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1. Introduction

Cournot’s oligopoly classical model raises four kind of issues in the literature:
the existence and uniqueness of the equilibrium, the stability of such an equilib-
rium, the quasi–competitiveness of the model and, lastly, perfect competition in the
limit as the number of oligopolists increase. Under diverse general assumptions, the
four questions have been taken care of. Stability was first considered in Theocharis
(1960), where it was proved that Cournot’s equilibrium solution was stable if there
are two sellers, oscillatory if the number of sellers is three, and unstable if the
number is greater than three. These results were immediately “corrected and ap-
praised” in McManus & Quandt (1961) where it was shown that Theocharis’ results
were very restrictive as they depended profoundly on the adjustment system chosen
and also because a discrete approach had been used whose dynamics were those of
a system of difference equations. Consequently, the stability depended strongly on
the coefficients. McManus & Quandt (1961) considered a continuous adjustment
system (which is the most used in the literature) where each firm changes its pro-
duction proportionally to the difference between profit maximizing production and
actual production:

(1) q̇i = ki(q
∗
i − qi).

The ki(> 0) are considered the ‘speeds’ of the adjustment.
Under this adjustment system, the classical Cournot model is stable no matter

the number of firms in the industry nor the values of the speeds of the adjustment.
At the same time, Fisher (1961) analyzed also Theocharis’ adjustment system

and reached the same conclusions as McManus and Quandt. Fisher commented
that despite his result, “the tendency to instability does rise with the number of
sellers”, whatever that means.

Shortly after that, Hahn (1962) undertook the question of the stability and found
a sufficient condition to establish it under the continuous adjustment system (1) of
McManus and Fisher. Hahn’s condition is general enough to be widely applicable.
In short it says that if demand (d), cost (Ci), and q∗, q∗i are, respectively, total
production and firm i’s production at equilibrium and

(2) −d′(q∗) + C′′
i (q∗i ) > 0,

Cournot equilibrium —when it exists and is unique— is stable.
Hahn’s condition was generalized in Okuguchi (1964) who proved its validity even

if the adjustment system were not linear but simply a sign–preserving function with
respect to the difference between profit maximizing production and actual one.

The existence of Cournot equilibrium has been proved under very varied con-
ditions. The most cited reference is perhaps Frank Jr. & Quandt (1963) (though
existence had already been proved under more restrictive assumptions, see Mc-
Manus (1962)). A more recent (and more general) proof can be found in Novshek
(1985) and also in Szidarovszky & Yakowitz (1982).

Uniqueness is more difficult to prove and the number of references diminishes.
We cite Ruffin (1971), Okuguchi & Suzumura (1971) Szidarovszky & Yakowitz
(1982) and Schlee (1993). A more recent contribution is Gaudet & Salant (1991).
It is important to remark that Okuguchi & Suzumura (1971) links uniqueness of
the equilibrium with Hahn’s condition and proves that this last condition implies
not only stability but also the uniqueness of the Cournot solution.

The question of convergence to perfect competition was dealt with in Frank Jr.
(1965) or McManus (1962). The former attempted to prove that quasi–competi-
tiveness was sufficient for convergence and the latter questioned the relationship
between these two issues. Later Ruffin (1971) detached the question of convergence
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to perfect competition from quasi–competitiveness and proved that the former issue
is only related to the convexity of the cost function.

Quasi–competitiveness is at the heart of Cournot model. In fact, the mathe-
matical model was expected to confirm the general opinion that competition lowers
prices. This was not the case: Frank Jr. & Quandt (1963), besides proving the ex-
istence of equilibrium, present an example of passage from monopoly to duopoly in
which quasi–competitiveness is lost. Their demand function, though, is not strictly
decreasing. Frank Jr. (1965) gives conditions to ensure quasi–competitiveness.
Later, these conditions were thoroughly investigated by Ruffin (1971), Okuguchi
(1974) and Szidarovszky & Yakowitz (1982). It is worth reminding that Ruffin
(1971), though mainly concerned with long-run competitive behaviour, addresses
the other three issues mentioned at the beginning of this introduction: quasi–
competitiveness, existence and uniqueness of equilibrium, and stability. Ruffin
points out that Hahn’s condition ensures not only stability but also quasi–compe-
titiveness and provides an example in which quasi–competitiveness and stability
break down with a large number of firms in the market.

In short, when an equilibrium exists, Hahn’s condition implies uniqueness of the
equilibrium, stability and quasi–competitiveness.

If Hahn’s stability condition is violated, (Ruffin, 1971, p. 498) remarks:

[. . . ] it is probable that in this case the Cournot model would be-
come dynamically unstable before the long-run equilibrium could
be attained.

Later, Seade (1980) studies new entry in a Cournot market and assuming conti-
nuity in the number of firms, proves that “industry output unambiguously expands
[. . . ] as entry into stable equilibria takes place”.

Fisher’s comment and Ruffin’s and Seade’s papers seemed to indicate that strong
evidence existed linking non-quasicompetitiveness and instability: If a Cournot
market is stable, a new entry cannot rise the equilibrium price and, viceversa, in
a stable Cournot market where new entries occur, there gets to a point where the
new entry provokes instability.

For a discrete number of firms, specifically from monopoly to duopoly, de Meza
(1985) noticed that a rise in price could happen without the loss of local stability.
A previous note by some of the authors of this article, Villanova et al. (2001), offers
a model very similar to de Meza’s showing that equilibrium can be reached with
global stability.

Nevertheless, the question of the rise in the industry price and stability under
an indefinite number of entries, was still open.

An important contribution was made in 2000 by Amir & Lambson (2000). These
authors retake the question of quasi-competitiveness for a Cournot oligopoly using
lattice-theoretic methods. Their analysis is quite illuminating and reduces greatly
the conditions needed to draw conclusions about the existence of Cournot equilibria
and their relation to the issue of quasi-competitiveness. The global sign of the
function

∆ = −d′(q) + C′′(qi)

is the key element in their work. This is precisely Hahn’s condition mentioned
before. Essentially, Amir and Lambson’s results are the following:

(1) If ∆ > 0, the n-poly is quasi-competitive.
(2) If ∆ < 0, the n-poly is non-quasi-competitive.

The case in which ∆ changes signs is what they call the hybrid case. This case is
not treated in depth.
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It is worth mentioning that, in spite of the coincidence of Amir and Lambson’s ∆
with Hahn’s condition, stability is not mentioned in their paper. A quick calculation
shows that the case ∆ < 0 leads both to non-quasi-competitiveness and instability.

This confirms partly Fisher’s and Ruffin’s suspicions about the close relationship
between both questions. But only in part because the hybrid case leaves the door
open to the co-existence of non-quasi-competitiveness and a stable equilibrium. In
the words of Amir and Lambson, “[. . . ] these cases [the hybrid ones] would be
characterized by a lack of monotonic relationship between the number of firms and
the endogenous variables of interest (per-firm output, price level)”. This is where
our contribution enters the scene showing that this is not necessarily so.

The models dealt with by these authors vary slightly in their assumptions con-
cerning demand and cost functions: some require differentiability, others only con-
tinuity or even semi–continuity. Others consider increasing marginal costs, others
not. Some consider all the firms identical and others consider different costs for
each firm, etc. A very good summary of these results can be found in Okuguchi
(1976) and a good reference for the generalization to multi–product firms can be
found in Okuguchi & Szidarovsky (1999).

