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ABSTRACT 
 

We propose a model and solution methods, for locating a fixed number of 

multiple-server, congestible common service centers or congestible public 

facilities. Locations are chosen so to minimize consumers’ congestion (or 

queuing) and travel costs, considering that all the demand must be served. 

Customers choose the facilities to which they travel in order to receive service 

at minimum travel and congestion cost. As a proxy for this criterion, total travel 

and waiting costs are minimized. The travel cost is a general function of the 

origin and destination of the demand, while the congestion cost is a general 

function of the number of customers in queue at the facilities. 
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1. Introduction and literature review 
 
Some large organizations, with geographically distributed or extensive facilities, have 
internal clients (workers) that must receive some service at centers belonging to the same 
company. These centers must be located in such a way that people working at any facility 
can use them; workers have to travel from their workplaces to these centers and wait until 
served. In this case, the companies may want to minimize the cost associated with the time 
spent by their workers both traveling to, and waiting in lines at these centers. An instance of 
this setting is a large university campus with many buildings, where food or similar 
services need to be located to serve all workers and students. The same situation occurs 
when there are common service centers established as joint ventures by their users. 
Examples are the co-op stores; the users want to have the centers as close as possible to 
them, and to receive a fast service. Otherwise, the benefit of having established the 
common centers or stores may not be clear to some of them. More examples can be found 
among public services, electrical utilities, phone companies, and so on, with geographically 
distributed offices. Although the total demand for attention at these offices does not depend 
on the locations or number of service centers, the providers may wish to promote a good 
image, by minimizing customers’ inconvenience (or cost) related to travel and waiting time. 
In turn, each individual user or customer minimizes her/his own travel and waiting costs 
when seeking service. Assuming the customers of the services under study are a small part 
of all the people traveling over the network, travel costs depend only on the distance or the 
time it takes to the customer to go from her/his starting point to the center she/he chooses. 
However, waiting costs depend jointly on the decisions made by all customers. In fact, the 
more customers decide to patronize some center, the more congested it becomes, so the 
waiting time of all the customers using this center increases. Furthermore, the cost that 
customers assign to the time they spend traveling may be very different to the cost they 
assign to the time spent waiting at the center. Also, different types of services can have 
different cost functions associated to travel and waiting. Finally, different customers could 
potentially have different perceptions of the cost of time (cost functions). 
All these facts must be taken into account when the company, service or group of users 
have to decide on how many centers to open, where to locate them, and how many servers 
(clerks, attendants, cashiers, machines) to allocate to each one of them, so to minimize the 
travel and waiting cost functions. We propose a method for making these decisions.  
A very good review of published models, as well as some additional models for location on 
congested networks, is presented in Brandeau et al (1995). The models cover several types 
of demand (elastic or inelastic to congestion and travel time) and assignment of customers 
to facilities (either forced by a central planner or made by user choice). In most cases of 
inelastic demand, the models locate one, or at most two facilities. In all cases, additional to 
travel distance or time, the queuing delay is the main issue, as opposed to the number of 
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customers in the system. As we will show later, formulas of queuing delay are more 
difficult to handle than formulas of number of customers in the system, although delay and 
number of customers are related and consequently, are equivalent.  
Lately, additional models for location of congested facilities have been published. 
Marianov and Serra (1998, 2001), rather than minimizing waiting time, choose to use a 
constraint that forces the probability of a queue longer than a certain number, to be less 
than a predefined value. Jamil et al (1999) locate a single server, as opposed to several, 
multiple-server facilities. In the area of telecommunications, many approaches have 
appeared in the literature for the design of networks so as to either minimize 
communications delay or to keep this delay constrained to some extent (Rolland et al, 
1999). Although these models are similar to those used for facility location, again, they 
consider queuing delay in their formulations. 
 The model we propose optimizes the location of a fixed number of service centers, each 
with several servers, in such a way that the total travel and waiting costs are minimized, as 
two different objectives. The number of servers per center is fixed, but can be determined 
by repeatedly solving the model. As opposed to existing models, in the model we present, 
instead of minimizing the travel and expected waiting time, we minimize separately the 
travel cost and the expected waiting cost, computed as an expected cost, averaged over the 
number of customers in the system. We also allow the possibility that for customers coming 
from different origins, the cost function might be different (although we do not provide a 
solution method for this case); thus, we can take into account the differences in customers’ 
perceptions when optimizing the quality of service of the whole system. Furthermore, we 
provide formulations that allow us to use general cost functions, which in the case of 
congestion is done through the use of queue lengths instead of waiting times, being both 
equally meaningful measures of congestion.   
If both cost objectives are measured in monetary terms, they can be added to obtain a single 
objective. Nevertheless, if their units are different, for example, travel and waiting times 
instead of travel and waiting costs, which can be perceived differently by customers, then a 
multiobjective approach has to be chosen. Furthermore, one of the objectives is nonlinear. 
We present the model together with two solution procedures. The first procedure solves the 
problem if objectives are cast in monetary terms, or if the weighting method is chosen for 
the multi-objective optimization formulation. This procedure uses a metaheuristic based on 
tabu search and ant-colonies to solve the problem.  
The second procedure solves the multi-objective, nonlinear  optimization model, using the 
constraint method (Cohon, 1978). In this method, one of the objectives is kept as such, 
while the remaining objectives are constrained to have acceptable values. These acceptable 
values or right hand sides of the new constraints, take different values in successive runs, so 
that trade-off curves can be obtained. In our case, by transforming the nonlinear objective 
into a constraint, we are also able to linearize the problem and solve it using commercial 
integer programming software, provided some simplifying assumptions are made. 
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The paper is structured as follows. We first develop the nonlinear multiobjective 
formulation of the problem. Then we present the metaheuristic which is useful when the 
weighting method is chosen, or when both objectives are measured in monetary terms and 
can be added to form a single objective. We offer computational experience on a set of test 
instances of the problem. Then, we present the constraint method, and provide some 
computational experience on a 55-node network using CPLEX. We do not use the same 
instances of the problem for both methods, because in this way the reader can see different 
interesting aspects of the problem and the methods. 
  
