
On moments and tail behaviors of storage processes

Arturo Kohatsu-Higa¤
Universitat Pompeu Fabra, Department of Economics

and Business, Ramón Trias Fargas 25-27, 08005 Barcelona, Spain

Makoto Yamazato
University of the Ryukyus, Department of Mathematics, Faculty of Science,

Senbaru1, Nishihara-cho, Okinawa, Japan 903-0213.

April 6, 2003

¤The author was partially supported by grants BFM 2000-807 and BFM 2000-0598.

1



Abstract

We study the existence of moments and the tail behaviour of the densities of storage processes. We
give su¢cient conditions for existence and non-existence of moments using the integrability conditions
of submultiplicative functions with respect to Lévy measures. Then, we study the asymptotical
behavior of the tails of these processes using the concave or convex envelope of the release rate
function.

Keywords: dam process, storage process, subordinator, submultiplicative functions, subexponential-
ity.
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1 Introduction
Storage processes are stochastic processes fX(t)g de…ned through a stochastic di¤erential equation of the
type

X(t) = x ¡
Z t

0
r(X(s))ds + A(t): (1)

Here, A is an increasing stochastic process called input process and r is a non-negative function, usually
called the release rate. The solution of this type of stochastic di¤erential equation has applications in
storage systems theory, economics and insurance risk theory. For example, A can represent the amount
of items arriving at a storage, the amount of rain that a dam receives or the amount of stochastic interest
accrued by an account. The function r can represent the way and/or rate the stored items are sold or
delivered, how the water is released or the amount of money that is being used. Some references to
possible applications can be found as early as Kendall (1957) and in Desmukh and Pliska (1980).

In this article we are interested in a mathematical property related to storage processes with increas-
ing Lévy processes as inputs. That is, …rst we study the existence of moments and second, we study
asymptotics of tail probabilities of X .

We will study the nonexistence (in Section 3) and the existence (in Section 4) of E(g(X(t))) for a
positive function g. In various cases g will be a submultiplicative function. Power functions are particular
cases of submultiplicative functions. In fact, our results applied to these particular examples give the
following table:

r(y) = y® g(y) = y¯ Criteria
0 · ® · 1 ¯ > 0

R +1
1 y¯º (dy)

® > 1 ¯ < ® ¡ 1 always …nite
® > 1 ¯ = ® ¡ 1

R +1
1 log yº (dy)

® > 1 ¯ > ® ¡ 1
R +1
1 y¯¡®+1º (dy)

The above criteria determines which moments of X(t) are …nite or in…nite.
Although these results obviously give some information on the tail probabilities of these processes,

we give more precise asymptotics (exact order) of tail probabilities of storage processes via their Lévy
measures in Section 6. To do this, the concept subexponentiality ([3]) plays an important role. Our
results show that process of Ornstein-Uhlenbeck type (r(y) = ay case) occupies a critical position on
the tail behavior (Theorem 6.2). A result similar in part to one of our results (Theorem 6.3) has been
obtained by Grigoriu and Samorodnitsky [8] under a di¤erent assumption.

Articles related with the properties we study here are Asmussen (1998) where the tail behaviour of
the stationary distribution of storage processes and the distribution of the ruin time of risk processes
is investigated. In Sigman and Yao (1994) the existence of moments for storage processes is studied
although this study does not cover stable processes while ours does.

Possible applications of these results are in statistical properties of parameter estimators, simulation
and numerical analysis of these systems such as weak or strong approximation results.

2 Preliminaries
In this section we describe how to construct a solution to (1). For further details, we refer to [2]. We
assume the following hypotheses for r throughout the article.

(H0) r : [0; 1) ! [0; 1) such that r(0) = 0, r(x) > 0, for x > 0, left continuous and limy!x+ r(y) > 0
for all x > 0.

We call r(x) a release rate. Let fA(t)g be an increasing cadlag Lévy process such that A(0) = 0 and

E [e¡µA(t)] = expf
Z 1

0
t(e¡µy ¡ 1)º(dy)g; µ ¸ 0
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where º is a measure on (0; 1) satisfying

0 <
Z 1

0
(x ^ 1)º(dx) < 1:

This measure º is called the Lévy measure of fA(t)g.
The idea of the construction is to …rst treat the case of …nite number of jumps. This can be solved

explicitly pathwise. Finally one takes limits in the number of jumps in order to de…ne a solution to (1).
Consider …rst the simple case of ¸ = º (0;+1) < +1. Then the number of jumps of A is …nite in any

compact interval. Denote the jump times and the jump sizes by Tn and Yn , n = 1; :::, respectively. The
interarrival times are denoted by ¿n = Tn ¡ Tn¡1. In between two jumps X is a solution of an ordinary
di¤erential equation that can be written using some auxiliary function q which we de…ne now. Set

R(x; y) =
Z y

x

1
r(z)

dz

for 0 < x · y. De…ne R(0; y) := R(0+; y) · 1. Since the function R(x; y); for 0 < x · y; is continuous
and strictly decreasing in x, it has a continuous inverse R¡1

y (t) for t 2 [0; R(0; y)). De…ne q(t; y) by

q(t; y) =
½

R¡1
y (t) for 0 · t < R(0; y),

0 for R(0; y) · t (if R(0; y) < 1).

Then, q satis…es the following properties:

1. q(R(x; y); y) = x for 0 < x · y < 1 and R(q(t;y);y) = t for y > 0 and 0 · t < R(0; y).

