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Abstract

In the homogeneous case of one type of goods or objects, we prove
the existence of an additive utility function without assuming transi-
tivity of indifference and independence. The representation reveals a
positive factor @ < 1 that influences rational choice beyond the utility
function and explains departures from these standard axioms of utility
theory (a =1).
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1 Introduction

Standard theories of utility can be formulated as a collection of axioms about
a nonempty ordering > on a set A and a binary (commutative, associative)
operation o on A that permit the construction of a real-valued function u on
A verifying

z =y <= u(z) > u(y), (2)

u(z oy) = u(z) + u(y). (47)

Two groups of axioms are crucial to these theories. Firstly, the ordering
is assumed to be asymmetric: © = y = y ¥ x, and negatively transitive:
(x # yand y ¥ z) = = # z. Note that these two properties imply that
the ordering is also transitive: (x > y and y > z) = x > z. Secondly, the
combination of the ordering and the operation is assumed to verify a form of
independence or cancellation law, also called monotonicity: = > y < (xoz >
y o z for all z € A). Note that this property of independence, joint to the
asymmetry of the ordering, imply that the operation is =-regular: (z > y
ory = x) = (roz # yozforall z € A). If there exists a real-valued
function v on A verifying (¢) and (i¢), then all these axioms necessarily
hold (because they hold for the triple (R, >,+)). In this sense, if a theory
replaces negative transitivity with the weaker axiom of transitivity, allowing
intransitive indifference, then () must be modified in

-y = u(z) > uly). (')

On the other hand, if a theory relaxes independence maintaining a two-
way representation like (i), then (i7) cannot be satisfied. Those theories
lose the additivity of the utility function. In both examples, the theory is
significantly weakened.!

'For a presentation of the standard theory, see e.g. Fishburn (1970a); Krantz & Al.
(1971); Barbera & Al. (1998). On the independence condition in preference theory, see
Fishburn & Wakker (1995). A seminal reference on intransitive indifference is Luce (1956).
For a review of intransitive indifference in preference theory: Fishburn (1970b) and also
Krantz & Al. (1971). For the treatment of discrimination through interval orders, see e.g.
Fishburn (1985). About additivity, see for instance Wakker (1988a); Luce & Al. (1990,
Chap. 19). About empirical deviations from standard utility theory, see for instance
Hogarth & Reder (1987); Kahneman & Tversky (2000).
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Assuming transitivity (i.e. without assuming negative transitivity) and
replacing independence by a weaker property (replicated independence, see
Definition 1), we would show there exists a utility function u that verifies
(74) and a two-way representation (i) more general than (i) . More precisely,
we expect there exists a function o : AxA — R (satisfying certain technical
conditions ensuring the uniqueness of the pair (u, ) up to scalar) such that

x =y <= a(z,y)u(z) > u(y). (")

In a discrete and homogeneous case (see Definition 1, section 2), we prove
here that « is a constant < 1 (in this case, no “technical condition” is needed).
Further, we slightly generalize this result to a continuous setting (section 3).

With this model, we can, for instance, reflect a rational individual be-
ing indifferent between €100 and €101, and between €101 and €102, while
strictly preferring €102 to €100. Moreover, an individual who is indifferent
between €101 and €102 may not be indifferent between €1 and €2. There-
fore, such a model allows one to reflect a lack of discrimination (intransitive
indifference) and a diminishing marginal utility (violation of independence).
For the factor a, we have had in mind a model of rational behavior that
combines processes and consequences. In this interpretation, o would reflect
intrinsic procedural concerns outside the utility function. Without doubt,
other interpretations are possible.?

2 Utility Representation (Discrete Setting)

We start with three primitives: a nonempty set A, a nonempty binary relation
=~ on A, and a closed binary relation o on A. We write x ~ y if and only if
(x ¥ yand y 3 x), and x 27 y if and only if (z > y or z ~ y). We note N
the set of positive integers, Q- the set of positive rational numbers and R+
the set of positive real numbers.

