.86 7.12 5.66 0.12 0.46 0.17 1.65 13.29 1.46 4.07 2.28
Baix Llobregat 1027             9.74 9.20 9.66 9.27 0.77 0.18 0.80 1.47 0.83 0.60 1.04 0.81
Baix Penedès 110             5.26 5.63 7.64 5.64 0.10 0.62 0.18 1.49 14.59 1.36 6.75 2.47
Barcelonès 4417             10.67 9.89 10.56 9.66 0.48 0.05 0.69 2.25 2.89 1.65 1.88 1.98
Berguedà 70             5.42 6.06 8.03 5.97 0.18 0.71 0.30 2.47 13.26 2.07 7.65 4.04
Cerdanya 39             3.72 4.05 8.04 4.06 0.06 0.81 0.12 1.76 28.71 1.67 19.70 3.43
Conca de Barberà 31             8.24 9.03 9.04 7.06 0.99 0.84 0.53 41.31 0.92 0.90 3.56 7.64
Garraf 173             6.30 7.23 7.79 6.67 0.34 0.52 0.40 3.55 7.98 2.50 3.74 3.70
Garrigues 26             5.25 6.03 8.52 5.88 0.21 0.86 0.35 3.57 14.78 2.88 11.42 5.25
Garrotxa 95             7.50 8.50 8.53 7.70 0.65 0.65 0.58 4.13 2.69 1.66 2.02 2.30
Gironès 318             9.86 9.11 9.59 9.05 0.91 0.39 0.80 6.60 0.97 0.88 2.85 2.61
Maresme 586             6.48 6.83 7.21 6.85 0.13 0.27 0.27 1.03 7.00 0.93 1.46 1.77
Montsià 96             5.59 6.21 7.87 6.01 0.18 0.65 0.27 2.43 12.10 2.02 6.20 3.31
Noguera 56             5.07 5.46 8.07 5.52 0.10 0.75 0.20 1.59 15.67 1.41 9.59 2.72
Osona 275             7.09 7.92 7.96 7.42 0.43 0.42 0.47 2.62 4.13 1.64 2.06 2.23
Pallars Jussà 21             4.39 5.42 8.49 4.57 0.22 0.88 0.20 6.02 22.13 4.77 17.76 4.78
Pallars Sobirà 14             3.97 4.67 8.61 4.58 0.14 0.91 0.25 3.73 25.14 3.15 21.34 6.46
Pla d'Urgell 55             6.64 7.73 8.48 6.99 0.45 0.75 0.49 4.93 6.32 2.83 4.40 3.84
Pla de l'Estany 58             6.05 6.71 8.31 6.67 0.22 0.74 0.39 2.20 9.16 1.75 5.76 3.42
Priorat 13             4.22 5.97 8.67 3.92 0.36 0.92 0.13 14.44 24.63 9.36 21.52 3.61
Ribera d'Ebre 31             5.64 7.51 8.49 5.73 0.55 0.84 0.34 11.62 11.44 5.77 8.86 5.75
Ripollès 48             7.83 8.95 8.84 7.27 0.93 0.77 0.57 17.61 1.71 1.57 2.67 6.43
Segarra 30             10.65 9.06 10.52 6.59 0.99 0.84 0.43 248.74 3.70 3.67 50.61 31.13
Segrià 355             7.66 8.41 8.22 8.00 0.54 0.37 0.60 1.85 2.05 0.98 1.27 1.58
Selva 229             7.15 7.94 8.08 7.53 0.42 0.46 0.50 2.61 4.06 1.61 2.10 2.25
Solsonès 25             5.62 6.80 8.57 5.93 0.35 0.86 0.34 6.60 12.30 4.39 9.70 5.02
Tarragonès 372             9.40 9.05 9.31 8.90 0.97 0.36 0.81 4.04 0.50 0.48 1.93 1.64
Terra Alta 15             4.30 4.79 8.61 4.92 0.11 0.91 0.23 2.65 23.24 2.41 19.64 5.08
Urgell 59             6.40 7.48 8.39 6.64 0.41 0.74 0.40 5.36 7.95 3.37 5.46 3.63
Val d'Aran 25             5.35 6.95 8.56 5.43 0.43 0.86 0.31 10.37 14.45 6.17 11.58 5.50
Vallès Occidental 1334             10.30 9.58 10.14 9.53 0.57 0.15 0.78 1.89 2.06 1.15 1.50 1.63
Vallès Oriental 590             8.42 8.92 8.64 8.52 0.81 0.27 0.70 1.31 0.70 0.50 0.85 0.73