2.  Development of the multiple-server model 
 
The formulation is cast using p–median constraints. The model locates p facilities, each 
with s servers, and determines the allocation of the demands to each facility, so that the 
travel and waiting cost functions are minimized, as follows: 
  
 Min [Z1, Z2] 
  Z1 =  (Travel Cost)  
  Z2 = (Expected Congestion Cost)  (1) 
 s. t. 1=∑ x      ∀ i  (2) 

j
ij

  yx ≤      ∀ i, j  (3) jij

  y j∑   (4) p
j

=

  xij ∈ {0,1}                          ∀i,j  (5) 
  yj  ∈ {0,1}                          ∀j 
 
In this model, variable xij is one if demand i is allocated to facility j, and zero otherwise. 
Variable yj is one when a facility is located at candidate site j, and zero otherwise. The 
objectives to be minimized are both costs. Constraint (2) forces all demands to be allocated 
to exactly one facility. Constraint (3) states that a demand cannot be served from a site 
without a facility. Constraint (4) forces p facilities to be located, and constraint (5) ensures 
integrality of the variables.  
We now propose expressions for the cost functions. 
 
Travel Cost Function 
 
Finding an expression for a general travel cost function is done in the same way as in the p-
median-like models. The travel cost per customer is a function of the customer’s origin 
(demand node) and destination (facility), or travel distance, or travel time. This function 
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can take any form. It could be nonlinear, discontinuous and non-differentiable. It could be 
even a different function for each pair origin – destination. Each origin (demand node) i is 
known, and for each origin there are a finite number of destinations j.  Thus, the value cij of 
this general function can be computed for each pair origin-destination (i, j) before solving 
the optimization problem, and this value cij used in the first objective as follows: 
 
  ∑∑=Z       (6) 

i j
ijiji xch1

where cij is the cost (per customer) of traveling from i to j, and hi is the demand rate at 
demand node i. 
 
Congestion Costs 
 
In most of the existing models, congestion is expressed in terms of the expected waiting 
times (or delays). In order to obtain a tractable mathematical function representing a 
general cost function to be minimized, we use the number of customers in the system 
instead, and minimize directly an expected cost. Recall that the expected waiting time and 
the expected number of customers in the system are related through Little’s law, so both are 
equivalent. In order to compute the expected congestion cost, we assume a finite queue 
multiple servers M/M/s/K queuing system at each facility. Calls arrive to each facility at a 
rate λj, given by: 
 
  ∑=jλ       (7) 

i
iji xh

and are served at a rate µj. Each state n of the queuing system, representing n customers in 
the system, has a probability Pn(λj), which depends on the arrival rate λj. Equivalently, 
if jjj µλρ /=  ≤ s, and s is the number of servers at j, the probability can be expressed as 
Pn(ρj), according to the following equations (Hillier and Lieberman, 1986), where the 
subscript j has been omitted for simplicity purposes: 
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One set of similar equations can be written for each facility j.  Instead of using explicitly a 
function of the waiting time in the objective, we assume that for a customer originating at 
node i, her/his congestion cost function (possibly different for each i) is discrete, and 
depends on the number n of customers (including him/herself) at the facility she/he 
chooses. This value is bin. Using this value and the probabilities just defined, the expected 
queuing cost at a facility j for a customer originating at i is: 

  ∑ . 
=

K

n
jnin Pb

0
)(λ

For all the customers patronizing the facility j, the total cost is: 
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Then, the objectives of the model are: 
 
  Z1 =∑∑ i xc  and 

i j
ijijh

  Z2 =∑∑     (10) ∑ ∑
=j i

K

n i
ijininiji xhPbxh

0
)(

Adding constraints (2) to (5) completes the model. Note that objective Z2 is the sum of the 
costs over all facilities j. The second objective is nonlinear. 
 