2. q(t;y) is continuous, decreasing in t and increasing in y.

3. Since R(x; y) is nondecreasing and left di¤erentiable in x, q(t; y) is right di¤erentiable in t and it
satis…es ½

d+

dt q(t; y) = ¡r(q(t; y));
q(0; y) = y;

for x > 0 and 0 · t < R(x;0).

Under this situation the solution X of (1) is given by

X(0) = x
X(Tm) = q(¿m; X(Tm¡1)) + Ym (m ¸ 1);

X(t) = q(t ¡ Tm; X(Tm)) for Tm < t < Tm+1:

To solve the general situation with a general Lévy measure º, we set fAn(t)g for n ¸ 1 by

An(t) =
X

s·t

(A(s) ¡ A(s¡))1fA(s)¡A(s¡)> 1
ng:

Then, fAn(t)g is an increasing Lévy process with Lévy measure ºn(¢) = º(¢ \ ( 1
n ; 1)) with ¸n =

ºn(0; 1) < +1. For each n ¸ 1, there is unique process fXn(t)g satisfying (1). Since An(t) is nonde-
creasing in n, fXn(t)g is also nondecreasing in n. One can therefore de…ne X(t) = limn!1 Xn(t). Then,
fX(t)g satis…es (1) with driving noise fA(t)g. This process fX(t)g is called a storage process starting
at x corresponding to r and º. This process is a Hunt process. We call the Lévy process fA(t)g input
process of fX(t)g. We denote X (t) starting at x by X(t;x) if necessary. For uniqueness and any further
details we refer the reader to [2].

We denote the distribution of the i.i.d. random variables Yn by Fn = ¸¡1
n ºn. The random variables

¿k = Tk ¡ Tk¡1, k ¸ 1 are i.i.d. with identical density ¸ne¡¸nt . The sequences fYkg and f¿kg are
mutually independent.
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3 Non-existence of moments
In this and the next sections, we study relations between the tail behavior of the Lévy measure and the
existence of the moments of fX(t)g. We show that there is a remarkable di¤erence between the two casesR 1
1

1
r(y) dy < 1 and

R 1
1

1
r(y) dy = 1 (Examples 3.1 » 4.2. See also the table in the Introduction).

Lemma 3.1 Let g be a nonnegative and nondecreasing function on [0;1). Let ¸ = º((1; 1)). Then

E[g(X(t; x))] ¸ g(q(t; x))e¡¸t +
Z 1

1
f
Z t

0
e¡¸sg(q(s;y))dsgº(dy)

for all x; y ¸ 0.

Proof Let fX1(t)g be a storage process corresponding to fA1(t)g de…ned in Section 2. Then X(t; x) ¸
X1(t; x) and we have

E [g(X(t; x))] ¸ E [g(X1(t; x))]

=
1X

n=0

E [g(X1(t; x)) : Tn · t < Tn+1]:

Since
X1(t; x) ¸ q(t ¡ Tn; q(Tn; x) + Yn) on fTn · t < Tn+1g,

we have
E[g(X1(t; x)) : t < T1] = g(q(t; x))e¡¸t

and

E [g(X1(t;x)) : Tn · t < Tn+1]
¸ E [g(q(t ¡ Tn; q(Tn ; x) + Yn )) : Tn · t < Tn+1]

for all n ¸ 1 and for all x; t ¸ 0. We have, for n ¸ 1,

E[g(q(t ¡ Tn ;q(Tn; x) + Yn)) : Tn · t < Tn+1]

= e¡¸t
Z 1

1

³ Z t

0

(¸s)n¡1

(n ¡ 1)!
g(q(t ¡ s;q(s; x) + y))ds

´
º(dy):

Hence we have

E [g(X(t; x))] ¸ g(q(t; x))e¡¸t + e¡¸t
Z 1

1

¡ Z t

0
e¸sg(q(t ¡ s;y))ds

¢
º(dy)

¸ g(q(t; x))e¡¸t +
Z 1

1

¡ Z t

0
e¡¸sg(q(s; y))ds

¢
º(dy):

Hence we have the lemma. 2

First, we give su¢cient conditions for non-existence of moments.

Theorem 3.1 Let g be a nonnegative and nondecreasing function de…ned on [0; 1). If there is v > 0
such that Z 1

1

¡ Z y

q(v;y)

g(z)
r(z)

dz
¢
º (dy) = 1;

then
E[g(X(t; x))] = 1 for all x ¸ 0 and for all t ¸ v.
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Proof We have, by Lemma 3.1, for any x ¸ 0,

E[g(X(t; x))] ¸ E [g(X1(t; x))]

¸ e¡¸t
Z 1

1

¡ Z y

q (t;y)

g(z)
r(z)

dz
¢
º (dy) = 1

for t ¸ v. Here we used the change of variable z = q(s; y). 2

Remark 3.1 In the conclusion of Therem 3.1, we can not substitute “for t ¸ v” to “for all t > 0”. We
give a counter example. Let r(y) · r for y ¸ 0, º(dy) = e¡y

y dy for y > 0 and

g(y) =
½

ey for y < 0
(y¡1 ^ 1)ey for y ¸ 0.