Table 3: Results of the simulation.  Medium sample size (N = 12,059). 
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  Sample distribution means Weights Root  mean square deviation 
 Sample 

size Direct Theoretical 
composite 

Classic 
composite 

Alternative 
composite Theoretical Classic 

estimate 
Alternative 
estimate Direct  Indirect Theoretical 

composite 
Classic 

composite 
Alternative 
composite 

Alt Camp 22             8.49 9.05 9.40 6.84 1.00 0.78 0.53 132.58 1.20 1.20 37.69 9.07
Alt Empordà 79             5.39 6.16 7.51 5.60 0.21 0.54 0.24 3.85 15.35 3.23 7.64 3.66
Alt Penedès 51             8.98 9.05 9.19 7.92 1.00 0.63 0.66 34.77 1.11 1.11 8.35 6.22
Alt Urgell 13             4.68 6.40 8.39 4.84 0.39 0.84 0.27 13.25 19.95 7.97 15.72 6.17
Alta Ribagorça 2             5.03 8.41 9.08 3.35 0.84 0.97 0.19 134.57 21.00 18.81 23.45 9.89
Anoia 55             7.62 8.93 8.65 7.34 0.91 0.62 0.56 14.45 2.51 2.14 4.24 4.31
Bages 96             8.44 9.03 8.89 7.82 0.96 0.50 0.64 16.30 1.75 1.67 6.29 3.28
Baix Camp 93             6.52 7.63 7.92 6.70 0.44 0.51 0.42 4.67 7.78 3.09 4.53 3.49
Baix Ebre 38             6.33 8.11 8.29 6.36 0.65 0.69 0.44 14.19 8.61 5.54 7.22 5.29
Baix Empordà 78             5.51 6.56 7.55 5.64 0.30 0.54 0.24 5.68 14.15 4.22 7.66 3.14
Baix Llobregat 346             9.74 9.12 9.65 8.97 0.91 0.25 0.81 4.67 1.54 1.38 2.89 1.98
Baix Penedès 37             5.27 6.20 7.97 5.71 0.25 0.69 0.32 4.14 15.46 3.30 9.46 4.73
Barcelonès 1490             10.69 9.49 10.46 9.22 0.73 0.08 0.90 6.77 3.58 3.34 4.84 3.59
Berguedà 24             5.31 6.76 8.21 5.77 0.39 0.76 0.37 7.24 14.13 4.62 9.97 5.83
Cerdanya 13             3.70 4.57 8.25 3.87 0.16 0.84 0.14 5.08 29.63 4.36 22.75 4.20
Conca de Barberà 10             7.75 9.05 9.16 6.17 1.00 0.87 0.47 105.46 1.68 1.67 11.31 14.50
Garraf 58             6.25 7.96 8.08 5.99 0.61 0.61 0.33 10.89 8.82 4.92 6.72 4.34
Garrigues 9             5.23 6.87 8.64 5.47 0.43 0.88 0.38 9.86 15.65 6.03 13.24 7.51