3. A metaheuristic for the non-linear integer formulation 
 
The model presented in the previous section is a combinatorial optimization problem. Many 
combinatorial problems are intractable and belong to the class of NP-Hard problems. Kariv 
and Hakimi (1979) prove that the p-Median problem is an NP-Hard problem on a general 
graph. Moreover, in this case, the inclusion of a non-linear additional objective reinforces 
the difficulty of solving the problem optimally. 
The common belief in this field is that no efficient algorithm could ever be found to solve 
these inherently hard problems. Heuristics, and recently metaheuristics, are considered one 
of the choice methods for solving hard combination optimization problems. We propose the 
use of a metaheuristic procedure based on the MAX-MIN ant system together with TABU 
search for finding solutions to the proposed formulation. 
The Ant System introduced by Colorni et al (1991a, 1991b), Dorigo et al  (1996), Dorigo 
and Di Caro (1999), is a cooperative search algorithm inspired by the behavior of real ants. 
Ants lay down some quantity of an aromatic substance, known as pheromone, on their way 
to food. The likelihood with which an ant chooses a specific path, is correlated with the 
intensity of the pheromone on that path. The pheromone trail evaporates over time if no 
more pheromone is laid down by other ants, therefore the best paths have more intense 
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pheromone and higher probability of being chosen. The Ant System approach associates 
pheromone trails to features of the solutions of a combinatorial problem, and can be seen as 
a kind of adaptive memory of previous solutions. Solutions are iteratively constructed in a 
randomized heuristic fashion biased by the pheromone trails left by the previous ants. The 
pheromone trails, jτ , are updated after the construction of a solution, ensuring that the best 
features will have a more intense pheromone.  
Recently, Stützle (1997) have proposed an improved version of the Ant System, 
denominated MAX-MIN Ant System. The MAX-MIN Ant system differs from the Ant 
System in the following way: only the best ant updates the trails in every cycle. To avoid 
stagnation of the search, i.e. ants always choosing the same path, Stüzle (1998a) proposed a 
lower and upper limit to the pheromone trail, τmin and τmax, respectively. Stützle and Hoos 
(1999), Stützle (1997,1998a) applied this procedure to the Traveling Salesman Problem, 
The Quadratic Assignment Problem and The Flow-Shop Scheduling Problem; and 
Lourenço and Serra (2000) applied it to the Generalized Assignment Problem. 
Tabu Search is a metaheuristic that guides local heuristic search procedures to explore the 
solution space beyond local optimality. It was introduced by Glover (1989, 1990) and, in 
essence, Tabu Search explores a part of the solution space by repeatedly examining all 
neighborhoods of the current solution, and moving to the best neighborhood even if this 
leads to a deterioration of the objective function. This approach tries to avoid being trapped 
in a local optimum. In order to avoid the cycling back to a solution that has recently been 
examined, solutions are inserted in a tabu list that is constantly updated. Additionally, 
several criteria of flexibility can be used in the tabu search including aspiration and 
diversification. 
The aspiration criterion is used as an insurance against restricting moves which would have 
led to finding high quality solutions. In other words, the aspiration criteria determines when 
a move to a new solution is done, even if tabu. Usually, this criterion states that if a move 
produces a feasible solution that is better than the best known solution, then the tabu status 
is disregarded and the move is executed. The diversification criterion is utilized to escape 
from local optima and is achieved by using a long - term memory function. It allows a 
broader exploration of the solution space by starting from solutions that have not been well 
explored.  A more detailed description can be found in Appendix 1. 
This method has been successfully applied to a wide variety of location problems: p-hub 
Location Problems (Klincewicz, 1992) and (Marianov et al, 1999),  (r | Xp)- Medianoid and 
(r | p)- Centroid Problems (Benati and Laporte, 1994), the Vehicle Routing Problem 
(Gendreau et al, 1994) and p-Median Problem (Rolland et al, 1996). 
In order to use the MAX-MIN ant system, we define the pheromone trail τj as the 
desirability of locating a center in  j.  The higher τj is, the more desirable is the location of a 
center in that node. The τj are initially set as 
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that is the inverse of the weighted travel cost from all demand nodes to the facility. In 
essence, once the initial τj are computed, the procedure has the following steps: 

1. Construction of an initial solution. First, the nodes are ordered with respect to the 
probability function defined by 

∑
∈

=

Jl
l

j
jp

τ

τ
. 

The initial solution is chosen randomly, taking into account the probability 
distribution previously defined. 

2. Solutions in the neighborhood of the initial solution are searched in an attempt to 
improve the initial solution. Tabu search is applied.   

3. The pheromone trails are updated using the current solution in the following way: 
, where ρ (0 < ρ < 1) is the persistence of the trail, i.e. 1 - ρ , 

represents the evaporation. The updated amount is  
j

old
j

new
j τρττ ∆+=





=∆
otherwise         0,

jat  located isoutlet an  IfmaxQ
j

τ
τ     

where Q is a preset parameter (Q < 1). 
4. In the final stage, the MAX-MIN limits are checked and imposed τmin ≤ τj ≤ τmax ∀ j 

∈ J, if the updated pheromone falls outside the interval.  
The termination condition of this iterative procedure is the number of total iterations. 
A formal description of the metaheuristic procedure is presented in Appendix 1. 
 
4. Computational Experience with the metaheuristic 
procedure 
 
The non-linear formulation has been tested as follows: several random networks with 30 
and 50 nodes (n) were generated. For each network, the demand rate at each node was 
randomly set between 100 and 500. Congestion costs were set equal for all customers 
regardless of location. If j represents  the number of people in queue, these cost where set 
as follows: cj =  s/10 for j ≤  s   and cj = c (j - 1) +1/10 for j > s. Also, for each network, the 
number of facilities (p) to be located was set to 3, 4 and 5 and for each n and p the number 
of servers (s) was set to 2, 3 and 4. The service rate was set equal to  
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p
calltotfact *  

where calltot is the total number of calls in the system, p the number of facilities to be 
located and fact is a preset factor equal to 2, 3 and 4.   
For each n, p, s and fact, 25 networks were generated, giving a total of 1,350 instances of 
the metaheuristic.  The maximum number of people in the queue was set to 10. 
For each instance of the metaheuristic, the number of iterations in the Max-min ant-colony 
procedure was set to 50. For each instance of the tabu search heuristic, the number of one-
opt trades in the tabu phase of the heuristic was set to 40.  The diversification phase was 
executed three times.  The size of the neighborhood  (the m nodes around the current 
solution) was set between 4 and 8. The size of the tabu list was set to 6. The values of the 
parameters of the metaheuristic were set to Q = 0.10, ρ = 0.75, ( )jp ττ max2max ∗=  and 

( )jp ττ min*)2/1(min =  (where, p is the number of centers to locate). 
 