A very good introduction to the subject is Friedman (1983). The state of the art
can be found in Daughety (2008) which updates a previous important compilation,
Daughety (1988). Other good summaries are Okuguchi & Szidarovsky (1999) and
Vives (2000).

In our previous work, Villanova et al. (2001), we built a model in which the
passage from monopoly to duopoly caused, at equilibrium, a loss of quasi–compe-
titiveness keeping at the same time the stability. Obviously, the conditions of
our model, though general enough, did not go against the known results in this
area. The main feature of our model was an increasing two–piece linear cost func-
tion which was concave throughout. Concavity was in order as the convexity of
the cost function causes directly the quasi–competitiveness of the model as had
been shown in several occasions (see Szidarovszky & Yakowitz (1982) —who prove
quasi–competitiveness assuming strictly convex cost functions— or the previously
mentioned Amir & Lambson (2000)). This result of ours showed the possibility of
losing quasi–competitiveness without losing at the same time the global stability
of the equilibrium in a duopoly but could not be generalized to an r-poly with free
entry maintaining the main characteristics of the model. This has been noticed
by Hoernig (2003) who studies Cournot’s comparative statics under differentiated
goods markets.

In this paper, we change the model in order to extend our results to an r–poly,
where r is any given number of firms. We prove that an oligopoly equilibrium
may be non–quasi–competitive and, at the same time, be (locally) stable under
the adjustment system given by equation (1) above. Besides, under a concave cost
function, we prove that as r increases, marginal cost and market price tend to
be equal which means perfect competition in the limit. Starting from any linear
decreasing demand function we find an increasing piecewise linear cost function
with an infinite number of pieces such that the model has the following unique
features:

(i) A unique non-trivial symmetric Cournot equilibrium point exists for any
number of firms.

Other trivial asymmetric equilibria may exist, in the sense that if a non-
trivial symmetric equilibrium exists for an r-poly, any number of entries
with zero per-firm output are also equilibria.

(ii) Industry price increases monotonically with the number of firms in the
market; that is to say, if pi denotes price at equilibrium when there are i
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firms competing in the market,

p1 < p2 < · · · < pr < · · · .

(iii) The successive equilibria are locally asymptotically stable.
(iv) The oligopoly is viable no matter the number of firms in the market, that

is to say, at equilibrium, profit for an individual firm is always positive.
(v) The model converges to perfect competition as the number of firms tends to

infinity; or, what amounts to the same, industry price pr tends to marginal
cost under perfect competition, which coincides with limiting marginal cost
as output tends to zero.

In section 2, after building the basic functions (demand and cost) of our model
in a very abstract way, we discuss the reaction curve and the necessary assump-
tions required to achieve our results. We find the different Cournot points of our
model. In section 3, we use the parameters obtained in the previous section to
determine completely the cost function of our model. In section 4 we prove the
existence and uniqueness of a symmetric Cournot solution as well the asymmetric
ones which allow for no-output firms in the industry. Section 5 covers the loss of
quasi–competitiveness and the convergence to perfect competition as the number
of oligopolists tends to infinity. Perhaps the more relevant feature of our model
is presented in section 6 where we study the asymptotic stability of the different
equilibria under (1). The Appendix collects most of the proofs.

2. The model

We will assume the following. There are r firms in a classical Cournot market
with identical cost functions and linear demand. The demand and cost functions
are:

i) Inverse linear demand function, p = a − b q, (a, b > 0). Defined on the
interval [0, a/b].

ii) A concave continuous piecewise linear cost function with an infinite number
of pieces:

(3) C(q) =







...
...

ci + di q if ti ≤ q < ti−1

...
...

c1 + d1 q if t1 ≤ q

where
– the ti satisfy 0 < · · · < ti < ti−1 < · · · < t1;
– the ci satisfy c1 > · · · > ci > ci+1 > · · · > 0;
– the di satisfy 0 < d1 < · · · < di < di+1 < · · · .

As we require the continuity of the cost function at each q = ti,

(4) ci − ci+1 = (di+1 − di) ti, i = 1, 2, . . . ,

We will also impose ci → 0. See Figure 1.
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Cost function

C

tj q

Figure 1

As we have already mentioned in the introduction, the non-convexity of our cost
function is necessary in order to achieve our goal since for linear demand and a
convex cost function, the classical Cournot model is quasi–competitive.

Under these assumptions, the profit function of firm k (k = 1, . . . , r)
is

(5) Πk(q) = Πk(q1, . . . , qr) = [a − b(q1 + · · · + qr)] qk − C(qk).

If q̂k denotes the production of the whole industry except for firm k:

(6) q̂k = q1 + · · · + qk−1 + qk+1 + · · · + qr, (k = 1, 2, . . . , r),

then function (5) can be written as

Πk(q) = Πk(qk, q̂k) = [a − b(qk + q̂k)] qk − C(qk).

Displaying the different values of C(qk) and rearranging somewhat the result, we
have

(7) Πk(q) =







...
...

Πk,i = −b q2
k + [(a − di) − b q̂k] qk − ci if ti ≤ qk < ti−1

...
...

Πk,1 = −b q2
k + [(a − d1) − b q̂k] qk − c1 if t1 ≤ qk ≤ a/b

For our purposes, it will be convenient to modify the way of presenting function
(7). Let us define qc

i as

(8) qc
i :=

a − di

2b
.
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We can now write expression (7) as

(9) Πk(q) =







...
...

Πk,i = −b q2
k + 2b (qc

i − q̂k/2) qk − ci if ti ≤ qk < ti−1

...
...

Πk,1 = −b q2
k + 2b (qc

1 − q̂k/2) qk − c1 if t1 ≤ qk ≤ a/b.

We remark that, as di > di−1, the qc
i satisfy

(10) 0 < · · · < qc
i+1 < · · · < qc

i < · · · < qc
1 < a/(2b).

The qc
i are the values of q where, under monopoly (r = 1), the different parabolas

that constitute (9) have their vertexes (see Figure 2 below).

Figure 2: Monopoly profit

t4t3 t2 t1 q

Π

As usual in Cournot’s model, each firm maximizes its own profit considering the
production of the rest of the market, q̂k, constant. In our model, given q̂k the profit
function is not concave throughout [0, a/b]. It consists of an infinite number of
parabolas, each one defined on the corresponding interval

Πk,i = −b q2
k + 2b (qc

i −
1

2
q̂k) qk − ci if ti ≤ qk < ti−1.

The vertex of this parabola is found at

(11)

(

qc
i −

1

2
q̂k, b

(

qc
i −

1

2
q̂k

)2

− ci

)

.

Let us denote the maximum of the profit function in [ti, ti−1] as Πmax
k,i . Its value will

depend on the situation of qc
i − q̂k/2 with respect to the defining interval [ti, ti−1]:

(i) If ti ≤ qc
i − q̂k/2 ≤ ti−1, then Πmax

k,i = b (qc
i − q̂k/2)

2
− ci (the y–ordinate

of the vertex of the parabola).