Garrotxa 32             7.44 8.81 8.68 7.24 0.85 0.72 0.58 11.73 3.48 2.74 3.74 4.84
Gironès 107             9.85 9.08 9.63 8.63 0.97 0.48 0.75 21.02 1.68 1.62 7.42 5.34
Maresme 198             6.56 7.35 7.52 6.72 0.32 0.35 0.35 3.39 7.83 2.59 3.64 2.56
Montsià 32             5.66 7.00 8.15 5.86 0.40 0.72 0.35 7.31 12.96 4.84 8.83 4.95
Noguera 19             5.09 6.05 8.29 5.82 0.24 0.80 0.39 4.97 16.55 3.78 11.99 6.13
Osona 93             7.16 8.46 8.20 7.06 0.69 0.51 0.49 7.86 4.94 3.25 4.52 3.45
Pallars Jussà 7             4.20 6.44 8.60 4.52 0.46 0.90 0.28 15.43 23.03 9.00 19.66 7.57
Pallars Sobirà 5             4.06 5.61 8.70 4.20 0.31 0.92 0.26 11.54 26.05 8.02 23.04 8.03
Pla d'Urgell 19             6.65 8.35 8.63 6.34 0.71 0.80 0.46 13.77 7.14 4.84 6.27 6.31
Pla de l'Estany 20             6.11 7.43 8.51 6.34 0.45 0.79 0.45 7.11 10.00 4.24 7.85 5.50
Priorat 4             4.08 7.31 8.77 3.92 0.65 0.94 0.20 41.22 25.54 15.93 23.59 6.64
Ribera d'Ebre 10             5.54 8.32 8.67 5.13 0.79 0.87 0.35 36.97 12.29 9.32 11.60 8.24
Ripollès 16             7.66 9.02 8.94 6.28 0.98 0.82 0.47 54.19 2.49 2.40 6.01 11.37
Segarra 10             11.06 9.06 11.92 5.99 1.00 0.87 0.45 825.17 4.37 4.37 345.24 33.31
Segrià 120             7.72 8.76 8.43 7.72 0.78 0.45 0.61 5.97 2.83 2.06 3.31 3.08
Selva 77             7.18 8.46 8.32 7.20 0.68 0.55 0.52 7.93 4.87 3.13 4.34 3.83
Solsonès 9             5.57 7.64 8.67 5.56 0.59 0.88 0.38 18.29 13.16 7.68 11.34 7.02
Tarragonès 125             9.33 9.06 9.33 8.29 0.99 0.44 0.71 12.31 1.23 1.21 5.01 4.79
Terra Alta 5             4.35 5.57 8.71 4.73 0.26 0.92 0.32 8.88 24.15 6.69 21.40 8.06
Urgell 20             6.37 8.18 8.58 6.43 0.67 0.79 0.47 15.96 8.79 5.87 7.82 5.99
Val d'Aran 8             5.28 7.94 8.71 4.85 0.71 0.89 0.29 29.89 15.32 10.16 14.02 7.18
Vallès Occidental 450             10.27 9.30 10.09 9.26 0.80 0.21 0.80 6.13 2.76 2.25 4.20 3.26
Vallès Oriental 200             8.37 9.00 8.73 8.32 0.92 0.35 0.70 4.06 1.46 1.29 2.45 1.79