Note that

x ¡ rt + A(t) · X(t; x) · x + A(t): (2)

The distribution P (t; dy) of x ¡ rt + A(t) is 1
¡(t) (y ¡ x + rt)t¡1e¡(y¡x+rt)dy. Hence

Z 1

0
g(y)P (t; dy) =

1
¡(t)

Z 1

x¡rt
g(y)(y ¡ x + rt)t¡1e¡(y¡x+rt)dy

= C(t; x)
Z 1

0
(y¡1 ^ 1)(y ¡ x + rt)t¡1dy + D(t; x)

½
< 1 for t < 1,
= 1 for t > 1,

where 0 < C(t; x) < 1 and 0 · D(t; x) < 1 for every t ¸ 0. Then by (2), we have

E [g(X(t; x))]
½

< 1 for t < 1,
= 1 for t > 1.

Theorem 3.1 may not be suitable for direct application due to the necessity of computing q(s; y) in order
to check that the condition is valid. One can simplify the above restriction if more conditions are assumed
like the following corollaries.

Corollary 3.2 Assume that r(y) = O(y) as y ! 1 and g is a nonnegative and nondecreasing function
on [0; 1) such that, for any 0 < a · 1 and y > 0, g(ay) ¸ c(a)g(y) with c(a) > 0. If for

Z 1

1
g(y)º (dy) = 1

then, E [g(X(t; x))] = 1 for all x ¸ 0; t > 0.

Proof Note that
Z 1

1

1
r(y)

dy < 1 if and only if q(t; 1) = lim
y!1

q(t; y) < 1 for all t > 0:

(3)

By the assumption, there is M > 0 and y0 such that

1
r(y)

¸ 1
My
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for y ¸ y0. Hence limy!1 q(t; y) = 1 for any t > 0. Fix t0 > 0 arbitrarily. Choose y1 > 0 so that
q(t0; y1) ¸ y0. Note that q(t; y) ¸ y0 for y ¸ y1 and t · t0. By the de…nition of q(t; y), we have

t =
Z y

q (t;y)

1
r(z)

dz ¸ 1
M

Z y

q(t;y)

1
z
dz =

1
M

log
y

q(t;y)

for y ¸ y1 and t · t0. Hence, q(t; y) ¸ ye¡Mt for all t 2 [0; t0] and all y ¸ y1. We have, by the
assumption, Z y

q(t;y)

g(z)
r(z)

dz ¸ g(q(t; y))
Z y

q(t;y)

1
r(z)

dz ¸ tc(e¡Mt)g(y)

for y ¸ y1 and 0 · t · t0. Hence
Z 1

1

¡ Z y

q (t;y)

g(z)
r(z)

dz
¢
º(dy) ¸ tc(e¡Mt)

Z 1

y1

g(y)º (dy) = 1

for 0 < t · t0. Then, by Theorem 3.1,

E [g(X(t; x))] = 1 for all x ¸ 0 and for all t > 0.2

Example 3.1 Let r(y) = cy® (® · 1) and g(y) = y¯ (¯ > 0). If
R 1
1 y¯º (dy) = 1, then E(X(t; x)¯ ) = 1

for x ¸ 0; t > 0 by Corollary 3.2.

Corollary 3.3 Assume that
R 1
1

1
r(y)dy < 1 and g is a nonnegative and nondecreasing function on

[0; 1). If Z 1

1

¡ Z y

1

g(z)
r(z)

dz
¢
º (dy) = 1;

then
E [g(X(t; x))] = 1 for all x ¸ 0; t > 0.

Proof Note that due to (3), we have that q(t; 1) < 1 for any t > 0. Without loss of generality we
assume that q(t; 1) > 1. Then for y > q(t; 1)

Z y

q(t;y)

g(z)
r(z)

dz ¸
Z y

q (t;1)

g(z)
r(z)

dz:

Then conclusion holds by Theorem 3.1. 2

Example 3.2 Let r(y) = y® (® > 1), g(y) = y¯ (¯ > 0) and ¯ > ® ¡ 1. If
Z 1

1
y¯¡®+1º(dy) = 1;

then
E[X(t; x)¯ ] = 1 for all x ¸ 0; t > 0

by Corollary 3.3.
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4 Existence of moments
So far, we have studied su¢cient conditions for non-existence of moments of X(t). Now, we give suf-
…cient conditions for the existence of moments. Let x0 ¸ 0. We say that a function g on [x0; 1) is
submultiplicative on [x0; 1) if it is nonnegative and there is a constant a > 0 such that

g(y + z) · ag(y)g(z) for y; z ¸ x0:

Lemma 4.1 Suppose that g(y) is a nonnegative and nondecreasing function on [0; 1) which is submul-
tiplicative on [x0; 1), where x0 ¸ 0. Then,

R 1
1 g(z)º(dz) < 1 if and only if E[g(A(t))] < 1 for all

t ¸ 0.

Proof Under the assumption of the lemma, necessary facts for the proof of Theorem 25.3 of [12] hold.
2

Theorem 4.1 Let x0 ¸ 0 and let g(y) be a nonnegative and nondecreasing function on [0; 1) which is
submultiplicative on [x0; 1). Then

R 1
1 g(z)º (dz) < 1 implies

E [g(X(t; x))] < 1 for all x ¸ 0; t > 0.

Proof Note that X(t; x) · x + A(t) for all t ¸ 0. By Lemma 4.1,

E[g(A(t))] < 1:

This yields the conclusion. 2

Example 4.1 Let g(y) = y¯ with ¯ > 0 and r satisfying (H0). If
Z 1

1
y¯º (dy) < 1; (4)

then, by Theorem 4.1, E[X(t; x)¯ ] < 1 for all x ¸ 0; t > 0.