In order to check the results obtained by the metaheuristic, the 1,350 instances were also 
solved using complete enumeration.  Results are presented in Tables 1 and 2.  For both 
tables, the first column (NP) represents de number of facilities to be located.  In the second 
column (S) the number of servers is listed.  The third column indicates the preset factor 
used to compute the service rate.  The fourth and fifth colums represent de number of 
instances were the algorithm did not obtain optimal solutions in total and percentage terms 
respectively.  In the sixth and seventh columns the average and maximum deviation from 
optimality is presented.  Finally, the last column shows the average computer times in 
seconds. 
For n = 30, 94.6 % of the 675 results obtained with the metaheuristic were optimal.  The 
average deviation from optimality was equal to 0.97% and the maximum deviation (4.10%) 
was obtained when p = 2, s = 4, and fact = 3.  The average computing time ranged between 
4.79 and 10.42 seconds on a Pentium III with 256Mb of RAM.  
For n = 50, 94.5% of the 675 results obtained with the metaheuristic were optimal.  The 
average deviation from optimality was equal to 1,46% and the maximum deviation (9.63%) 
was obtained when p = 2, s =3, and fact = 2.  The average computing time ranged between 
7.61 and 16.77 seconds.  
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NP S FAC Nonoptimal
solutions 

% non 
optimal 

Average 
deviation

Maximum 
deviation 

Average 
time 

 
2 

2 
3 
4 

0 
0 
1 

 
1.3% 

- 
- 

0.41% 

- 
- 

0.41% 

4.77 
4.74 
4.69 

 
3 

2 
3 
4 

2 
1 
0 

 
4.0% 

1.37% 
2.35% 

- 

1.85% 
2.35% 

- 

4.87 
4.83 
4.76 

 
 
 
 
3 

 
4 

2 
3 
4 

1 
0 
0 

 
1.3% 

1.52% 
- 
- 

1.52% 
- 
- 

4.75 
4.75 
4.88 

 
2 

2 
3 
4 

3 
2 
1 

 
8.0% 

1.69% 
1.41% 
0.63% 

3.17% 
2.88% 
0.63% 

7.18 
7.17 
7.26 

 
3 

2 
3 
4 

3 
2 
1 

 
8.0% 

1.42% 
1.14% 
0.97% 

3.24% 
3.00% 
1.02% 

7.27 
7.50 
7.49 

 
 
 
 
4 

 
4 

2 
3 
4 

2 
1 
2 

 
6.6% 

 

1.32% 
0.13% 
1.72% 

3.84% 
1.13% 
3.74% 

7.38 
7.26 
7.30 

 
2 

2 
3 
4 

0 
2 
3 

 
6.6% 

 

1.85% 
1.19% 
1.80% 

2.21% 
2.97% 
4.10% 

10.17 
9.93 
9.95 

 
3 

2 
3 
4 

1 
1 
2 

 
5.3% 

1.12% 
0.65% 
1.07% 

1.66% 
0.90% 
2.28% 

10.38 
10.34 
10.34 

 
 
 
 
5 

 
4 

2 
3 
4 

1 
2 
3 

 
6.0% 

 

0.15% 
1.37% 
1.16% 

0.39% 
2.09% 
3.65% 

10.39 
10.42 
10.17 

 
Table 1:  Results with n = 30 
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NP S FAC Nonoptimal

solutions 
% non 
optimal 

Average 
deviation

Maximum 
deviation 

Average 
time 

 
2 

2 
3 
4 

1 
2 
0 

 
5.3% 

0.25% 
1.26% 

- 

0.25% 
2.44% 

- 

7.67 
7.61 
7.67 

 
3 

2 
3 
4 

0 
1 
2 

 
4.0% 

- 
0.35% 
1.28% 

- 
0.35% 
2.09% 

7.76 
7.80 
7.72 

 
 
 
 
3 

 
4 

2 
3 
4 

0 
0 
2 

 
2.6% 

- 
- 

1.54% 

- 
- 

1.92% 

7.87 
7.70 
7.80 

 
2 

2 
3 
4 

1 
2 
3 

 
8.0% 

1.07% 
1.59% 
1.95% 

3.86% 
5.17% 
3.19% 

11.52 
11.65 
11.57 

 
3 

2 
3 
4 

1 
1 
3 

 
6.6% 

1.62% 
2.67% 
1.32% 

1.82% 
6.66% 
3.23% 

11.82 
11.92 
11.92 

 
 
 
 
4 

 
4 

2 
3 
4 

2 
3 
3 

 
10.6% 

1.00% 
2.39% 
0.21% 

2.92% 
2.88% 
0.36% 

11.84 
11.96 
11.70 

 
2 

2 
3 
4 

4 
2 
1 

 
9.3% 

2.09% 
4.86% 
3.99% 

4.48% 
9.63% 
6.70% 

16.45 
16.44 
16.50 

 
3 

2 
3 
4 

3 
4 
5 

 
14.6% 

1.12% 
1.96% 
1.50% 

2.36% 
5.47% 
4.62% 

16.77 
16.55 
13.75 

 
 
 
 
5 

 
4 

2 
3 
4 

2 
4 
4 

 
13.3% 

1.89% 
2.02% 
2.57% 

3.78% 
5.03% 
6.56% 

13.88 
13.86 
13.96 

 
Table 2 :  Results with n = 50 
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5.  The Constraint Method 
 
Linearization of the model 
 
As noted before, objective Z2 is nonlinear. However, under some conditions on the cost 
factors bin, if the multiobjective problem is solved using the constraint method, and if 
objective Z2 is disaggregated by facilities, the problem can be linearized. 
The constraint method consists in constraining (m – 1) of the m objectives of the problem to 
have “acceptable” values. The remaining objective is optimized, subject to the original 
constraints of the problem, plus the extra (m – 1) new constraints. The “acceptable” values 
are modified and the problem solved again, as many times as needed for obtaining adequate 
trade-off curves. In our case, the model has two objectives to be minimized. The first 
objective is left as such (the travel costs objective), while the nonlinear congestion costs 
objective is disaggregated by facilities and each component constrained to have a value of 
at most Cj. This value is modified in successive runs of the model, and a trade-off curve is 
drawn.  
The model becomes: 
 