Table 4: Results of the simulation. Small sample size (N = 4,100). 
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  Sample distribution means Weights Root  mean square deviation 
 Sample 

size Direct Theoretical 
composite 

Classic 
composite 

Alternative 
composite Theoretical Classic 

estimate 
Alternative 
estimate Direct  Indirect Theoretical 

composite 
Classic 

composite 
Alternative 
composite 

Alt Camp 13             8.22 9.09 9.47 6.59 1.00 0.79 0.51 184.43 2.16 2.16 65.13 13.40
Alt Empordà 47             5.33 6.49 7.64 5.54 0.31 0.57 0.27 6.80 16.59 4.98 9.83 4.27
Alt Penedès 31             8.98 9.09 9.33 7.50 1.00 0.65 0.60 59.28 2.06 2.06 15.00 8.95
Alt Urgell 7             4.63 7.07 8.55 4.37 0.55 0.87 0.24 27.31 21.24 11.92 18.19 7.16
Alta Ribagorça 1             4.75 8.71 9.31 9.09 0.91 0.97 1.00 235.46 22.29 20.38 34.97 22.29
Anoia 33             7.63 9.02 8.74 7.00 0.95 0.64 0.51 23.69 3.55 3.23 6.39 6.53
Bages 57             8.43 9.08 8.97 7.57 0.97 0.53 0.61 24.59 2.75 2.66 8.35 4.94
Baix Camp 55 8.00 8.09 6.67 0.57 0.54 0.44 8.08 8.93 4.60 6.77 4.32
Baix Ebre 22             6.52 8.49 8.51 6.08 0.77 0.71 0.41 28.98 9.77 7.68 10.93 7.91
Baix Empordà 46             5.58 7.05 7.76 5.72 0.42 0.57 0.31 9.77 15.38 6.37 10.23 4.48
Baix Llobregat 205             9.76 9.13 9.70 8.93 0.94 0.28 0.77 8.80 2.43 2.27 4.95 3.12
Baix Penedès 22             5.24 6.60 8.10 5.64 0.35 0.71 0.34 6.24 16.71 4.62 11.36 5.37
Barcelonès 883             10.78 9.40 10.44 9.22 0.82 0.10 0.92 12.40 4.39 4.64 7.77 4.44
Berguedà 14             5.42 7.34 8.37 5.46 0.52 0.78 0.36 13.25 15.36 7.17 12.15 6.90
Cerdanya 8             3.75 5.03 8.35 3.87 0.24 0.85 0.16 8.90 31.00 7.04 24.76 4.93
Conca de Barberà 6             7.68 9.09 9.40 5.61 1.00 0.88 0.41 182.38 2.68 2.67 28.73 20.25
Garraf 35             6.15 8.27 8.18 5.83 0.72 0.63 0.33 18.47 9.98 6.54 9.83 5.87
Garrigues 5             5.31 7.48 8.74 5.09 0.57 0.89 0.34 19.47 16.90 9.02 15.11 8.51
Garrotxa 19             7.50 8.94 8.81 7.07 0.90 0.74 0.57 20.45 4.54 3.91 5.91 7.06
Gironès 64             9.94 9.11 9.67 8.37 0.98 0.51 0.70 36.91 2.56 2.51 11.68 8.21
Maresme 117             6.51 7.64 7.66 6.71 0.44 0.38 0.40 5.05 8.98 3.48 5.20 3.46
Montsià 19             5.66 7.46 8.30 5.81 0.52 0.74 0.38 12.11 14.17 6.72 11.10 6.30
Noguera 11             5.11 6.53 8.42 5.57 0.36 0.82 0.38 8.06 17.80 5.55 13.97 7.00
Osona 55             7.12 8.68 8.32 6.97 0.79 0.54 0.50 13.97 6.04 4.48 7.10 5.05
Pallars Jussà 4             4.24 7.15 8.72 4.04 0.60 0.91 0.25 26.85 24.34 12.63 22.06 8.56
Pallars Sobirà 3             4.17 6.28 8.79 3.95 0.43 0.93 0.24 22.26 27.39 12.54 25.07 10.03
Pla d'Urgell 11             6.60 8.61 8.77 6.25 0.81 0.82 0.47 22.90 8.28 6.30 8.58 7.49
Pla de l'Estany 12             6.17 7.85 8.62 6.26 0.58 0.80 0.46 12.61 11.18 6.16 9.67 6.87
Priorat 3             4.14 7.67 8.79 3.80 0.71 0.93 0.21 59.33 26.87 18.82 25.34 7.19
Ribera d'Ebre 6             5.40 8.59 8.74 4.77 0.86 0.88 0.31 56.59 13.50 11.14 14.75 9.97
Ripollès 10             7.91 9.08 9.15 5.87 0.98 0.83 0.42 93.34 3.52 3.45 11.40 15.94
Segarra 6             11.22 9.10 12.60 5.71 1.00 0.88 0.43 1278.82 5.16 5.15 701.02 36.85
Segrià 71             7.77 8.90 8.58 7.55 0.86 0.48 0.60 10.14 3.87 3.14 5.34 4.28
Selva 46             7.19 8.68 8.44 7.00 0.78 0.57 0.51 12.88 5.96 4.38 6.36 5.14
Solsonès 5             5.36 8.07 8.76 5.19 0.73 0.89 0.35 24.51 14.38 9.10 13.53 8.64
Tarragonès 74             9.37 9.10 9.39 8.21 0.99 0.48 0.71 20.14 2.13 2.12 7.74 6.64
Terra Alta 3             4.25 6.04 8.79 4.54 0.37 0.93 0.32 14.08 25.47 9.03 23.09 10.89
Urgell 12             6.40 8.49 8.67 6.11 0.77 0.80 0.45 25.50 9.95 7.45 9.61 6.99
Val d'Aran 5             5.19 8.29 8.83 4.63 0.79 0.89 0.28 49.26 16.56 12.34 17.78 8.46
Vallès Occidental 267             10.28 9.25 10.08 9.07 0.87 0.24 0.80 10.44 3.59 3.20 6.37 4.43
Vallès Oriental 118             8.40 9.06 8.84 8.15 0.95 0.38 0.67 6.91 2.44 2.26 4.23 2.62