In the case r(y) = y® , ® > 1, conditions weaker than (4) are su¢cient for the existence of moments
of fX(t)g of order ¯. Next three theorems treat this case.

Theorem 4.2 Assume that º ((0;1)) < 1. Let g be a nonnegative and nondecreasing function on
[0; 1). Suppose that there is x0 > 0 and C ¸ 0 such that G(y) =

R y
x0

g(z)
r(z) dz + C is submultiplicative on

[x0; 1). Then Z 1

x0

G(y)º (dy) < 1

implies
E [g(X(t; x))] < 1 for all x ¸ 0; t > 0:

Proof Let ¸ = º((0; 1)) and F (dy) = 1
¸ º (dy). We de…ne f¿kg, fYkg, fTkg as Section 2 for fX(t)g.

Choose x so that x > x0. Note that

E [g(X(t; x)) : 0 · t < T1] = g(q(t; x))e¡¸t
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and, for n ¸ 1,

E [g(X(t; x)) : Tn · t < Tn + ¿n+1]
= E [g(q(t ¡ Tn; X(Tn¡; x) + Yn)) : Tn · t < Tn + ¿n+1]
· E [g(q(t ¡ Tn; x + Y1 + ¢ ¢ ¢ + Yn)) : Tn · t < Tn + ¿n+1]

=
Z 1

0
¢ ¢ ¢

Z 1

0

© Z t

0
e¡¸(t¡s)g(q(t ¡ s; x + y1 + ¢ ¢ ¢ + yn))P (Tn 2 ds)

ª
F (dy1) ¢ ¢ ¢ F (dyn )

=
¸ne¡¸t

(n ¡ 1)!

Z 1

0
¢ ¢ ¢

Z 1

0

© Z t

0
g(q(t ¡ s; x + y1 + ¢ ¢ ¢ + yn))sn¡1ds

ª
F (dy1) ¢ ¢ ¢ F (dyn)

· ¸n tn¡1e¡¸t

(n ¡ 1)!

Z 1

0
¢ ¢ ¢

Z 1

0

© Z t

0
g(q(s;x + y1 + ¢ ¢ ¢ + yn))ds

ª
F (dy1) ¢ ¢ ¢ F (dyn)

=
¸n tn¡1e¡¸t

(n ¡ 1)!

Z 1

0
¢ ¢ ¢

Z 1

0©
G(x + y1 + ¢ ¢ ¢ + yn) ¡ G(q(t; x + y1 + ¢ ¢ ¢ + yn))

ª
F (dy1) ¢ ¢ ¢ F (dyn)

· ¸n tn¡1e¡¸t

(n ¡ 1)!

Z 1

0
¢ ¢ ¢

Z 1

0

©
G(x + y1 + ¢ ¢ ¢ + yn) ¡ G(q(t; x))

ª
F (dy1) ¢ ¢ ¢ F (dyn):

Since G(y) is submultiplicative on [x0; 1), there is c > 0 such that

G(x + y1 + ¢ ¢ ¢ + yn) · cn¡1
nY

i=1

G(x + yi):

Also by the submultiplicativity,
Z 1

0
G(x + y)F (dy) ·

Z x0

0
G(x + y)F (dy) + cG(x)

Z 1

x0

G(y)F (dy) =: K < 1:

Then, we have

E[g(X(t; x)) : Tn · t < Tn + ¿n+1] · ¸ntn¡1e¡¸t

(n ¡ 1)!
fK(cK )n¡1 ¡ G(q(t; x))g:

Hence,

E[g(X(t; x))] · g(q(t; x))e¡¸t + ¸
1X

n=1

(¸t)n¡1

(n ¡ 1)!
e¡¸tfK(cK)n¡1 ¡ G(q(t; x))g

= g(q(t; x))e¡¸t + ¸Ke¸t(cK¡1) ¡ ¸G(q(t; x)):

To prove the …niteness of the above expectation is enough to prove that G(q(t; x)) can not take the value
¡1. This is only possible if q(t; x) = 0. In such a case

R x
0

1
r(z) dz < 1 which implies that G(0) > ¡1.

Therefore E [g(X(t; x))) < 1 for x ¸ x0. To conclude for x < x0 is enough to note that X(t; x) · X(t; x0)
for 0 · x < x0: 2

In the previous result we had to assume that the Lévy measure was …nite, in the next we exchange
this condition with a restriction on r and further restriction on g.

Theorem 4.3 Assume that r is nondecreasing. Let g be a nonnegative and nondecreasing on [0; 1).
Suppose that there is x0 > 0 and C ¸ 0 such that both g(y) and G(y) =

R y
x0

g(z)
r(z) dz + C are submulti-

plicative on [x0; 1). Then Z 1

x0

G(y)º (dy) < 1
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implies
E [g(X(t; x))] < 1 for x ¸ 0; t > 0.