(ii) If ti−1 ≤ qc
i − q̂k/2, then Πmax

k,i = Πk,i(ti−1, q̂k).

(iii) If qc
i − q̂k/2 ≤ ti, then Πmax

k,i = Πk,i(ti, q̂k).

The graph of Πk,i in each one of the previous situations is shown in Figure 3.
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Situation (i) Situation (ii) Situation (iii)

ti ti titi−1 ti−1 ti−16

qc
i −

1

2
q̂k

6

qc
i −

1

2
q̂k

6

qc
i −

1

2
q̂k

Figure 3

Thus the value (or values) of qk that maximize Πk(q) depend on q̂k through the
corresponding reaction curve Rk:

(12) Rk(q̂k) =







...






ti if 0 ≤ qc
i −

1

2
q̂k < ti

qc
i −

1

2
q̂k if ti ≤ qc

i −
1

2
q̂k < ti−1

ti−1 if ti−1 ≤ qc
i −

1

2
q̂k ≤ qc

i

...
{

t1 if 0 ≤ qc
1 −

1

2
q̂k < t1

qc
1 −

1

2
q̂k if t1 ≤ qc

1 −
1

2
q̂k ≤ qc

1.

The inequalities above can be re-written in terms of q̂k:

• 0 ≤ qc
i − q̂k/2 < ti is equivalent to 2qc

i − 2ti < q̂k ≤ 2qc
i ;

• ti ≤ qc
i − q̂k/2 < ti−1 is equivalent to 2qc

i − 2ti−1 < q̂k ≤ 2qc
i − 2ti;

• ti−1 ≤ qc
i − q̂k/2 ≤ qc

i is equivalent to 0 ≤ q̂k ≤ 2qc
i − 2ti−1;

• 0 ≤ qc
1 − q̂k/2 < t1 is equivalent to 2qc

1 − 2t1 < q̂k ≤ 2qc
1;

• t1 ≤ qc
1 − q̂k/2 ≤ qc

1 is equivalent to 0 ≤ q̂k ≤ 2qc
1 − 2t1.

Thus, a different way of writing (12) is

(13) Rk(q̂k) =







...






ti−1 if 0 ≤ q̂k ≤ 2qc
i − 2ti−1

qc
i −

1

2
q̂k if 2qc

i − 2ti−1 < q̂k ≤ 2qc
i − 2ti

ti if 2qc
i − 2ti < q̂k ≤ 2qc

i

...
{

qc
1 −

1

2
q̂k if 0 ≤ q̂k ≤ 2qc

1 − 2t1

t1 if 2qc
1 − 2t1 < q̂k ≤ 2qc

1.

This reaction curve (see Figure 4a), Rk(q̂k), is in fact a multivalued function or
correspondence on the variable q̂k. Among all the possible values of Rk(q̂k) for a
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given q̂k, firm k will choose, as q̂k’s image, the value (or one of the values) that
maximizes its profit.

a) Reaction curve b) Reaction function; lim
j→∞

qh
j

is found in Lemma 4

Rk(q̂k)
Fk(q̂k)

q̂k qh
j

lim
j→∞

qh
j = δqc

1

↑ q̂k

tj

Figure 4

The graphs in Figures 1 to 4 correspond to the numerical example in footnote 3
on page 14.

Consider now the vertexes of the infinity of parabolas that, given a fixed q̂k

constitute Πk (see equation (11):

(14) Vi(q̂k) = b

(

qc
i −

1

2
q̂k

)2

− ci, i = 1, 2, . . . .

In order to determine the reaction function in our model we will impose the following
condition on the Vi’s:

For each i = 1, 2, . . ., we demand that

(15) Vi ≥ Vi+1.

Let us determine the values of q̂k that make this possible.
Inequality (15) leads to:

(16) ci − ci+1 ≤ b

(

(qc
i −

1

2
q̂k)2 − (qc

i+1 −
1

2
q̂k)2

)

,

and after some algebra and using relations (4) we get to

(17) (di+1 − di) ti ≤ b(qc
i + qc

i+1 − q̂k) (qc
i − qc

i+1).

This last expression can be simplified using the relationship between di and qc
i from

equation (10):

(18) 2b(qc
i − qc

i+1)ti ≤ b(qc
i + qc

i+1 − q̂k) (qc
i − qc

i+1),

which leads to

(19) q̂k ≤ qc
i + qc

i+1 − 2ti.

We denote the right hand side of equation (19) as qh
i :

(20) qh
i := qc

i + qc
i+1 − 2ti, (i = 1, 2, . . .).
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Consequently we can state the following

Lemma 1. Given i = 1, 2, . . . , Vi(q̂k) ≥ Vi+1(q̂k) if and only if q̂k ≤ qh
i .

The next lemma is a direct consequence of the previous one:

Lemma 2. If we can find a sequence of qh
i satisfying definition (20) and satisfying

0 < qh
1 < · · · < qh

i < qh
i+1 < · · · ,

then, for each i = 1, 2, . . . we will have that

q̂k ≤ qh
i ⇒ Vi ≥ Vi+1 ≥ Vi+2 ≥ · · · ,

and

q̂k ≥ qh
i ⇒ V1 ≤ · · · ≤ Vi−1 ≤ Vi.

For the time being, let us suppose we have the increasing sequence of qh
i needed

in Lemma 2. We are now prepared for choosing firm k’s reaction among the different
set of values Rk(q̂k).

Lemma 3. Let i = 1, 2, . . . be given. If qh
i−1 ≤ q̂k ≤ qh

i we have

V1 ≤ · · · ≤ Vi−1 ≤ Vi ≥ Vi+1 ≥ Vi+2 ≥ · · · ,

and the situation of Πk,i on interval [ti, ti−1) is exactly situation (i) as described in
Figure 3. The situation in any interval on the left of [ti, ti−1), say [ti+m, ti+m−1),
is either (i) or (ii) as described in Figure 3; lastly, the situation of any interval on
the right of [ti, ti−1), say [ti−m, ti−m−1) is either (i) or (iii). Consequently, Vi(q̂k)
is the maximum value of Πk(· , q̂k).

The reaction function we finally get is:

(21) Fk(q̂k) =







qc
1 −

1

2
q̂k if 0 ≤ q̂k < qh

1

...
...

qc
i −

1

2
q̂k if qh

i−1 ≤ q̂k < qh
i

...
...

0 if δqc
1 ≤ q̂k

(see Figure 4b).

2.1. Cournot equilibrium points. Given the r reaction functions (21) we will
call potential Cournot points the eventual intersections of the different lines qk =
Fk(q̂k) that can be found without taking into consideration the constraints given
by the inequalities

qh
i−1 ≤ q̂k < qh

i , (k = 1, . . . , r).

There are an infinity of such points.
Among the potential intersections, those that satisfy the constraints will be called

the actual Cournot points.
If we choose r indexes, i1, i2, . . . , ir,, among {1, 2, . . .}, and restrict firm outputs

to positive values, the general solution of the system formed by the r equations
chosen is (see the Appendix):

Ii1,i2,...,ir
:=

(

2qc
i1
−

2
∑r

j=1
qc
ij

r + 1
, . . . , 2qc

ik
−

2
∑r

j=1
qc
ij

r + 1
, . . . , 2qc

ir
−

2
∑r

j=1
qc
ij

r + 1

)

.(22)
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If instead of r firms, we allow for s firms, s − r of them with zero production
output, the general solution of the system formed by the s equations is:

(23) Ii1,i2,...,ir ,0,...,0
︸︷︷︸

s−r

:=



2qc
i1
−

2
∑r

j=1
qc
ij

r + 1
, . . . , 2qc

ir
−

2
∑r

j=1
qc
ij

r + 1
,

s−r
︷ ︸︸ ︷

0, . . . , 0



 .