             6.54

Table 5: Results of the simulation. Very small sample size (N == 2,431). 
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To illustrate the form of the distribution of the MSE across counties, in Figures 5 we 
show the distributions of the MSEs for the four feasible estimators and two contrasting 
sample sizes: n =24295, a large sample; and    n = 4100, a small sample.  Overall we can 
say that these distributions of MSEs have the following common characteristics: 

1) They are asymmetrical 
2) They have extreme values (very noticeable in the case of the direct estimator)  
3) They reveal a high degree of variation 

 
These characteristics make it difficult to evaluate the different estimators based solely on 
their mean MSEs, especially given the presence of skew distributions and extreme 
values.  For this reason we have decided to mix three comparison criteria, allowing us to 
make a more refined evaluation than just comparing simple means.   These   criteria are: 

1) Comparison of the mean MSEs . 
2) Comparison of the median of MSEs.  
3) Comparison of the percentage of counties with lower MSEs (this criterion will be 

used for each pair of estimators) 
 
In Tables 9 and 10 the results of the synthesis can be seen, along with other 
complementary data, allowing the estimators to be evaluated. Based on the tables, we 
conclude: 

1) For all sample sizes and for any of the three criteria used, the best estimator is the 
theoretical composite estimator.  This result is as expected.   Although not so 
important in practice, since this estimator is not accessible in real life 
applications.  It is useful as a benchmark.    

2) The best estimator among the four feasible ones is the alternative composite.   
For the four sample sizes and the three evaluation criteria (twelve combinations), 
the alternative composite estimator is better. The only exception to this is when 
we have a large sample size and we use  the criterion of the counties with lowest 
MSE. In that case, the direct estimator is better than the alternative composite 
estimator.  Only if we grant this last criterion as much importance as the other 
two criteria, or more, can we say that for larger sample sizes the direct estimator 
is better.  This specific advantage in one criterion disappears with the medium 
sample size (N = 12,059), so that in general the conclusion that the alternative 
composite estimator is better is warranted. 

3) The direct estimator exhibits acceptable behaviour for the largest sample size, 
but its performance declines as sample size is reduced.  In effect, for the large 
sample size (N =24,295), the direct estimator is the best according to the criterion 
of percentage, the second best according to the criteria of the average, and the 
third best according to the criteria of the mean MSE (it is surpassed by the two 
composite estimators, both classic and alternative).  Its performance declines 
considerably in small samples since it is the second best according to the criterion 
of the average for medium-sized samples (N = 12,059), the third best according to 
the criteria of percentage and the worst according to the criteria of the mean of the 
MSEs. For small and very small samples, the direct estimator performs worse 
than any other estimator for all three criteria. 

4) The classic composite is the one usually used in small areas.  It is an estimator 
that always performs worse than the alternative composite, but it exhibits certain 
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interesting results in relation to the other estimators.  In brief, for large sample 
sizes it is better than the indirect, while for small sample sizes it is better than the 
direct.  For medium-sized samples it most likely obtains the best-combined 
results, since (if we keep aside the alternative estimator) it performs the best in 
both average and percentage.  For small sample sizes it competes with the 
indirect, since for the small sample the indirect performs better on the average 
and percentage criteria, but worse on the MSE mean criterion.  For the smallest 
sample size, it is clearly outperformed by the indirect estimator. 