 Min ∑∑ x        (6) 

i j
ijiji ch

Subject to 

    (11) jCxhPbxh j
i

K

n i
ijininiji ∀≤∑∑ ∑

=

       )(
0

and subject to (2) to (5). 
This version of the model has a linear objective and linear constraints, except for constraint 
(11). In order to linearize this constraint, we first note that bin is always increasing (at least, 
non-decreasing) with n, because customers’ waiting cost is increasing with the number of 
customers in the system (except for crowd – loving customers, case we are not including 
here). If, additionally, the waiting cost bin does not depend on the origin of the customers, 
that is bin = bn for all i, then the constraint can be written as: 

  h   (12) jCxhPbx j

K

n i
ijinn

i
iji ∀≤
















∑ ∑∑
=

       )(
0

The left hand side of constraint (12) strictly increases with ∑
i

iji xh (or λj), which we prove 

next. 
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Suppose for the moment that bn = 1 for all n. The second factor on the left hand side of 

constraint (12) becomes . This expression is always equal to one, for all 

values of ∑ , because it is just the sum of all probabilities of numbers of customers in 

the queuing system. When increases, the probabilities of more customers in the 

system (larger values of n) must increase. The probabilities of fewer customers in the 
system (smaller values of n) must then decrease in the same amount, to keep the total 
probability sum equal to one.  

∑ ∑
=

K

n u
ijin xhP

0
)(

∑
i

iji xh
i

iji xh

We now relax the requirement that bn = 1, and recall that bn is non-decreasing with n. Since 
higher order probabilities are multiplied by numbers bn that are larger (or at least, equal), 

is non-decreasing with∑ ∑
=

K

n i
ijinn xhPb

0
)( ∑

i
iji xh . Since in constraint (12), this non-

decreasing expression is multiplied by the strictly increasing expression , it is 

easy to see that the product is strictly increasing, which completes the proof.  









∑

i
iji xh

As constraint (12) is strictly increasing with ∑
i

iji xh , there must exist a number C , such 

that whenever: 

j
ˆ

  x∑ ,    (13) jCh j
i

iji ∀≤        ˆ

constraint (12) necessarily holds true. Consequently, equation (13) is a linear expression 
that can be used instead of constraint (12) in the optimization formulation. For each value 
of Cj in (12), the value of in the equivalent linear constraint (13) is found by computing 

the value of for which equation (12) holds as equality. 
jĈ

∑
i

iji xh

The final, linear model for the case bin = bn for all i, is: 
 
 Min  ∑∑ x        (6) 

i j
ijiji ch

 s. t. 1=∑ x      ∀ i      (2) 
j

ij

  yx ≤      ∀ i,j      (3) jij

  y j∑        (4) p
j

=

 13



  xi∑ .     (13) jCh j
i

ij ∀≤        ˆ

  xij ∈ {0,1}                           ∀i,j    (5) 
  yj  ∈ {0,1}                          ∀j 
 
Solution, analysis and calibration of the number s of servers per facility 
 
The usual constraint method uses Branch and Bound (or any feasible solution method for 
integer programming formulations) and the following steps: 
 

1. Determine the values of the cost parameters (cij and bn). These values 
can be found from polls or focus groups. Set values for Cj, s, K and 
µj. Note that potentially, s and K can be also facility-dependent.  

2. Starting from the values of Cj and remaining parameters, compute 
the value of  for which equation (12) holds as equality. Set 

 to this value. 

∑
i

iji xh

jĈ
3. Solve the model.  
4. Modify the value of Cj using an adequate step size and direction. Go 

to step 2 until a sufficiently detailed trade off curve can be drawn. 
 

This procedure would provide the necessary trade-off curves. However, a deeper analysis 
can be performed, which is useful for the determination of some parameters while doing the 
design of the system. Furthermore, in the absence of reliable information on waiting cost 
functions, this analysis shows the effects of using different cost function shapes.  
Note first that a particular value of the parameterC  in equation (13) could be the result of 
more than one combination of values of the relevant parameters, namely service rate µ

j
ˆ

j, 
maximum queue length K j, number of servers in each center s j, and queuing cost function 
{bn}. Once C  is computed and plugged in constraint (13), the particular combination of 
values that were used for its computation becomes unimportant from the point of view of 
the optimization problem, which becomes a capacitated p-median. Furthermore, the only 
relevant figures of the problem at this stage are the parameters  and p, as well as the 
demand rates h

j
ˆ

jĈ
i at each node and travel costs cij between demand nodes and potential center 

sites. Then, we can separately perform the following stages: 
 
Stage 1. Using the known data (hi, cij), solve the capacitated linear integer optimization 

problem, for all required values of p and using the full range of possible values of 
. As a result of this stage, for each p, there is a set of solutions. Each solution jĈ
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corresponds to a value of the travel cost objective, and the demand figures at each 
facility, for that value of the objective. In order to determine the full range, of 
relevant values ofC , needed to perform this stage, note that if we add both sides 
of constraint (13) over all possible location candidate nodes, we obtain  

j
ˆ

i j
x

∑≤
j

j∀

∑∑ ∑ ≤
j

jiji Ch ˆ , or  

∑ j
i

i Ch ˆ .  