We call these asymmetric solutions trivial, since they are obtained from solution
(22) simply by adding firms with zero production.

3. Determination of the cost function

Let us keep in mind that our purpose is to build a non–quasi–competitive model.
The demand function is given and known; we are now going to determine those
values of the parameters used so far, qc

i , ci, di and ti in such way that our goal is
achieved. In the first place we will determine the qc

i and the ti. From them, we will
find ci and di using (8), (4) and the assumption that lim ci = 0.

The qc
i are a decreasing sequence as seen in equation (10). We define them

recursively from the first one, qc
1.

Definition 1. For j = 1, 2, . . .,

(24) qc
j+1 =

j + 2

j + 1

(

1 −
1

j + δ

)

qc
j , with qc

1 ≤ a/2b

and δ ∈ (0, 2/3).

We will later see the reason for the parameter δ and its inclusion in the interval
(0, 2/3).

Replacing qc
j by its corresponding expression in terms of qc

j−1 we eventually reach
a second definition for the qc

j :

Definition 2. For j = 1, 2, . . .,

(25) qc
j =

j + 1

2

δ

j − 1 + δ
qc
1,

where δ ∈ (0, 2/3).1

Definition 3. For j = 1, 2, . . .,

(26) tj =
1

2
qc
j

(

1 −
j − 2

j + 1
(1 −

1

j + δ
) + β

2δ

(j + 1)(j + δ)

)

where δ ∈ (0, 2/3) as before and 2

(27) 0 < β < 1 −
3

2

3 + δ

3 + 2 δ
δ.

We are now ready to see the following Lemma which will be needed in the sequel:

Lemma 4. The qh
i defined in (20) satisfy

0 < qh
1 < · · · < qh

i < · · · < a/(2b),

and limi→∞ qh
i = δ qc

1.

1In the Appendix we check the monotony of the qc
j sequence.

2In the Appendix we check the monotony of the tj .
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The lemma is proved in the Appendix.

Lastly, condition (4) says

ci − ci+1 = (di+1 − di)ti i = 1, 2, . . .

Adding these last equations for i = 1, 2, . . . , n we get

c1 − cn =
n∑

i=1

(di+1 − di)ti.

If we impose that cn → 0 we must have

(28) c1 =

∞∑

i=1

(di+1 − di)ti.

We have that di+1 − di = 2b(qc
i − qc

i+1) and from (8),

(29) di = a −
i + 1

i − 1 + δ
bδqc

1.

Now, using for ti expression (39) from the Appendix, we finally have

c1 =
∞∑

i=1

(2 − δ) b(δqc
1)

2 i − 1/2 + (3δ + 2βδ)/4

(i − 1 + δ)2(i + δ)2
.

This series is obviously convergent and its sum can be obtained with the help of
hypergeometric series,

c1 =(30)

(2 − δ) b(δqc
1)

2

(
2δ2 − 4βδ2 + 2βδ − δ + 2

4δ2
+

δ(2β − 1)

2
Ψ(1, 1 + δ)

)

where Ψ(n, x) is the n–th polygamma function, i.e., the n–th derivative of the
logarithmic derivative of Γ(x), see Lebedev (1972).

4. Existence and uniqueness of equilibrium

We are now prepared to tackle the first of our aims: the existence and uniqueness
of non-trivial Cournot’s equilibrium no matter the number of oligopolists in the
industry.

Theorem 1. Under the previous conditions, given a fixed number of firms, r ≥ 1
with identical cost function (3), there exists a unique non-trivial Cournot equilib-
rium point which is an actual solution of system (22). This solution is the one
given by i1 = i2 = · · · = ir = r:

(31) Ir,...,r =

(
2

r + 1
qc
r, . . . ,

2

r + 1
qc
r

)

.

If given a fixed number of firms, s, with identical cost function, there are s− r with
zero production, the unique trivial solution of system (23) is obtained for i1 = i2 =
· · · = ir = r:

(32) Ir,...,r,0,...,0
︸︷︷︸

s−r

=




2

r + 1
qc
r, . . . ,

2

r + 1
qc
r,

s−r
︷ ︸︸ ︷

0, . . . , 0



 .

The idea behind the proof (which is long and quite tedious and can be found
in the Appendix) is to see that among the potential solutions to (22), only the
symmetric one obtained for the system when the r equations are i1 = i2 = · · · =
ir = r is an actual solution. Let us recall that “actual” solutions are those that
satisfy all the constraints given by the inequalities qh

i−1 ≤ q̂k < qh
i , (k = 1, . . . , r).
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5. The loss of quasi–competitiveness, perfect competition and

viability

Theorem 2. Under the same conditions as before, the oligopoly equilibrium reached
is not quasi–competitive, that is to say, when a new firm enters the market and a
new equilibrium is reached, the new market price is greater than the old one.

Proof. Let us call Qr the total production when there are r non-zero production
firms in the market under equilibrium. We are going to prove that, for r = 1, 2, . . .
we have Qr > Qr+1.

From (31) we have

(33) Qr = rq̄r =
rδ

r − 1 + δ
qc
1 = δqc

1 +
δ(1 − δ)

r − 1 + δ
qc
1

which, as long as 0 < δ < 2/3, is strictly decreasing with r and tends to δqc
1 as

r → ∞.
Thus, industry price satisfies

lim
r→∞

p(Qr) = a − bδqc
1,

and marginal cost is the corresponding to C′(0), that is lim dr. Now,

lim
r→∞

dr = lim
r→∞

(a − 2bqc
r) = a − b lim

r→∞
2qc

r = a − bδqc
1,

as from definition 2, lim qc
r = δqc

1/2. �

This result completes Ruffin’s results on the subject as it proves that convexity
of the cost function while a sufficient condition for perfect competition in the limit,
is not a necessary one, Ruffin (1971).

Lastly, the oligopoly is always viable no matter the number of firms in the market.
We will see that equilibrium profits constitute a strictly decreasing sequence (r →
∞) with limit zero. This implies, consequently, that equilibrium profit is always
positive for any number of firms in the market.

In order to check that, we consider an equilibrium point (31) (or (32)) and the
profit there

Πmax
r =

(

a − b
2rqc

r

r + 1

)
2qc

r

r + 1
−

(

cr + dr

2qc
r

r + 1

)

.

This, after using (2), (29), and some algebra becomes

(34) Πmax
r = b

(
δqc

1

r − 1 + δ

)2

− cr.

As cr → 0 with r, it is obvious that

lim
r→∞

Πmax
r = 0.

We must finally check that Πmax
r is a decreasing sequence:

Πmax
r − Πmax

r+1 > 0.