5) The last estimator to be examined is the indirect estimator, or the synthetic 
estimator.  This “naive” estimator shows its qualities in small samples.  Although 
it performs the worst of all the estimators for samples larger than 10,000, in the 
sample containing 4,100 it outperforms the direct estimator according to all three 
criteria used, and in the smallest sample it is the best estimator after the 
alternative composite. 
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 ESTIMATORS (n=24,295) direct indirect com teor com clas com alt

mean 6.44 9.14 1.48 5.98 2.89
variance 399.01 64.14 2.33 39.22 12.88
average 1.86 7.56 0.94 3.03 1.99

..
Minimum value 0.47 0.19 0.19 0.43 0.43
Maximum value 129.05 28.46 8.28 20.25 23.75

ESTIMATORS (n=12,059) direct indirect com teor com clas com alt
mean 12.82 9.35 2.48 7.98 4.16
variance 1,478.30 64.50 5.65 83.73 21.12
average 3.73 7.78 1.65 4.40 3.42

Minimum value 1.03 0.37 0.37 0.85 0.73
Maximum value 248.74 28.71 12.38 50.61 31.13

ESTIMATORS (n=4,100) direct indirect com teor com clas com alt
mean 41.45 10.17 4.78 18.57 6.35
variance 16,316.69 65.45 13.88 2,723.66 24.62
average 11.54 8.61 3.78 7.82 5.34

Minimum value 3.39 1.11 1.11 2.45 1.79
Maximum value 825.17 29.63 18.81 345.24 33.31

ESTIMATORS (n=2,431) direct indirect com teor com clas com alt
mean 66.38 11.29 6.48 30.91 8.33
variance 39,254.52 67.72 18.23 11,342.14 36.74
average 20.14 9.77 5.15 11.10 6.99

Minimum value 5.05 2.06 2.06 4.23 2.62
Maximum value 1,278.82 31.00 20.38 701.02 36.85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Table 7: Statistics on the distribution of the MSEs for each estimator, by sample size  
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 n=24,295 direct indirect com teor com clas com alt

direct 73.17 0.00 60.98 60.98
indirect 26.83 0.00 19.51 19.51
com teor 100.00 100.00 100.00 95.12
com clas 39.02 80.49 0.00 34.15

com alt 39.02 80.49 4.88 65.85

n=12,059 direct indirect com teor com clas com alt
direct 65.85 0.00 48.78 36.59

indirect 34.15 0.00 24.39 24.39
com teor 100.00 100.00 100.00 90.24
com clas 51.22 75.61 0.00 26.83

com alt 63.41 75.61 9.76 73.17

n=4,100 direct indirect com teor com clas com alt
direct 36.59 0.00 34.15 4.88

indirect 63.41 0.00 39.02 36.59
com teor 100.00 100.00 100.00 70.73
com clas 65.85 60.98 0.00 12.20

com alt 95.12 63.41 29.27 87.80

n=2,431 direct indirect com teor com clas com alt
direct 26.19 0.00 19.05 0.00

indirect 73.81 7.14 52.38 38.10
com teor 100.00 92.86 97.62 54.76
com clas 80.95 47.62 2.38 7.14

com alt 100.00 61.90 45.24 92.86

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. Comparison of the estimators according to the criterion based on the percentage of 

counties with best MSE2. 
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Figure 5: MSE of the feasible estimators 
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5 Conclusions and research programme 
 
The following general conclusions can be drawn from the Monte Carlo studies on 
artificial and real populations. 

a) When the within-area variances are identical, the differences among the MSEs of 
the estimators examined are great when the (area) sample size is small, and tend 
to disappear in large sample sizes, although the indirect estimator shows a lesser 
degree of variation as a result of varying the sample size.  Thus, there is a direct 
relationship between the sample size and convergence of the MSEs of the 
estimators. 