The left hand side of this expression is just the total demand in the network, H, 
which is known. Without loosing generality, and for the sake of simplicity, we 
assume . Since the number of facilities is limited to p, we have H ≤ pC. 
Then, for a particular value of p, we can find the minimum value of C = H/p, solve 
the integer programming formulation, increase the value of C, solve again, and 
keep increasing this value in successive runs of the model. As the value of C 
increases, representing higher congestion costs, the value of the travel cost 
objective must either remain the same or decrease (improve), since we are relaxing 
a constraint of the problem (constraint 13). At some point, constraint (13) is not 
binding anymore, the solution corresponds to the unconstrained p-median solution, 
and we can stop.  

CC j =   ˆ

 
In each solution, although the demand at each facility is bounded above by C, it 
does not necessarily reach this value, so each one of the located facilities can have 
its particular amount of demand. 

 
Stage 2. For each solution, using the congestion cost function obtained from polls or focus 

groups, as well as the values of the parameters K, s and µ, compute the waiting 
cost at each facility. For different values of K, s and µ, different costs will be 
obtained, and consequently, by changing these values, a calibration of the design 
can be performed at this stage. Add these costs over all facilities, to obtain the total 
waiting cost for that solution. 

 
Stage 3. Use the results of the Stages 1 and 2 to draw trade-off curves relating travel and 

congestion costs. If the cost are in monetary terms, find among all the solutions, 
the one with the least travel plus congestion cost. Note that the trade-off curves are 
not necessarily convex nor concave. 
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6. Computational experience on the constraint method 
 
We solved the model using the constraint method and the linearization, as described above, 
on a 55-node network (Swain, 1974). The population at each demand node was used as a 
proxy for the demand rate at that node. The Euclidean distance between nodes was used as 
a proxy for the travel cost. We assume that the maximum queue length, K, at any facility or 
center, is 15 customers (no matter how many servers there are at that facility). Although we 
remark that the model accepts different values for each facility, for the example we assume 
that not only C, but the parameters µj and sj are the same across the system, omitting the 
subscript j.  
Recall that in practice, the queuing cost functions {bn} can be found by polling. In our 
example, in order to analyze what happens with different types of customers, we use two 
different possible congestion cost curves, that correspond to customers with different 
possible perceptions, represented by linear and quadratic cost functions, as shown in Table 
3 and Figure 1: 
 
 

 Cost functions {bn} 
Nr of customers  

in queue 
Linear Quadratic 

0 1 1 
1 1 1 
2 2 4 
3 3 9 
4 4 16 
5 5 25 
6 6 36 
7 7 49 
8 8 64 
9 9 81 

10 10 100 
11 11 121 
12 12 144 
13 13 169 
14 14 196 
15 15 225 

 
Table 3: Congestion Cost Functions 
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Figure 1: Different cost functions 

 
Since the expected waiting time is proportional to the expected number of customers in 
queue (both mathematically and intuitively), those customers for which the most important 
issue is the time spent in queue, will most probably be represented by a linear cost function. 
The quadratic function, on the other hand, represents the perception of those customers who 
not only value the time spent in queue, but also dislike crowds or the feeling of standing on 
line, or in general, those who feel that standing in line is worse than spending time on any 
other activity. In this case, there is an extra cost that has to be added to the pure time-related 
cost. 
In Stage 1, we solved the optimization model on a Pentium III, 1.6 GHz, 256 MB RAM 
computer, running MPL for Windows 4.12 and CPLEX 7.5, for p = 2, 3 and 6. The sets of 
solutions for p = 2, 3 and 6 are shown in Tables 4, 5 and 6. 
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C 
Travel 

cost
Demand on 

facility 1
Demand on 

facility 2
3200 477.505 3200 3200
3300 476.300 3300 3100
3400 475.603 3390 3010
3500 475.554 3410 2990
3600 474.457 3580 2820
3700 473.594 3700 2700
3800 471.968 3790 2610
3900 471.916 3870 2530
4400 471.810 4360 2040
5000 467.427 5000 1400
5200 461.820 5200 1200
5230 461.477 5230 1170

 
Table 4: Set of solutions for p = 2 

 
 
 

C 
Travel  
cost 

Demand on 
facility 1

Demand on 
facility 2

Demand on 
facility 3

2140 418.123 2140 2140 2120
2200 416.998 2190 2090 2120
2300 414.038 2290 2300 1810
2400 412.716 2400 2090 1910
2500 410.728 2500 2420 1480
2600 405.884 2600 2600 1200
2700 404.477 2690 2540 1170
2800 402.883 2640 2800 960
2900 401.432 2550 2890 960
3000 399.908 2450 2990 960
3100 398.912 3080 2150 1170
3300 398.416 3300 1930 1170
3400 394.788 3390 1810 1200
3500 393.474 3470 1760 1170
3700 390.616 3690 1540 1170
3900 388.283 3890 1200 1310
4040 387.024 4040 1170 1190

 
Table 5: Set of solutions for p = 3 
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For p = 2, the run times for the solutions were between 0.6 and 51 sec. The number of 
Branch and Bound nodes ranged between none and 55.   For p = 3, the run times for the 
solutions were between 0.7 and 112 sec. The number of Branch and Bound nodes ranged 
between none and 255. 

 
 

C 
Travel 

cost 
Demand on 

facility 1 
Demand on 

facility 2
Demand on 

facility 3
Demand on 

facility 4
Demand on 

facility 5 
Demand on 

facility 6
1090 297.84 1090 1090 1080 1090 980 1070
1100 296.88 1100 1090 1080 1100 960 1070
1200 289.127 1200 1200 1200 1110 1080 610
1300 280.11 1300 1300 1300 930 960 610
1400 275.523 1400 1320 1380 730 960 610
1500 273.385 1500 1260 1320 750 960 610
1600 272.165 1580 1220 1300 730 960 610
2500 268.925 2500 1380 930 510 470 610
2800 265.617 2800 1300 730 490 470 610

 
Table 6: Set of solutions for p = 6 

 
For p = 6, the run times for the solutions were between 0.5 and 147 sec. The number of 
Branch and Bound nodes ranged between none and 774. 
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Figure 2: Trade off between travel costs and C, for p = 2. 
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For these cases, we computed the trade – off curves between the demand limit, C, and the 
travel cost. The curves are shown in Figures 2, 3 and 4. Note that these curves are neither 
convex nor concave, due to the integer nature of the problem.  
 