Using (34) we have

Πmax
r − Πmax

r+1 = b(δqc
1)

2

[(
1

r − 1 + δ

)2

−

(
1

r + δ

)2
]

− (cr − cr+1).

From (4) we have
cr − cr+1 = (dr+1 − dr)tr.

Replacing dr and tr by their values in (29) and (26), we finally obtain

Πmax
r − Πmax

r+1 =
b(δqc

1)
2

(r − 1 + δ)2(r + δ)2

[

δ(r − β) +
δ2(3 + 2β)

4

]

> 0
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for r ≥ 1 (using (27) it is easy to see that β < 1).3

6. The stability of the successive equilibria

In order to prove the stability of our model we will use a commonly used adjust-
ment system. We assume that each firm adjusts its output proportionally with the
difference between its actual profit and its profit maximizing output:

(36)







q̇1 = k1 (F1(q̂1) − q1)
...

q̇i = ki (Fi(q̂i) − qi)
...

q̇s = ks (Fs(q̂s) − qs) ,

where the ki > 0 (i = 1, 2, . . . , s) are the speeds of adjustment.
This is no standard system of differential equations. The piecewise character of

Fk(q̂k) make (36) a very special dynamical system.
Nevertheless, we have already established that there are two kinds of steady

states to our system:

• The symmetric ones for which the r firms in the industry have positive
equal outputs.

• The asymmetric ones, where to the r firms above, another s− r are in the
industry with no output at all.

We will assume without loss of generality that the r firms with positive production
are ordered according to their speeds of adjustment: k1 ≤ k2 ≤ · · · ≤ kr.

Using our reaction function (21) the system of s differential equations (36) be-
comes

(37) q̇i =

{
ki(q

c
r −

1

2
q̂i − qi) i = 1, . . . , r;

ki(−qi) i = r + 1, . . . , s.

The solution, our Cournot equilibrium, is, as we have already seen,



2qc

r

r + 1
, . . . ,

2qc
r

r + 1
,

s−r
︷ ︸︸ ︷

0, . . . , 0



 .

3We provide the data for a numeric example that satisfies all our assumptions show-
ing thus the feasibility of our model. The figures provided in the paper are those that
correspond to this numerical situation.

(35) p = 100 − 2q (0 ≤ q ≤ 50).

We choose qc
1 = 24. If we fix δ = 1/3 then 0 < β < 0.5454 . . .; we choose β = 1/2.

For r = 1, 2, . . . , 5 the successive productions and prices at equilibrium are:

r Qr/r Qr p

1 24 24 52
2 6 12 76
3 3.43 10.29 79.43
4 2.4 9.6 80
5 1.85 9.25 81.5

When r → ∞, Qr → 8 and this establishes the price p = 84. This is the perfect
competition price that coincides with the marginal cost at q = 0: C′(0) = limr→∞ dr = 84.



PRICE INCREASE AND STABILITY . . . . . . 15

Let us recall that this equilibrium comes from solving system (43) which required
that

(38)







q̂i ∈ [qh
r−1, q

h
r ) for i = 1, . . . , r

and

q̂j ≥ δqc
1 for j = r + 1, . . . , s.

Denoting

q̄r :=
2qc

r

r + 1
.

the equilibrium is written

(q̄r, . . . , q̄r, 0, 0, . . . , 0).

It cannot escape the reader that a difficult problem one faces when solving the dy-
namic system (36) is the control of the orbit of the solution. The piecewise character
of Fk(q̂k) partitions the phase space, [0, a/b)s, into an infinity of regions in which a
different system of differential equations rules the dynamics and, consequently, the
orbit of a solution starting at a point (q1(0), . . . , qs(0)) is altered accordingly from
one region to another.

We can establish without much difficulty that each one of these different systems
of differential equations, when considered on its own (that is, without any constraint
whatsoever), has a stationary solution which is globally asymptotically stable.

Theorem 3. The stationary solution of the system of differential equations

q̇i =

{
ki(q

c
r −

1

2
q̂i − qi) i = 1, . . . , r;

ki(−qi) i = r + 1, . . . , s.

is globally asymptotically stable.

After that, we are ready to prove that all our equilibria, symmetric or not, are
asymptotically stable for the dynamical system (36). This is done in the next
Theorem whose proof (Appendix) is a bit elaborate. To give you a general idea of
the line of reasoning, we prove that we can find a set, S, around the equilibrium for
which any starting orbit tends back to the equilibrium without abandoning the
region established by the constraints (38). This is essential as on the very moment
an orbit leaves the region of the initial constraints it falls in the basin of attraction
of a different attractor and we have no guarantee ot if going back to our original
equilibrium.

Lemma 5. Under the max norm, ‖(x1, x2, . . . , xs)‖∞ = maxi |xi|, the ball

B((q̄r , . . . , q̄r, 0, . . . , 0), ρ/(s − 1))

of center (q̄r, . . . , q̄r, 0, . . . , 0) and radius ρ/(s − 1), where

ρ = min

{

(r − 1)q̄r − qh
r−1, q

h
r − (r − 1)q̄r,

(s − 1)(rq̄r − δqc
1)

r

}

,

is entirely contained in the region established by the set of constraints (38).

Instead of the max norm, Any other equivalent norm could be used, but this one
is more convenient for our purposes.

Our main Theorem in this section is:

Theorem 4. There exists a radius η > 0 such that the equilibrium

(q̄r, . . . , q̄r, 0, . . . , 0)

is asymptotically stable for any initial conditions lying in the ball

B((q̄r, . . . , q̄r, 0, . . . , 0), η).
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APPENDIX: PROOFS.

Proof of Lemma 3

Proof. If qh
i−1 ≤ q̂k ≤ qh

i , replacing qh
i by its value, qc

i + qc
i+1 − 2ti, and qh

i−1 by its
value qc

i−1 + qc
i − 2ti−1, we have immediately that

1

2
(qc

i − qc
i+1) + ti ≤ qc

i −
1

2
q̂k ≤ ti−1 −

1

2
(qc

i−1 − qc
i ).

As qc
i+1 < qc

i < qc
i−1, we have

ti < qc
i −

1

2
q̂k < ti−1,

and the vertex Vi is exactly within (ti, ti−1) as shown in situation (i). Now, as we are
assuming that the qh

i are strictly increasing, for any interval on the left of [ti, ti−1),

say [ti+m, ti+m−1), the situation of qc
i+m −

1

2
q̂k is determined by the relationship

q̂k < qh
i+m. Replacing, as before, qh

i+m by its value qc
i+m + qc

i+m+1 − 2ti+m, we
obtain

qc
i+m −

1

2
q̂k > ti+m.

Consequently, situation (iii) in Figure 3 is ruled out, and as Vi ≥ Vi+m and Vi+m ≥
Πk(ti+m−1), Vi is the greatest value of Πk on [0, ti−1). Now, on the right of [ti, ti−1),

say [ti−m, ti−m−1), the situation of qc
i−m −

1

2
q̂k is, as before, determined by the

inequality qh
i−m−1 < q̂k. Replacing qh

i−m−1 by its value qc
i−m−1 + qc

i−m − 2ti−m−1

we obtain,

qc
i−m −

1

2
q̂k < ti−m−1.