Definition 1 Let A be a nonempty set, > a nonempty binary relation on
A, and o a closed binary operation on A. The triple (A, >, 0) is a partially
ordered positive structure if and only if the following five axioms are satisfied
for all z,y,z € A:

2For the relevance of a procedural dimension in rationality, see e.g. Simon (1978)
and Sen (1997). A model of rational behavior combining processes and consequences is
tentatively explored in Le Menestrel (1999, 2001a, 2001b). See also Le Menestrel & Van
Wassenhove (2001). For a resembling (proportional) lack of discrimination in psychology
(see e.g. Suppes & Al. 1989).



1. Strict Partial Order: x =y =y # x; (z =y and y = 2) = = > 2.

2. Commutativity; Associativity: x oy =youz;(zoy)oz=mzo0(yoz).

3. Positivity: z >y = x02 > y.

4. Replicated Independence: = >~ y < (nz > ny for all n € Ny), where
nx is defined inductively by 1z =z and (n + 1)z = nz o x.

5. Archimedean: If x > y, then there exists n € Ny such that nx >
(n+1)y.

A partially ordered positive structure (A, >, o) is said to be homogeneous
if it satisfies the following condition, for all z,y € A :

6. Homogeneity: maz = ny for some (m,n) € N5g x Nsg.

A nonempty set A endowed with a closed associative and commutative
binary operation o, is called a commutative semigroup.® A commutative
semigroup A is said to be reqular (respectively replicated-reqular) if for all
x € A, themap A — A,y — xoy (respectively the map Nyy — A, n — nx)
is injective. Let (A, =, 0) be a partially ordered positive structure. Then (by
replicated independence and asymmetry) the commutative semigroup A is
replicated-=-reqular: (x = y or y > x) = (nx # ny for all n € N). Clearly,
the four notions of regularity we have introduced in this paper satisfy the
following implications:

regularity = >-regularity = replicated->-regularity,
and
regularity = replicated-regularity = replicated->-regularity.

It is not difficult to verify (see the proof of Theorem 1 below) that if
A is homogeneous, then it is also replicated-regular. In particular (always
assuming A is homogeneous), this implies that for all z,y € A, the set
{# :m,n € Nyg,mz = ny} is reduced to one element.

3See Fuchs (1963) for a seminal algrebraic treatment. There, axiom 5 is said to exclude
“anomalous” pairs. It has been introduced by Alimov in 1950, see reference above (p.
162s) and also footnote 4 below. The name for axiom 4 has been suggested to us by Peter
Fishburn.



Theorem 1 Let (A, =,0) be a partially ordered positive homogeneous
structure. Then there exist a function u : A — Ryo and a real number
0 < a <1 such that for all z,y € A

x =y <= au(z) > u(y), (")

u(z oy) = u(z) + u(y). (47)

If (v,B) is another pair satisfying (i) and (ii), then § = « and there
exists a real number X > 0 such that v = Au. Moreover, u is injective if and
only if A is regular, u can be chosen with values in Q~g, and o € Q if and
only if there exist x,y € A such that au(z) = u(y).

Proof. Since > is not empty, there exist x,y € A such that x > y. Let
2,2 € A, and choose (m,n), (m’,n’) € N5y x N5g such that mz = nz and
m'y = n'2’ (homogeneity). By replicated independence, we have m'mx >
mm'y, i.e. pz = gz’ with p = m/n and ¢ = mn’. Take z = 2/, and suppose
there exists (a,b) € N5g x Ny such that a > b and az = bz. Then we have
(b+ k(a — b))z = bz for all k € Ny, hence m” (b + k(a — b))z = m"bz for
all (m”, k) € Nog x Nog. Taking m” = ¢, we can choose k big enough so
that g(b + k(a — b)) > pb. Since pbz > qbz (replicated independence), by
positivity we obtain q(b+ k(a — b))z > gbz, which is impossible. This implies
the replicated-regularity of A.

For x € A, we define the subsets of Q-

Q, = {% :max 22 nz,I(m,n) € Nug x Nog},
P = {% :mx > nz,I(m,n) € Nyg x Nog}.

By homogeneity and replicated independence, for all z,y € A, we have
Q, = 9, and P, = P,. So we can drop the index z in the notation Q, and
P.. From the previous paragraph, P is not empty, and 1 € Q. We also have
Qu=90UP =0 'UPand QNP =0 'NnP=2.

By positivity and replicated independence, we have ¢ € @ = Q>, C QO
and g € P = Q>, CP.