385

390

395

400

405

410

415

420

2000 2500 3000 3500 4000
C

Tr
av

el
 c

os
t

 
Figure 3: Trade off between travel costs and C, for p = 3. 
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Figure 4: Trade off between travel costs and C, for p = 6. 
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Linear congestion costs Quadratic congestion costs 
C 

Travel 
cost facility 1 facility 2 facility 1 facility 2 

3200 477.505 48.846 48.846 631.79 48.846
3300 476.300 51.426 46.161 673.24 46.161
3400 475.603 53.67 43.643 709.28 43.643
3500 475.554 54.159 43.07 717.13 43.07
3600 474.457 58.202 37.983 781.95 37.983
3700 473.594 60.95 34.167 825.85 34.167
3800 471.968 62.965 31.203 857.94 31.203
3900 471.916 64.726 28.521 885.93 28.521
4400 471.810 75.089 13.468 1049 107.2
5000 467.427 87.983 4.1444 1249.6 15.526
5200 461.820 91.93 2.9204 1310.5 8.5929
5230 461.477 92.519 2.771 1319.6 7.8715

 
Table 7: Costs for all solutions, p = 2, µ = 800, s = 3. 

 
 
 

Linear congestion costs Quadratic congestion costs 
C 

Travel  
cost facility 1 facility 2 facility 3 facility 1 facility 2 facility 3

2140 418.123 11.71 11.71 11.24 86.47 86.47 81.6
2200 416.998 12.93 10.57 11.24 99.53 74.57 81.6
2300 414.038 15.57 15.85 5.77 128.90 132.05 29.0
2400 412.716 18.72 10.57 7.18 165.40 74.57 41.4
2500 410.728 21.70 19.31 2.95 201.27 172.41 8.5
2600 405.884 24.70 24.70 1.85 238.55 238.55 3.3
2700 404.477 27.37 22.90 1.77 272.49 216.08 3.0
2800 402.883 25.89 30.54 1.31 253.63 313.62 1.7
2900 401.432 23.20 33.04 1.31 219.80 346.52 1.7
3000 399.908 20.20 35.70 1.31 183.09 382.01 1.7
3100 398.912 37.99 11.95 1.77 412.87 88.99 3.0
3300 398.416 43.22 7.50 1.77 484.05 44.40 3.0
3400 394.788 45.22 5.77 1.85 511.56 29.02 3.3
3500 393.474 46.96 5.18 1.77 535.32 24.16 3.0
3700 390.616 51.51 3.30 1.77 597.80 10.61 3.0
3900 388.283 55.44 1.85 2.20 651.65 3.27 4.7
4040 387.024 58.30 1.77 1.83 690.61 2.98 3.2

 
Table 8: Costs for all solutions, p = 3, µ = 800, s = 3. 
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 Quadratic congestion costs 

C 
Travel 
cost Facility 1 Facility  2 Facility  3 Facility   4 Facility   5 Facility   6

1090 297.84 17.40 17.40 16.56 17.40 10.1 15.75
1100 296.88 18.30 17.40 16.56 18.30 9.2 15.75
1200 289.127 30.15 30.15 30.15 19.23 16.6 1.86
1300 280.11 48.99 48.99 48.99 7.94 9.2 1.86
1400 275.523 76.87 53.80 70.51 3.16 9.2 1.86
1500 273.385 114.41 40.47 53.80 3.45 9.2 1.86
1600 272.165 150.43 33.28 48.99 3.16 9.2 1.86
2500 268.925 562.31 70.51 7.94 1.21 1.0 1.86
2800 265.617 664.73 48.99 3.16 1.10 1.0 1.86

 
Table 9: Quadratic costs for all solutions, p = 6, µ = 800, s = 2. 

 
In the example network, = H = 6,400, so for two facilities the minimum possible 

value of C is 3,200. Below this value, the problem becomes infeasible. The p-median 
solution corresponds to C = 5,230. 

∑
i

ih

In Stage 2, we computed the waiting cost of each solution, for linear and quadratic 
congestion cost curves. For p = 6, only the quadratic costs were computed.  
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Figure 5: Trade off between travel and congestion costs, for p = 2. 
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Figure 6: Trade off between travel and congestion costs, for p = 3. 
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Figure 7: Trade off between travel and congestion costs, for p = 6. 
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Figure 8: Congestion cost curve for µ = 800, s = 3 
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Figure 9:  Travel cost trade-off 
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Note that the number of servers per center is different in the cost computation for p = 6. 
The maximum queue length, K, was set to 15 for all cases. In each case, the costs for the 
linear case and for the quadratic case were added, in order to compute the total congestion 
cost for that particular solution.  
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Figure 10: Trade off between travel and congestion costs, for p = 2, linear relaxation. 