Proof Let A(t) be an input process with Lévy measure º. Let

A1(t) =
X

s·t

fA(s) ¡ A(s¡)g1fA(s)¡A(s¡)>1g

and let X1(t; x) be the storage process starting at x with input process A1(t). Then fX1(t; x)g satis…es

X1(t; x) = x ¡
Z t

0
r(X1(s; x))ds + A1(t):

Since X(t; x) ¸ X1(t; x) and r is nondecreasing, we have

X(t;x) ¡ X1(t; x) = ¡
Z t

0
fr(X(s; x)) ¡ r(X1(s; x))gds + A(t) ¡ A1(t)

· A(t) ¡ A1(t):

By the submultiplicativity and nondecreasingness of g, we have

E[g(X(t; x))] · E [ag(x0 + X(t; x) ¡ X1(t; x))g(x0 + X1(t; x))]
· E [ag(x0 + A(t) ¡ A1(t))g(x0 + X1(t;x))]
= aE [g(x0 + A(t) ¡ A1(t))]E[g(x0 + X1(t; x))]

where a > 0 is the constant of submultiplicativity of g. Here, we also used the mutual independence of
A ¡ A1 and X1. By Lemma 4.1 (note that the Lévy process A ¡ A1 has a Lévy measure with bounded
support),

E [g(x0 + A(t) ¡ A1(t))] < 1 for t > 0.

Now we prove the …niteness of E [g(x0 + X1(t; x))]. If X1(t; x) · x0, then g(x0 + X1(t; x)) · g(2x0). If
X1(t; x) > x0 then g(x0 + X1(t; x)) · ag(x0)g(X1(t; x)). In any case,

g(x0 + X1(t; x)) · g(2x0) + ag(x0)g(X1(t; x))

By the preceding Theorem, we have

E[g(x0 + X1(t; x))] < 1 for all t > 0:

We get the conclusion. 2

If we assume convexity of r, condition on g for the existence of g-moment of X becomes quit simple.
In order to show this, we prepare two lemmas.

Lemma 4.2 If r is convex on [0; 1), then q(t; y + z) · q(t; y) + q(t; z) for all t; y; z ¸ 0.

Proof Since r is convex on [0; 1) and r(0) = 0,
R y

0+
1

r(z) dz = 1 for all y > 0. Then

Z y

q(t;y)

1
r(z)

dz = t
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for all y > 0 and t ¸ 0. Hence q(t; y) is left di¤erentiable in y > 0 and the left derivative @¡

@y q(t;y) satis…es
the equation

1
r(y)

¡ 1
r(q(t; y))

@¡

@y
q(t; y) = 0:

Hence
@¡

@y
q(t; y) =

r(q(t; y))
r(y)

:

Since r is convex, r has a nondecresing left derivative r¤. Hence @¡
@y q(t; y) has a left derivative which

satis…es

(
@¡

@y
q(t;y))¤ = r(q(t; y))

r¤(q(t; y)) ¡ r¤(y)
r(y)2

· 0 a.e. y > 0.

Here, we used q(t; y) · y. Hence q(t;y) is concave in y. Since

q(t; y + z) ¡ q(t; y) =
Z z

0

@¡

@u
q(t; y + u)du;

we have

q(t; y + z) ¡ q(t; y) ¡ q(t; z) =
Z z

0
f@¡

@u
q(t;y + z) ¡ @¡

@u
q(t; u)gdu

· 0

for all y; z; t ¸ 0, by concavity of q . 2

Remark 4.1 Assume that r is convex on [0; 1). Let z(t) be a nonnegative nondecreasing step function
on [0; 1). De…ne x(t; z) by

x(t; z) = ¡
Z t

0
r(x(s; z))ds + z(t): (5)

Let z0(t) = x and z1(t) = z11[t1 ;1)(t) for x; z1 ¸ 0 and t 2 [0; 1). Then, by Lemma 4.2,

x(t; z0 + z1(¢)) = q(t ¡ t1; q(t1; x) + z1) · q(t; x) + q(t ¡ t1;z1) = x(t; z0) + x(t; z1)

for t ¸ t1. The above inequality also holds for t < t1. In the same way, for nonnegative and nondecreasing
step functions z1(t) and z2(t) with …nite steps up to t, we have

x(t; z1 + z2) · x(t; z1) + x(t; z2):

Taking a limit, we have the above inequality for all nonnegative and nondecreasing step functions z1(t)
and z2(t). This shows that the storage process X(t; x) is a subadditive functional of x + A provided that
r is convex on [0; 1) ([11]).

Let Y (t; x) be a nonnegative random variable with Laplace transform

E[expf¡µY (t; x)g] = exp[¡µq(t; x) +
Z 1

0
f
Z t

0
(e¡µq(s;y) ¡ 1)dsgº (dy)]: (6)

The integral of the right side of the above equality is well de…ned since q(t; y) · y. It may be interesting
that Y (t; x) is represented as

Y (t; x) = q(t; x) +
Z

(0;t]
q(t ¡ s; dA(s))

= q(t; x) +
Z

[0;t]£(0;1)
q(s; y)N (dsdy)
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in law. Here,
Z

(0;t]
q(t ¡ s; dA(s)) := lim

n!1

X

0<s·t;A(s)¡A(s¡)>1=n

q(t ¡ s; A(s) ¡ A(s¡))

and N is a Poisson random measure on [0; t] £ (0; 1) with intensity measure dsº(dy). The stochastic
integral

R
(0;t] q(t¡s; dA(s)) can be regarded as a natural extension of the stochastic integral representationR

(0;t] e
¡a(t¡s)dA(s) of process of Ornstein-Uhlenbeck type (that is when r(y) = ay, see [13]).