We define r = infg Q and s = infr P.

Because 1 € Q, we have 0 < s < 1. Because of positivity, we have r > 1.

If s = 0, then for all (m,n) € Nygx Ny, there exists (m/,n") € Nygx Ny
such that (m/,n') € Q and m 2 Hence € Q. Therefore P = @,

n/

contradiction. Hence 0 < s < 1. The same argument implies that Q., C Q.
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Suppose s € Q \Q. Take (m,n) € Nyg x Nyg such that s = 2. Since
s & Q, we have nx > mz and thus pnz = (p + 1)mz for some p € Nog
(Archimedean). Therefore @s ¢ Q which contradicts Q-, C Q. Therefore,
s € Q implies s € O.

Finally, we have Q = Q>, and also P = Q. 1. Hence, r = %

By replicated-regularity, for all x,y € A, there exists a unique ¢, € Qs
such that {% : m,n € Nyg,mz = ny} = {¢uy}. Let z € A. We define a
function f, : A — Qs by fo = ¢uy- Let y, v/ € A. We write mz = ny
and m'z = n'y’ for some (m,n), (m',n’) € Nog x Nog. Since (n'm +nm/)z =
nn/(yoy), we have g oy = ZEI — By o fo(yoy') = fo(y)+ fo ().
Moreover,

/ /

y =y e n'ny-nn'ysnme-nmt & —eP o —>r
nm nm
and
'm m m’
— >r e —>r— & sfo(y) > fy)
nm n n

So we have proved that the pair (u,«) = (f,s) verifies the conditions
(¢") and (i7) of Theorem 1. By construction u is Qso-valued.

Let f' : A — Ry be a function such that f'(y o z) = f'(y) + f'(2) for
all y,z € A. Let y € A, and write ma = ny for some (m,n) € N5y x Nog.
Then we have mf'(z) = f'(mz) = f'(ny) = nf'(y), i.e. f'(y) = Afa(y) with
A = f'(z). Then w is unique up to scaling transformation, which implies the
uniqueness of a. Condition (ii) of the Theorem implies that u is injective if
and only if A is regular. The last assertion of the Theorem is clear. m

Reciprocally, if (A, o) is a commutative semigroup (not necessarily homo-
geneous) endowed with a nonempty binary relation > such that there exist
a function u : A — R and a real number 0 < o < 1 satisfying the conditions
(¢") and (ii) of Theorem 1, then the triple (A, >, o) is a partially ordered
positive structure. The verification of this assertion is easy and left to the
reader.

Theorem 1 implies that « = 1 if and only if negative transitivity and
independence hold. We recover the standard theory where (i) and (i7) are
satisfied.* In general, the factor a may not equal to one, “twisting” the
representation and preventing the interpretation that a rational individual
acts as if he maximizes the utility function .

*When a = 1, the triple (A, =, +) is a closed positive estensive structure as defined
by Krantz and Al. (1970, p. 73). With respect to the Archimedean axiom used there and
axiom 5 here, see the discussion referred to in footnote 3.
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3 A Continuous Setting Generalization

Formulated using a discrete algebraic approach, Theorem 1 can be general-
ized to a continuous set of goods or objects. Retaining the algebraic approach,
we now introduce such a generalization.’

Let R C R be a subset containing 1 such that for all A\, 4 € R, we have
ApeR MpeR and A >pu= X —pe R. Since 1 € R, we have Nyy C R.
We call R — semimodule a commutative semigroup (A, o) endowed with a
closed operation R x A — A, (A, u) — A - u such that for all z,y € A and
A, i € R, we have:

A(zoy)=(A-z)o (A y),
A+p)-z=( )0 (u-x),
A(p-x) = (Ap) -,

1l-x==x.

Because of the last condition, for n € Ny, we have n-x = nx. Therefore,
the notions of commutative semigroup and Nsy-semimodule coincide. An
R-semimodule (A,o,-) is said to be R — regular if for all x € A the map
R — A, X — X\ -z is injective.

Definition 2 Let A be a nonempty set, > a nonempty binary relation
on A, o a closed binary operation on A, and - a closed operation of R on A.
The quadruple (A, >, 0,-) is a partially ordered positive R— structure if and
only if the following five axioms are satisfied for all x,y € A :

1. Strict Partial Order (Definition 1, axiom 1).

2. (A, o,-) is a R-semimodule.