As before, situation (ii) in Figure 3 is ruled out, and as Vi ≥ Vi−m and Vi−m ≥
Πk(ti−m), Vi is the greatest value of Πk on [ti−1, q

c
1]). �

Monotony of qc
j . From (24)

qc
j+1 =

(

1 +
1

j + 1

)(

1 −
1

j + δ

)

qc
j ,

As 0 < δ < 2/3 < 1 it is seen at once that
(

1 +
1

j + 1

)(

1 −
1

j + δ

)

<

(

1 +
1

j + 1

)(

1 −
1

j + 1

)

= 1 −
1

(j + 1)2
< 1.

Monotony of tj. From (26)

tj =
1

2
qc
j

(

1 −
j − 2

j + 1
(1 −

1

j + δ
) + β

2δ

(j + 1)(j + δ)

)

If we replace qc
j by its expression (25) after some algebra we get to

(39) tj =
1

2
qc
1

δ(4j + 3δ + 2βδ − 2)

2(j − 1 + δ)(j + δ)
= qc

1δ

(
1

j + δ
+

2 + 2βδ − δ

4(j + δ − 1)(j + δ))

)

.

The expression between parenthesis is clearly decreasing with j.
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Proof of Lemma 4

Proof. The result is an immediate consequence of the following expressions of qh
i

obtained through (20), (24), (25) and (26):

qh
i−1 = 2

(
i − 1

i + 1
−

βδ

(i + 1)(i − 2 + δ)

)

qc
i(40)

qh
i = 2

(
i − 1

i + 1
+

(1 − β)δ

(i + 1)(i + δ)

)

qc
i(41)

Now

lim
i→∞

qh
i = lim

i→∞
2

(
i − 1

i + 1
+

(1 − β)δ

(i + 1)(i + δ)

)

qc
i = 2 lim

i→∞
qc
i = δ qc

1

as by (25) lim qc
i = δ qc

1/2. �

Cournot points of the model. Given the r reaction functions (21):

Fk(q̂k) =







qc
1 −

1

2
q̂k if 0 ≤ q̂k < qh

1

...
...

qc
i −

1

2
q̂k if qh

i−1 ≤ q̂k < qh
i

...
...

0 if δqc
1 ≤ q̂k

(k = 1, 2, . . . , r),

we are interested in finding all the potential intersections.
Let i1, . . . , ir be any r-ple of indexes chosen among 1, 2, . . .. Let qk = Fk(q̂k) > 0;

the system of r equations that has to be solved is

(42)







q1 = qc
i1
− 1

2
(q2 + q3 + · · · + qk + · · · + qr)

q2 = qc
i2
− 1

2
(q1 + q3 + · · · + qk + · · · + qr)

...
qk = qc

ik
− 1

2
(q1 + q2 + · · · + qk−1 + qk+1 + · · · + qr)

...
qr = qc

ir
− 1

2
(q1 + q2 + · · · + qk + · · · + qr−1)

that can be written as






2q1 + q2 + · · · + qk + · · · + qr = 2qc
i1

q1 + 2q2 + · · · + qk + · · · + qr = 2qc
i2

...
...

...
q1 + q2 + · · · + 2qk + · · · + qr = 2qc

ik

...
...

...
q1 + q2 + · · · + qk + · · · + 2qr = 2qc

ir

Adding up both sides of the equations we have

(r + 1)(q1 + · · · + qr) = 2(qc
i1

+ · · · + qc
ir

),

and, as for any k, (k = 1, 2, . . . , r), q1 + · · · + qr = qk + q̂k,

q̂k =
2

r + 1
(qc

i1
+ · · · + qc

ir
) − qk,

which, replaced in (42) leads to

qk = 2qc
ik
−

2

r + 1
(qc

i1
+ · · · + qc

ir
).

Thus the solution is
(

2qc
i1
−

2

r + 1
Σr

j=1q
c
ij

, . . . , 2qc
ik
−

2

r + 1
Σr

j=1q
c
ij

, . . . , 2qc
ir
−

2

r + 1
Σr

j=1q
c
ij

)

.
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Lets now suppose that we have a system of s equations with qk = Fk(q̂k) > 0 if
k = 1, 2, . . . , r, and qm = 0 when m = r + 1, . . . , s. The system is:

(43)







q1 = qc
i1
− 1

2
(q2 + q3 + · · · + qk + · · · + qr)

...
qr = qc

ir
− 1

2
(q1 + q2 + · · · + qk + · · · + qr−1)

qr+1 = 0
...

qs = 0.

Proceeding along the same steps as before, we reach the solution


2qc
i1
−

2

r + 1
Σr

j=1q
c
ij

, . . . , 2qc
ir
−

2

r + 1
Σr

j=1q
c
ij

,

s−r
︷ ︸︸ ︷

0, . . . , 0,



 .

Proof of Theorem 1

Proof. To begin with, for reasons that will be clear in the sequel, we treat the
monopoly case separately. Let us suppose then that r = 1.

From (22), the potential solutions are Ii1 = qc
i1

, where i1 ∈ {1, 2, . . .}. As the
qc
i1

constitute a decreasing sequence, and the maximum profit of the firm, (14), is
proportional to the square of qc

i1
, it is clear that our firm will choose the greatest

possible value for qc
i1

: qc
1. Thus, when r = 1, the result is clear.

Let us now assume that there are r ≥ 2 firms that have the same positive
production and s−r firms with zero production. Consequently the first r firms will
all choose the same equation as their reaction and i1 = i2 = · · · = ir = i. We will
prove that the only actual solution for system (23) is obtained when i = r. Let

(44) Ii,...,i,0,...,0
︸︷︷︸

s−r

=




2

r + 1
qc
i , . . . ,

2

r + 1
qc
i ,

s−r
︷ ︸︸ ︷

0, . . . , 0



 ,

be the corresponding potential solution of system (23), which in this case is






q1 = qc
i −

1

2
q̂1 if qh

i−1 ≤ q̂1 < qh
i

...
...

qk = qc
i −

1

2
q̂k if qh

i−1 ≤ q̂k < qh
i

...
...

qr = qc
i −

1

2
q̂r if qh

i−1 ≤ q̂r < qh
i .

qr+1 = 0 if δqc
1 ≤ q̂r+1

...
...

qs = 0 if δqc
1 ≤ q̂s

From solution (44) we have that for firm k, (k = 1, . . . , r),

(45) q̂k = 2 qc
i

r − 1

r + 1
.

As our solution must satisfy the necessary constraints, we must have qh
i−1 ≤ q̂k < qh

i ,
which using (40) and (41) can be written as

2

(
i − 1

i + 1
−

βδ

(i + 1)(i − 2 + δ)

)

qc
i ≤ 2 qc

i

r − 1

r + 1

≤ 2

(
i − 1

i + 1
+

(1 − β)δ

(i + 1)(i + δ)

)

qc
i .
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Simplifying,

(46)
i − 1

i + 1
−

βδ

(i + 1)(i − 2 + δ)
≤

r − 1

r + 1
≤

i − 1

i + 1
+

(1 − β)δ

(i + 1)(i + δ)
.

The double inequality is obviously true for i = r, for any r ≥ 2. We are now going
to prove that in case i > r the left inequality fails to be true and if i < r, the right
one is not true.