For two random variables X;Y , it is said that X ¸ Y in stochastic ordering sense if P (X > y) ¸
P (Y > y) for all y ([5]).

Lemma 4.3 If r is convex on [0; 1), then

X(t;x) · Y (t;x)

for all x; t ¸ 0 in stochastic ordering sense.

Proof First, we assume that ¸ = º((0; 1)) < 1. Let Nt be a Poisson process with intensity ¸. Since
X is a subadditive functional of x + A, we have that

X(t; x) · q(t; x) + q(t ¡ T1;Y1) + ¢ ¢ ¢ + q(t ¡ TNt; YNt)

= q(t; x) +
Z

[0;t]£(0;1)
q(t ¡ s; y)N (dsdy):

Now, assume that ¸ = 1. Let Xn(t; x) be a storage process de…ned in Section 2 via An(t). Then

Xn(t; x) · q(t;x) +
Z

[0;t]£(1=n;1)
q(s; y)N (dsdy)

in stochastic ordering sense , Xn(t; x) " X(t; x) and

q(t; x) +
Z

[0;t]£(1=n;1)
q(s; y)N (dsdy) " q(t; x) +

Z

[0;t]£(0;1)
q(s; y)N (dsdy)

a.s. as n ! 1. Hence X(t; x) · Y (t; x) in stochastic ordering sense. 2

Theorem 4.4 Assume that r is convex on [0;1). Let g be a nonnegative and nondecreasing function
on [0; 1) such that g is submultipicative on an interval [x0; 1), (x0 > 0). If

Z 1

x0

³ Z y

x0

g(z)
r(z)

dz
´
º(dy) < 1; (7)

then

E[g(X(t; x))] < 1 for all x ¸ 0; t > 0: (8)

Proof We de…ne z(t; x) by

z(t; x) = supfz > 0 :
Z z

x

1
r(u)

du · tg (9)

12



for x > 0. If (7) holds, then
Z 1

0

³ Z t

0
1fq(s; y) ¸ x0gg(q(s; y))ds

´
º(dy)

=
Z z(t;x0)

x0

³ Z y

x0

g(z)
r(z)

dz
´
º(dy) +

Z 1

z(t;x0)

³ Z y

q (t;y)

g(z)
r(z)

dz
´
º (dy)

·
Z 1

x0

³ Z y

x0

g(z)
r(z)

´
º (dz) + tº((z(t; x0); 1)) < 1:

Hence by Lemma 4.1 and 4.3, we get (8). 2

Example 4.2 Let g(y) = y¯ and r(y) = y® (® > 1; ¯ > 0). Then by Theorem 4.3 or 4.4 we have that in
the following cases E [X(t;x)¯ ] < 1 for all x ¸ 0; t > 0:

(a) If ¯ < ® ¡ 1.
(b) If ¯ = ® ¡ 1 and

R 1
1 log yº(dy) < 1.

(c) If ¯ > ® ¡ 1 and
R 1

1 y¯¡®+1º (dy) < 1.

5 Examples
In all the previous examples we always used power functions. Here we exhibit functions g and G which
are not power functions and satisfy the assumptions of previous Theorems and Corollaries.

Example 5.1 Let g(y) be a function of the form

g(y) = c(y) expf
Z y

1

²(u)
u

dug;

where 0 < c1 · c(y) · c2 and 0 < ²(y) · c3 for all y ¸ 0.
(a) For 0 < a < 1 and y > 0,

g(ay)
g(y)

=
c(ay)
c(y)

expf¡
Z y

ay

²(u)
u

dug ¸ c1

c2
ac3 :

Hence g(¢) satis…es the assumption of Corollary 3.2 provided that c(¢) is nondecreasing.
(b) Suppose additionally that ²(u)

u is nonincreasing on [1; 1), then, for y; z ¸ 1,

g(y + z) = c(y + z) expf
Z y+z

1

²(u)
u

dug

=
c(y + z)
c(y)c(z)

g(y)g(z) expf(
Z y+z

y
¡

Z z

1
)
²(u)
u

dug

=
c(y + z)
c(y)c(z)

g(y)g(z) expf
Z z+1

1

²(w + y ¡ 1)
w + y ¡ 1

dw ¡
Z z

1

²(u)
u

dug

· c(y + z)
c(y)c(z)

g(y)g(z) expf
Z z+1

z

²(u)
u

dug

· 2c3c2

(c1)2
g(y)g(z);

that is, g is submultiplicative on [1; 1). Hence g(y) satis…es the assumption of Theorem 4.1 provided
that c(¢) is nondecreasing.
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Example 5.2 Let c > 0 and ® > 0 be two …xed constants. Let ²(y) be a nonnegative and nondecreasing
function on [1; 1) such that limy!1 ²(y) = ¯ > 0, ²(1)+ 1 ¡ ® > 0 and

R 1
1

¯¡²(u)
u du < 1. De…ne g and

G by

g(y) =
½

c(²(y) + 1 ¡ ®) expfR y
1

²(u)
u dug for y > 1,

c(²(1) + 1 ¡ ®); for 0 · y · 1

and
G(y) =

Z y

1
z¡®g(z)dz for y ¸ 1,

respectively. Then,

G(y) = c expf
Z y

1

²(u) ¡ ® + 1
u

dug ¡ c for y ¸ 1:

The function g is nonnegative and nondecreasing on [0; 1). Let y; z ¸ 1. Then,
Z y+z

y

²(u)
u

du ¡
Z z

1

²(u)
u

du =
Z z

0

²(y + u)
y + u

du ¡
Z z

1

²(u)
u

du

·
Z 1

0

¯
y + u

du +
Z z

1

¯
u

du ¡
Z z

1

²(u)
u

du

= ¯ log
y + 1

y
+

Z z

1

¯ ¡ ²(u)
u

du

· ¯ log 2 +
Z 1

1

¯ ¡ ²(u)
u

du < 1:

Repeating similar calculations as in example 5.1 we obtain the submultiplicativity of g(y) on [1; 1). In
the same way, we have the submultiplicativity of G(y) on [1; 1). Hence g(y) satis…es the assumptions in
Theorems 4.3 and 4.4 with x0 = 1 and r(y) = y®.