3. Positivity (Definition 1, axiom 3).

4. R—independence: z = y < (Az > Ay for all A € R).

5. R—archimedean: If z > y, then there exist A\, u € R with A < u € R,
such that -z > p-y.

A partially ordered positive R-structure (A, >, o,-) is said to be homoge-
neous if it satisfies the following condition, for all z,y € A :

6. R-homogeneity: A -x = p -y for some (\, 1) € R x R.

>The algebraic approach is slightly more general than the topological one (see Wakker
1988b).



Let F(R) C R.g be the subset defined by F(R) = {% © A\, € R}. Since
1 € R, we have the inclusions Nog C R C F(R). And for all A\, u € F(R), we
have A+ p € F(R), \p € F(R), and A > u = X\ — pu € F(R). In particular,
we have:

_if R C Q, then F(R) = Qso,

_if R = Reg, then F(R) = Rey.

Theorem 2 Let (A, =,0,-) be a partially ordered positive homogeneous
R—structure. Then there exist a function u : A — Ryo and a real number
0 < a <1 such that for oll x,y € A and X € R, we have

x =y <= au(zr) > u(y), (")
u(z oy) = u(x) +u(y), (i4)
u(\ - z) = u(z). (171)

If (v,B) is another pair satisfying (i), (ii) and (iii), then § = o and
there exists a real number ~v > 0 such that v = yu. Moreover, u is injective
if and only if the semigroup (A, o) is reqular, u can be chosen with values in
F(R), and o € F(R) if and only if there exist z,y € A such that au(zx) =

u(y).

Proof. Roughly speaking, it suffices to replace N.g by R and Q- by
F(R) in the proof of Theorem 1. We sketch this briefly. Let z, 2’ € A. Since
> is nonempty, by R-homogeneity and R-independence, there exist A\, u € R
such that A -z > X - z/. Take z = 2/, and suppose there exists (a,b) € R X R
such that a > band a-z =b- 2. Since a — b € R, for all £ € Ny, we have
(b4 k(a—"b))-z=b-z. Choosing k big enough so that u(b+ k(a — b)) > b,
by R-independence and positivity, we obtain pu(b+k(a—"b))-z > ub-z, which
is impossible. This implies the R-regularity of the R-semimodule (4, o,-).

For z € A, we define the (nonempty) subsets of F'(R)

Q, = {%:)\-m,ﬁu-m,ﬂ()\,u)ERxR},

A
P, = {;:A~m>u-x,§l()\,u)€R><R}.



By R-homogeneity and R-independence, we can drop the index z in the
notation Q, and P,. We have F(R) = QUP ' =Q 'uP and QNP =
QNP = @. By positivity and R-independence, we have ¢ € Q = F(R)s, C
Qand ¢ € P = F(R)>, C P. We define r = infg Q and s = infg P. Because
1 € 9, we have 0 < s < 1, and because > is nonempty, we have s > 0 and
F(R)ss C Q. This last inclusion, joint to the R-archimedean axiom, implies
that if s € F(R), then s € Q. So we have Q = F(R)>s, P =F(R)>s-1 and
r=s1

By R-regularity, for all z,y € A, there exists a unique ¢, , € F(R) such
that {% cAp € RNz =p-y}t ={qy} Let z € A. We define a function
fz i A— F(R) by fz(y) = gu,y- As in the proof of Theorem 1, we verify that
the pair (u, a) = (fs, s) verifies the conditions (i) and (i7). By construction
u is F'(R)-valued and u(\ - z) = A f.(y) (A € R,y € A). The uniqueness of u
up to scaling transformation is obtained as in the proof of Theorem 1, using
R-homogeneity and condition (7i7) . All the remaining assertions of Theorem
2 are clear. m

Finally, if (A4, o0,+) is a R-semimodule (not necessarily R-homogeneous)
endowed with a nonempty binary relation > such that there exist a function
u: A — R and a real number 0 < o < 1 satisfying the conditions (i"), (i),
and (7ii) of Theorem 2, then the quadruple (A, >, o,-) is a partially ordered
positive R-structure.
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