Since the expression in the left hand side of the first inequality increases with i,
it will suffice to prove that the inequality is not true for i = r + 1 and our assertion
will follow. In this case, replacing i = r + 1 we have:

(47)
r − 1 + δ

r + 1
<

βδ

2
.

But (r−1+ δ)/(r+1) increases with r which means that its value is always greater
than the value obtained for r = 2,

(48)
r − 1 + δ

r + 1
≥

1 + δ

3
>

δ

2
>

βδ

2

The contradiction between (47) and (48) prove that i ≤ r.
Let us now consider the second inequality in (46). The right hand expression

increases again with i; we will thus prove our assertion if the inequality fails for
i = r − 1, the greatest possible value of i less than r. Replacing i = r − 1, we have

r − 1

r + 1
<

r − 2

r
+

(1 − β)δ

r(r − 1 + δ)

from which we obtain
2

r + 1
<

(1 − β)δ

r − 1 + δ
and

(49)
r − 1 + δ

r + 1
<

(1 − β)δ

2
.

But from (48) we have

(50)
r − 1 + δ

r + 1
>

δ

2
>

(1 − β)δ

2
.

The contradiction between (49) and (50) proves that i ≥ r. We conclude that i = r
as we contented.

We now have to check that the s − r zero-production firms also satisfy their
constraints, i.e. q̂m ≥ δqc

1 for m = r +1, . . . , s. This is trivial because we now know
that, using (25),

q̂m =
2r

r + 1
qc
r =

2r

r + 1

r + 1

2

δ

r − 1 + δ
qc
1 ≥ δqc

1,

as long as δ ≤ 1, which is the case.
Obviously, allowing for s = r leads to the solution (31).

Lastly, we are going to prove that if not all of the i1, i2, . . . , ir are equal, there are
no actual solutions of systems (22) and (23). The s− r firms with zero production
do not play any role in this part of the demonstration. Let us assume then that
i1 ≤ i2 ≤ · · · ≤ ir and i1 < ir. We recall that the constraints of solution (23)
require

(51)

{
qh
i1−1 ≤ q̂i1 < qh

i1

qh
ir−1 ≤ q̂ir

< qh
ir

.
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Now, from (23), we have






q̂i1 = 2(qc
i2

+ qc
i3

+ · · · + qc
ir

) − (r − 1)
2

r + 1

∑r

l=1
qc
il

...

q̂ir
= 2(qc

i1
+ qc

i2
+ · · · + qc

ir−1
) − (r − 1)

2

r + 1

∑r
l=1

qc
il
.

Consequently,
q̂ir

− q̂i1 = 2 (qc
i1
− qc

ir
),

and (51) can be written as

(52)







qh
i1−1 ≤ q̂ir

− 2 (qc
i1
− qc

ir
) < qh

i1
...

qh
ir−1 ≤ q̂ir

< qh
ir

.

It is now obvious that if we manage to establish that

(53) qh
ir
− qh

i1−1 < 2 (qc
i1
− qc

ir
),

it will be impossible to satisfy neither (52) nor (51).
To simplify notation and make the checking of (53) easier, we call i1 = i, and

ir = i + d (d > 0). With this notation (53) becomes:

(54) qh
i+d − qh

i−1 < 2 (qc
i − qc

i+d).

Changing sides,

(55) qh
i+d + 2qc

i+d < qh
i−1 + 2qc

i .

Using (25), (40) and (41) we have

qh
i+d + 2qc

i+d =

= 2
i + d − 1

i + d + 1
qc
i+d +

2(1 − β)δ

(i + d − 1)(i + d + δ)
qc
i+d + 2qc

i+d

=

(
4(i + d)

(i + d + 1)
+

2(1 − β)δ

(i + d − 1)(i + d + δ)

)

qc
i+d

=

(
2(i + d)δ

i + d − 1 + δ
+

(1 − β)δ2

(i + d − 1 + δ)(i + d + δ)

)

qc
1

=

(

2δ +
2δ(1 − δ)

i + d − 1 + δ
+

(1 − β)δ2

(i + d − 1 + δ)(i + d + δ)

)

qc
1.

This last expression decreases with i and with d. Thus, in order to satisfy (55) for
d ≥ 1 it suffices to satisfy it for d = 1. For d = 1 the left hand side of (55) becomes

(56)

(

2δ +
2δ(1 − δ)

i + δ
+

(1 − β)δ2

(i + δ)(i + 1 + δ)

)

qc
1,

and the right hand side,

qh
i−1 + 2qc

i =

=

(

2
i − 1

i + 1
−

2βδ

(i + 1)(i − 2 + δ)
+ 2

)

qc
i

=

(
4i

(i + 1)
−

2βδ

(i + 1)(i − 2 + δ)

)

qc
i

=

(

2
δi

i − 1 + δ
−

βδ2

(i − 2 + δ)(i − 1 + δ)

)

qc
1

=

(

2δ +
2δ(1 − δ)

i + 1 + δ
−

βδ2

(i − 2 + δ)(i − 1 + δ)

)

qc
1.
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Now, replacing the corresponding values in (55) and simplifying:

2(1 − δ)

i + δ
+

(1 − β)δ

(i + δ)(i + 1 + δ)
<

2(1 − δ)

(i − 2 + δ)(i − 1 + δ)

or, equivalently,

(1 − β)δ

(i + δ)(i + 1 + δ)
+

βδ

(i − 2 + δ)(i − 1 + δ)
<

2(1 − δ)

i − 1 + δ
−

2(1 − δ)

i + δ

=
2(1 − δ)

(i + δ)(i + δ − 1)
,

which can be written

(1 − β)δ(i + δ − 1)

i + δ + 1
+

βδ(i + δ)

i − 2 + δ
< 2 − 2δ,

or

(1 − β)δ

(

1 −
2

i + δ + 1

)

+ βδ

(

1 +
2

i − 2 + δ

)

< 2 − 2δ.

Rearranging,

(57)
2βδ

i − 2 + δ
−

2δ(1 − β)

i + δ + 1
< 2 − 3δ.

The condition 0 < δ < 2/3 ensures the positivity of the right hand side of last
inequality. Now, as we want (57) to be true for i ≥ 2, dividing through by 2δ we
get

β

i − 2 + δ
−

1 − β

i + δ + 1
<

2 − 3δ

2δ
and if i ≥ 2

β

i − 2 + δ
−

1 − β

i + δ + 1
<

2 − 3δ

2δ
≤

β

δ
−

1 − β

δ + 3
<

2 − 3δ

2δ

this last inequality being equivalent to

β < 1 −
3

2
δ

3 + δ

3 + 2δ

which is the condition we have demanded our β to satisfy all the time. �

Proof of Theorem 3

Proof. Let us recall that we are solving system (37), that is:

q̇i =

{
ki(q

c
r −

1

2
q̂i − qi) i = 1, . . . , r;

ki(−qi) i = r + 1, . . . , s.

As the stationary solution is (q̄r, . . . , q̄r, 0, . . . , 0) let us carry out a change of vari-
ables:

(58) xi =

{
qi − q̄r i = 1, . . . , r;

qi i = r + 1, . . . , s.