Examples 5.1 and 5.2 are slight departures of functions g that are of polynomial type. The following
introduces a similar study for exponential type functions.

Example 5.3 Let r(y) = y® (® > 0). Then, g(y) = y®eay , (a > 0), satis…es the assumption of
Theorem 4.1 with x0 = 1. Also, G(y) = a¡1eay satis…es the assumption of Theorem 4.3 and Theorem
4.4 with x0 = 1. Here one can also extend these examples to generate a similar class as in Examples
5.1 and 5.2. In fact, if g(y) = c(y) exp(

R y
1 f (u)du) for a submultiplicative function c and a positive

function f nonincreasing and bounded then g is submultiplicative in [1; 1). Similarly, one has that if
g(y) = (f (y) ¡ ®

y ) exp(
R y

1 f (u)du) for f (y) ¡ ®
y bounded above and below by positive constants then g

and G are submultiplicative functions in [1; 1).

6 Tail probability
In this section, we discuss tail probabilities of storage processes.

Lemma 6.1 For all x; t ¸ 0,
P (X(t; x) > y) · P (x + A(t) > y):

Proof It is obvious by the inequality X(t;x) · x + A(t). 2
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Lemma 6.2 If r is concave on (0; 1), then

q(t; y + z) ¸ q(t; y) + q(t;z)

for all y; z > 0 and t ¸ 0.

Proof We have Z y

q(t;y)

1
r(z)

dz = t for y > z(t; 0+).

As in the proof of Lemma 4.2,
q(t; y + z) ¡ q(t; y) ¡ q(t; z) ¸ 0

for y; z > z(t; 0+) and t ¸ 0. If 0 · y · z(t;0+), then

q(t; y) + q(t; z) = q(t; z) · q(t; y + z)

by nondecreasingness of q(t; y) in y ¸ 0. 2

Lemma 6.3 If r is concave on (0; 1), then

X(t;x) ¸ Y (t;x)

in stochastic ordering sense for all x; t ¸ 0, where Y (t; x) is de…ned by (6).

Proof The proof is accomplished using the same argument as the proof of Lemma 4.3 using Lemma
6.2. 2

Let Q(y) =
R 1

0 (
R t
0 1(y;1)(q(s; z))dsº(dz) for y > 0.

Lemma 6.4 (a) If r is bounded and º((y + z; 1))=º ((y; 1)) ! 1 as y ! 1 for every z ¸ 0, then

Q(y) » tº ((y; 1))

(b) If r(y) = o(y) and º (((1 + o(1))y; 1) » º((y; 1)) as y ! 1, then

Q(y) » tº ((y; 1))

(c) If r(y) = O(y) as y ! 1 and º((y; 1)) is slowly varying at in…nity, then

Q(y) » tº((y; 1)):

(d) If r(y) » ay as y ! 1 and º((y;1)) = y¡¯L(y), (a;¯ > 0) where L(y) is slowly varying at in…nity,
then

Q(y) » 1 ¡ e¡a¯t

a¯
y¡¯L(y):

(e) If
R 1
1

1
r(y) dy < 1, then

Q(y) »
Z 1

y

º((z; 1))
r(z)

dz:
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Proof We have

Q(y) =
Z 1

0

¡ Z t

0
1fq(s; z) > ygds

¢
º(dz)

=
Z

(y;z(t;y))

³ Z z

y

1
r(u)

du
´
º(dz) + t

Z

[z(t;y);1)
º (dz)

=
Z z(t;y)

y

1
r(z)

º ((z; 1))dz: (10)

Hence

tº ((z(t; y); 1)) · Q(y) · tº((y; 1)): (11)

Note that in cases (a) » (d),
R 1
1

1
r (u) du = 1. (a) If there is M > 0 such that r · M on [0; 1), then

y · z(t; y) · y + Mt. By Lemma 1 (a) in [6], º((z(t; y); 1)) » º((y; 1)). By (11), we get the conclusion.
(b) For any ² > 0, there is z0 > 0 such that r(u) < ²u for all u > z0. Then 1

r (u) > 1
²u for all u > z0. Hence

t ¸
R z(t;y)

y
1
²u du. This yields 1 · z(t;y)

y · e²t . By the assumption on º , º ((z(t; y); 1)) » º ((y; 1)). We
get the conclusion by (11).
(c) There is M > 0 and z0 > 0 such that

1
r(u)

¸ 1
Mu

for u ¸ z0. By the argument in the proof of (a), z(t;y)
y · eMt . Since º is slowly varying, º((z(t; y); 1)) »