b) When the within-area variances are identical, the differences among the MSEs of 
the direct, theoretical composite, classic composite and alternative composite 
estimators is large in the case of small intra-class correlation, but it disappears as 
the intra-class correlation increases.  Thus, there is a direct relationship between 
the intra-class correlation and convergence of the MSEs of the estimators.  An 
increase in the intra-class correlation does not lead to a reduction of the MSE in 
the indirect estimator. 

c) As the sample size increases, the behaviour of the MSEs of the indirect estimator 
reflects a rate much lower than that of the other estimators, both in the 
improvements in its estimates and in its convergence with the rest.  The greatest 
improvement when faced with increases in sample sizes is that of the direct 
estimator.  The composite estimators have intermediate rates.  Thus, each 
estimator has a different degree of sensitivity to increases in sample sizes. 

d) There is a sample size below which the indirect estimator (or synthetic 
estimator), which uses information from all the areas, is the best alternative for 
estimating a parameter in a small area.  In the real population examined in this 
study, below a certain sample size (specifically, the very small sample size) the 
best alternative to estimate the mean of a specific area, or the means of all the 
areas, is the indirect or synthetic estimator.  

e) In the real population examined, the alternative composite estimator achieves 
the same degree of precision as a direct estimator with a sample size that is four 
times larger.  In general, this estimator presents the best performance with regard 
to the MSEs for almost all the sample dimensions examined and for the different 
criteria applied. 

f) For small or very small samples, in the empirical population studied, the direct 
estimator exhibits the worst performance with regard to the MSE.  Thus, each of 
composite estimators considered performs better than the direct estimate.    

 
As extensions to the present study, which constitute a research programme for the 
immediate future, we shall examine a series of points grouped in two different sections:  
theoretical developments and simulations, and applications: 
 
Theoretical developments and simulations 
 

1) Estimates of inter-annual variation rates:  We wish to replicate the evaluation of 
the five estimators studied when we examine the most important type of statistics 
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for economic analysis, inter-annual variation rates.  This extension could present 
surprising conclusions given the complexity of the variances of these indicators. 

2) Analysis of the estimated weighting factors of the composite estimators: To 
better understand the comparative performance of the various composite estimator, 
it would be interesting to analyse in what way the weighting factor estimates are 
distributed compared to the theoretical weighting factors. 

3) Sampling design for small area estimators:  How should the sample size n be 
allocated to the areas when small area estimation is considered? Answering this 
question through some theoretical development or through simulations is highly 
relevant to the practical work carried out by statistical organisations that need 
provide information both at the area and country-level.   In the initial phase it could 
be enlightening to compare proportional allocation (used here) with fixed and 
optimal classic allocation (depending on the variances in each stratum). 

 
Practical applications 
 

1) County-wide estimates of unemployment rates:  In addition to their intrinsic 
interest for territorial economic analysis, these rates have at least three additional 
features: We can use sources we have already worked with and with which we are 
familiar, such as the INE’s EPA; this is one of the surveys that has drawn the 
attention of recent international literature on small data estimation (Datta et al. 
(1999)), and finally, we will shortly have census data on county-wide 
unemployment when the 2001 census information is disseminated.  

2) Countywide estimates of the use of ICT (Information and Communication 
Technology): Idescat is currently researching this topic through a biannual survey 
undertaken since 2000, with samples slightly under 4,000 families.  Currently, the 
Secretariat of the Information Society of the Generalitat de Catalunya (the sponsor 
of these surveys) has requested Idescat to generate a series of countywide 
estimates; this is therefore a natural point to begin applying small area estimators in 
official statistics. 

3) Estimates of the IPI (Industrial Production Index) for Catalonia and its counties:  
IPI is a fundamental anchor in short-term economic analyses, and constitutes the 
first experience Idescat has had with small area estimation (the IPI for Catalonia), 
using a methodology that was later temporarily adopted by INE for all the 
autonomous regions within Spain.  It is a case in which inter-annual variation rates 
are applied.  In the future we will attempt to apply small area estimators to 
disaggregate the general IPI index provided by INE as of 2003 for Catalonia in two 
directions:  by industrial sectors and by counties. 
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