 
As a result of Stage 3 of the procedure, we show on Figures 5 to 7, the trade-off curves, in 
which only the non-dominated or Pareto optimal solutions are shown.  
As an example of computation of the optimal solution when both costs are cast in monetary 
terms, in Figures 5 and 6, the solutions corresponding to the least total cost are marked with 
an arrow. Note that the shapes of all the trade-off curves are a result mainly of the integer 
nature of the variables, enhanced by the neither concave nor convex congestion costs. For 
example, part of the congestion cost curve for µ = 800, s = 3 is shown in figure 8. 
As an example of the effect of the integer nature of the variables on the shape of the trade-
off curves, Figures 9 and 10 show the trade-off curves for the linear relaxation of the 
problem, with p = 2:  
As expected, the shapes of the trade-off curves of the relaxed versions of the problem are 
closer to the usual shapes. 
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7. Conclusions 
We propose a model that locates a fixed number of multiple-server service centers or public 
facilities, both susceptible of becoming congested. Consumers’ perceived congestion and 
travel costs are minimized, considering that all the demand must be served. The travel cost 
is a general function of the origin and destination of the demand, while the congestion cost 
is a general function of the number of customers in queue at the facilities, which is 
proportional to the waiting time. Since the model is nonlinear, we investigate two different 
solution methods, useful under different circumstances. The first one is based on a Max-
Min Ant System and Tabu Search, and finds a solution (not necessarily optimal) in a short 
time, particularly if the objectives can be easily expressed in the same units. The second 
procedure is somewhat slower, but allows solving the problem when the relative weights on 
the objectives are not known, and also allows a deeper analysis of different solutions, 
particularly if different numbers of servers can be located at different centers. 
Computational experience is presented on both solution procedures, using in each case such 
instances of the problem, as to allow a better evaluation of both methods. 
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APPENDIX 1:  Metaheuristic for the multiobjective nonlinear formulation 
 
Notation:  
� LOCP is the set of center locations. 
� Z1 is the value of the travel cost objective and Z2 is the value of the congestion cost 
objective 
� W1 and W2 are the preset weights on the objectives, that is, the weighted objective Z is 
computed as Z = W1 Z1 + W2 Z2 
 
Procedure: 
1. Initialize the parameters of the Ant System and compute the initial pheromone trail 

∑
=

i
iji

j ch
1τ  

for all nodes j of the network. Make k = 0. 
2. Let k = k + 1 (iterations of the Ant System procedure) 
 
First Step (FS): Construct a good initial solution 

FS.1.  Compute 

∑
∈

=

Jl
l

j
jp

τ

τ
, for all nodes j of the network. Make i = 0. 

FS.2.  Let i  = i + 1  
FS.3 Choose randomly a node to locate a center, using the probability function defined in 

step FS.1. 
FS.4 If   i < p, go to step FS.2. 
FS.5  Compute both objectives and find the weighted objective Z 
 
Second Step (SS): Local search phase; Tabu Search. 
SS.1. Let s = 0 (number of times, the diversification criteria is applied). 
SS.2. Let   t = 0 (number of iterations of the TABU procedure). 
SS.3. Set  Z0(LOCP) = ZBEST(LOCP) , the best solution found in MAX-MIN Ant system. 

Set LOCPi
0, for i = 1,.., p the optimal locations found in MAX-MIN Ant system.   

SS.4. LOCPi
0 → LOCPi+1

0  (for each located node).  
SS.5. Consider all neighborhood nodes j of optimal location node i (i.e. ). )(Locp jngh 0

i
LOCP

Let  LOCP → . Exchange the facility from node LOCP)(Locp jngh 0
i )(Locp 1jngh 0

i
LOCP

+

ngh 
LOCP

i
0 

 LOCP to a neighborhood node ∈
)(Locp j 0

i
∉  LOCP.  

Check the threshold constraint in this new solution: 
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� If this is satisfied, compute the objective function Z( LOCP ). )(Locp jngh 0
i

� If this is not satisfied, set Z( ) = 0. 
)(Locp jngh 0

i
LOCP

Do it for all neighborhoods nodes of node i.. Re-label the solution in 

decreasing order of  Z( LOCP ).  When all neighborhoods are visited, go to 

SS.7 

)(Locp jngh 0
i

LOCP

)(Locp jngh 0
i

SS.6. If ( Z( ) > Z)(Locp jngh 0
i

LOCP

LOCP

BEST(LOCPi
0) ) or is not tabu, then set 

Z
)(Locp jngh 0

i
LOCP

BEST(LOCPi
0)= Z( ), the outlet is located in and 

LOCP
)(Locp jngh 0

i )(Locp jngh 0
i

LOCP

i
0 is declared tabu until t + ε , where ε is a pre-fixed value, and go to step 

SS.5.  
If all nodes visited are tabu and none improves the objective, then the model 
chooses the node with the lowest tabu tag (t + ε ) and lift the tabu status of  

))(Locp jngh 0
i

LOCP  .  Then go to step SS.5. 

SS.7. If t is less than a pre-fixed upper bound T; update the best solution found 
ZBEST(LOCP),  let  t → t + 1 and go to step SS.3. 

8. If  s < sMAX (maximum number of times, the diversification criteria is applied). The 
model starts a new procedure with an initial solution equal to the NP least visited 
nodes. Let  s = s + 1 and go to step SS.2. 

 
Third Step (TS): Update pheromone trails, using the current solution. 
TS.1. Compute the news  for all nodes j of the network, using the optimal locations 

found in the previous steps. Check also the max – min limits for all  (i.e. 
).   

jτ

jτ

jj ∀≤≤ ,maxmin τττ

TS.2. If   k < MAXITER, set k → k+1 and go to step 2 of the initial procedure. Updating 
the Best Solution found ZBEST(LOCP) in each MAX-MIN Ant system iteration. 

 
Comments about the meta-heuristic: 
- In step 6 of Tabu Search, tabu status can be canceled if this permits an improvement in 
the objective. This rule is called the aspiration criterion 
- Step 8 of Tabu Search, states the diversification criterion, that allows a broader 
exploration of the solution space by starting from locations that have been less well 
explored. 
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