Consequently, ẋi = q̇i, x̂i =
∑

j 6=i(qj − q̄r) = q̂i − (r − 1)q̄r and using that

q̄r =
2qc

r

r + 1

the system becomes

(59) ẋi =

{
ki(−

1

2
x̂i − xi) i = 1, . . . , r;

ki(−xi) i = r + 1, . . . , s.

which is a homogeneous system that can be written:

ẋ = Ax
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where A is

A =













−k1 −k1/2 · · · −k1/2 0 · · · 0
−k2/2 −k2 · · · −k2/2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·

−kr/2 −kr/2 · · · −kr 0 · · · 0
0 0 · · · 0 −kr+1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · −ks













.

with 0 as stationary solution.
The stability of the system depends entirely on the eigenvalues of matrix A.

These eigenvalues are exactly those of

B =













2k1 k1 · · · k1 0 · · · 0
k2 2k2 · · · k2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
kr kr · · · 2kr 0 · · · 0
0 0 · · · 0 2kr+1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 2ks













multiplied by −1/2. Now, the eigenvalues of matrix B are all real and positive.
This can be seen just considering its characteristic polynomial,

(60) P (x) = (2kr+1 − x) · · · (2ks − x)

∣
∣
∣
∣
∣
∣
∣
∣

2k1 − x k1 · · · k1

k2 2k2 − x · · · k2

· · · · · · · · · · · ·
kr kr · · · 2kr − x

∣
∣
∣
∣
∣
∣
∣
∣

.

Obviously, the s − r eigenvalues kr+1, . . . , ks are positive. The rest are the zeroes
of the polynomial,

(61) M(x) =

∣
∣
∣
∣
∣
∣
∣
∣

2k1 − x k1 · · · k1

k2 2k2 − x · · · k2

· · · · · · · · · · · ·
kr kr · · · 2kr − x

∣
∣
∣
∣
∣
∣
∣
∣

which are also positive. This is proved as follows.
It is easy to see that

M(kj) = kj

r∏

i=1

i6=j

(ki − kj).

As k1 < k2 < · · · < kr, we have that the signs of the sequence

M(k1), M(k2), . . . , M(kr), M(∞)

alternate. This fact guarantees that the r roots of M(x) are one in each interval
(k1, k2), . . . , (kr−1, kr), (kr,∞). If ℓ consecutive ki’s are equal, ki itself becomes a
root of multiplicity ℓ − 1, which can be seen differentiating ℓ times M(x) from its
determinant form, (61); the rest of the roots remain in the same intervals as before.

Consequently, A’s eigenvalues are all strictly negative and therefore the station-
ary solution of our system is asymptotically stable. �

Proof of Lemma 5

Proof. Let (q1, . . . , qr, qr+1, . . . , qs) ∈ B((q̄r, . . . , q̄r, 0, . . . , 0), ρ/(s − 1)). We can
write

{
qi = q̄r + ξi for i = 1, . . . , r
qj = εj for j = r + 1, . . . , s

with
∥
∥
∥
−−−−→
(ξi, εj)

∥
∥
∥
∞

<
ρ

s − 1
.
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Then, for i = 1, . . . , r,

q̂i = (r − 1)q̄r + ξ̂i +
∑

j

εj.

But

|q̂i − (r − 1)q̄r| ≤
∣
∣
∣ξ̂i

∣
∣
∣+
∑

j

εj < (r − 1)
ρ

s − 1
+ (s − r)

ρ

s − 1
= ρ

and by ρ′s definition, ρ ≤ min{(r − 1)q̄r − qh
r−1, q

h
r − (r − 1)q̄r} and so for i =

1, . . . , r, q̂i ∈ (qh
r−1, q

h
r ).

As for j = r + 1, . . . , s,

q̂j = rq̄r +
∑

i

ξi + ε̂j = δqc
1 + (rq̄r − δqc

1) +
∑

i

ξi + ε̂j .

But
(rq̄r − δqc

1) +
∑

i

ξi + ε̂j ≥ 0

and using ρ’s definition,

ρ ≤
(s − 1)(rq̄r − δqc

1)

r
,

we have ∑

i

ξi + (rq̄r − δqc
1) ≥

∑

i

ξi +
r

s − 1
ρ ≥ 0

since
∑

i |ξi| ≤ r
ρ

s − 1
.

Consequently, for j = r + 1, . . . , s − r, q̂j ≥ δqc
1. �

Proof of Theorem 4

Proof. In the proof we consider both equilibria at the same time,

(q̄r, . . . , q̄r
︸ ︷︷ ︸

r

, 0, . . . , 0
︸ ︷︷ ︸

s−r

).

For the symmetric case, we just assume that s = r and there are no 0-producing
firms.

Theorem 3 proved that the stationary solution of our system (37) is globally
asymptotically stable. As we have already mentioned, the problem is that system
(37) rules the dynamics of our model only if the orbit of the solution satisfy the
constraints (38). We are going to find an open neighborhood such that for any
initial conditions contained in such a neighborhood, the solution to (37) is entirely
contained in the ball of Lemma 5, and consequently tends to the equilibrium.

Let us retake the change of variables (58) used in the proof of Theorem 3 that
led to the homogeneous system written as

ẋ = Ax,

and 0 as its steady state.
The solution that satisfies the initial conditions

−−−→
(ξ, ε) = (ξ1, . . . , ξr, εr+1, . . . , εs)

is

(62) x(t) = eAt·
−−−→
(ξ, ε).

Now, as the system is asymptotically stable, and consequently any solution (62)
must tend to the stationary state, 0, it is immediate to see that there exists a
constant, M > 0 such that for all t ≥ 0, we have

∥
∥eAt

∥
∥
∞

≤ M.
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In this way, for all t ≥ 0 we have

‖x(t)‖∞ =
∥
∥
∥eAt·

−−−→
(ξ, ε)

∥
∥
∥
∞

≤
∥
∥eAt

∥
∥
∞

·
∥
∥
∥
−−−→
(ξ, ε)

∥
∥
∥
∞

≤ M ·
∥
∥
∥
−−−→
(ξ, ε)

∥
∥
∥
∞

.

Undoing the change of variables, we have the solution to (37)

q(t) = x(t) + (q̄r, . . . , q̄r, 0, . . . , 0))

with the initial conditions

(63) (q1(0), . . . , qs(0)) = (q̄r + ξ1, . . . , q̄r + ξr, εr+1, . . . , εs).

(We take the εj ≥ 0 as we do not consider negative outputs.)
This solution satisfies

‖q(t) − (q̄r, . . . , q̄r, 0, . . . , 0)‖∞ ≤ M ·
∥
∥
∥
−−−→
(ξ, ε)

∥
∥
∥
∞

Now, let B = B((q̄r, . . . , q̄r, 0, . . . , 0), ρ/(s − 1)) be the ball of Lemma 5 and let
η = ρ/[(s − 1)M ].

Taking
−−−→
(ξ, ε) such that

∥
∥
∥
−−−→
(ξ, ε)

∥
∥
∥
∞

≤ η, our orbit {q(t)}t≥0 ⊂ B as for any t ≥ 0

‖q(t) − (q̄r , . . . , q̄r, 0, . . . , 0)‖∞ ≤ M ·ρ/[(s − 1)M ] = ρ/(s − 1).

�
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