º((y; 1)). We get the conclusion by (11).
(d) For any ² > 0, there is y0 > 0 such that (1 ¡ ²)ay · r(y) · (1 + ²)ay for y > y0. By (10),

(1 + ²)¡1
Z z(t;y)

y

º((z; 1))
az

dz · Q(y)

· (1 ¡ ²)¡1
Z z(t;y)

y

º ((z; 1))
az

dz

for y > y0. As º((z; 1)) » z¡¯L(z), we have

Q(y) »
Z 1

y

1
a
z¡1¡¯L(z)dz ¡

Z 1

z(t;y)

1
a
z¡1¡¯L(z)dz

as y ! 1. Hence

Q(y) » 1
a¯

³
y¡¯L(y) ¡ z(t; y)¡¯L(z(t; y))

´

as y ! 1. Since z(t; y) » yeat as y ! 1,

Q(y) » 1 ¡ e¡a¯t

a¯
y¡¯L(y)

as y ! 1.
(e) Since

R 1
1

1
r(z) dz < 1, q(t; 1) < 1 for any t > 0 and z(t;y) = 1 for y ¸ q(t; 1). We have

Q(y) =
Z 1

y

1
r(z)

º((z; 1))dz:

2
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A probability measure P on [0; 1) is said to be subexponential ([3]) if

lim
y!1

P 2¤((y;1))
P ((y; 1))

= 2

holds. Note that if P ((y; 1)) is regularly varying at in…nity with nonpositive exponent, then P is
subexponential by Corollary on p. 279 of [7].

Theorem 6.1 Assume that r is concave and º j(1;1)=º(1; 1) is subexponential. If r is bounded or,
r(y) = o(y) and º (((1 + o(1))y; 1)) » º((y; 1)) as y ! 1, then

P (X (t; x) > y) » tº((y; 1))

as y ! 1, for all x; t ¸ 0.

Proof Let fA(t)g be an input process of fX(t; x)g. Since r is concave, we have

P (Y (t; x) > y) · P (X(t; x) > y) · P (A(t) > y ¡ x): (12)

By Lemma 6.4 (a), (b) and Theorem 1 ([6]), we have

P (Y (t; x) > y) » t
Z 1

y
º(dz):

By Theorem 1 ([6]) and Lemma 1 ([6]), we have

P (A(t) > y ¡ x) » t
Z 1

y¡x
º(dz)

» t
Z 1

y
º (dz):

2

Theorem 6.2 (a) If r is concave on (0;1), r(y) » ay (a > 0) as y ! 1 and º ((y; 1)) = L(y), then

P (X(t; x) > y) » tL(y)

and
(b) if r is convex on [0; 1), r(y) » ay and º ((y; 1)) = y¡¯ L(y) (¯ > 0), then

P (X(t; x) > y) » 1 ¡ e¡a¯t

a¯
y¯L(y)

as y ! 1 for all x; t ¸ 0. Here L(y) is a function slowly varying at in…nity.

Proof (a) Note that (12) holds. By Lemma 6.4 (c), we have

P (X(t; x)) » tL(y) as y ! 1.

(b) By Lemma 6.4 (d),

Q(y) » 1 ¡ e¡a¯t

a¯
y¯L(y) as y ! 1.
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Let
Ay = f(s; u) 2 [0; t] £ (0; 1) : x(t; u1[s;1)(¢)) > yg;

where x(t; z) is a functional of a nonnegative and nondecreasing step function z de…ned by (5). Note that
Z

(0;1)

Z t

0
1Ay((s; u))dsº(du) = Q(y):

Since X(t; x) is a subadditive functional of x + A and a probability measure ¡Q(dy)=Q(1) on (1; 1) is
subexponential,

P (X(t; x) > y) » Q(y)
as y ! 1 by Theorem 3.1 and Example (Lévy motion) in [11]. We get the conclusion. 2

Theorem 6.3 If r is convex and a probability measure ¡Q(dy)=Q(1) on (1; 1) is subexponential, then

P (X(t; x) > y) »
Z z(t;y)

y

º((z; 1))
r(z)

dz

as y ! 1 for all x ¸ 0 and t > 0. Under an additional assumption
R 1
1

1
r(y) dy < 1,

P (X(t; x) > y) »
Z 1

y

º((z; 1))
r(z)

dz

as y ! 1 for all x ¸ 0 and t > 0.

Proof As in the proof of Theorem 6.2 (b), we have

P (X(t; x) > y) » Q(y)

as y ! 1. By (10),

P (X(t; x) > y) »
Z z(t;y)

y

º((z; 1))
r(z)

dz

as y ! 1. If
R 1
1

1
r(y) dy < 1, then we have by Lemma 6.4 (e), that

P (X(t; x) > y) »
Z 1

y

º((z; 1))
r(z)

dz

as y ! 1.2

Remarks
1a. In Theorems 4.2-4.4, assumptions for r can be relaxed as follows: There exists a function r¡ such
that r¡ · r and the assumptions on r are replaced by the same ones where r is replaced by r¡.
1b. Additionally, if one assumes that

Z 1

y

º ((z; 1))
r(z)

dz »
Z 1

y

º((z; 1))
r¡(z)

dz

as y ! 1 then Theorem 6.3 is also satis…ed.
2. In Theorem 6.1, assumptions for r can be relaxed as follows: There exists a function r+ such that
r+ ¸ r and the assumptions on r are replaced by the same ones where r is replaced by r+ .
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