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Abstract
In the homogeneous case of one type of goods or objects, we prove

the existence of an additive utility function without assuming transi-
tivity of indi¤erence and independence. The representation reveals a
positive factor ® · 1 that in‡uences rational choice beyond the utility
function and explains departures from these standard axioms of utility
theory (® = 1).
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1 Introduction
Standard theories of utility can be formulated as a collection of axioms about
a nonempty ordering Â on a set A and a binary (commutative, associative)
operation ± on A that permit the construction of a real-valued function u on
A verifying

x Â y () u(x) > u(y); (i)

u(x ± y) = u(x) + u(y): (ii)

Two groups of axioms are crucial to these theories. Firstly, the ordering
is assumed to be asymmetric: x Â y ) y 6Â x, and negatively transitive:
(x 6Â y and y 6Â z) ) x 6Â z: Note that these two properties imply that
the ordering is also transitive: (x Â y and y Â z) ) x Â z: Secondly, the
combination of the ordering and the operation is assumed to verify a form of
independence or cancellation law, also called monotonicity: x Â y , (x±z Â
y ± z for all z 2 A): Note that this property of independence, joint to the
asymmetry of the ordering, imply that the operation is Â-regular: (x Â y
or y Â x) ) (x ± z 6= y ± z for all z 2 A): If there exists a real-valued
function u on A verifying (i) and (ii) ; then all these axioms necessarily
hold (because they hold for the triple hR; >;+i). In this sense, if a theory
replaces negative transitivity with the weaker axiom of transitivity; allowing
intransitive indi¤erence, then (i) must be modi…ed in

x Â y =) u(x) > u(y): (i0)

On the other hand, if a theory relaxes independence maintaining a two-
way representation like (i) ; then (ii) cannot be satis…ed. Those theories
lose the additivity of the utility function. In both examples, the theory is
signi…cantly weakened.1

1For a presentation of the standard theory, see e.g. Fishburn (1970a); Krantz & Al.
(1971); Barbera & Al. (1998). On the independence condition in preference theory, see
Fishburn &Wakker (1995). A seminal reference on intransitive indi¤erence is Luce (1956).
For a review of intransitive indi¤erence in preference theory: Fishburn (1970b) and also
Krantz & Al. (1971). For the treatment of discrimination through interval orders, see e.g.
Fishburn (1985). About additivity, see for instance Wakker (1988a); Luce & Al. (1990,
Chap. 19). About empirical deviations from standard utility theory, see for instance
Hogarth & Reder (1987); Kahneman & Tversky (2000).
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Assuming transitivity (i.e. without assuming negative transitivity) and
replacing independence by a weaker property (replicated independence, see
De…nition 1), we would show there exists a utility function u that veri…es
(ii) and a two-way representation (i00) more general than (i) : More precisely,
we expect there exists a function ® : A£A! R>0 (satisfying certain technical
conditions ensuring the uniqueness of the pair (u; ®) up to scalar) such that

x Â y () ®(x; y)u(x) > u(y): (i00)

In a discrete and homogeneous case (see De…nition 1, section 2), we prove
here that ® is a constant· 1 (in this case, no “technical condition” is needed).
Further, we slightly generalize this result to a continuous setting (section 3).
With this model, we can, for instance, re‡ect a rational individual be-

ing indi¤erent between C100 and C101, and between C101 and C102, while
strictly preferring C102 to C100. Moreover, an individual who is indi¤erent
between C101 and C102 may not be indi¤erent between C1 and C2. There-
fore, such a model allows one to re‡ect a lack of discrimination (intransitive
indi¤erence) and a diminishing marginal utility (violation of independence).
For the factor ®, we have had in mind a model of rational behavior that
combines processes and consequences. In this interpretation, ® would re‡ect
intrinsic procedural concerns outside the utility function. Without doubt,
other interpretations are possible.2

2 Utility Representation (Discrete Setting)

We start with three primitives: a nonempty setA, a nonempty binary relation
Â on A, and a closed binary relation ± on A: We write x s y if and only if
(x 6Â y and y 6Â x); and x % y if and only if (x Â y or x s y): We note N>0
the set of positive integers, Q>0 the set of positive rational numbers and R>0
the set of positive real numbers.

De…nition 1 Let A be a nonempty set, Â a nonempty binary relation on
A; and ± a closed binary operation on A: The triple hA; Â; ±i is a partially
ordered positive structure if and only if the following …ve axioms are satis…ed
for all x; y; z 2 A :

2For the relevance of a procedural dimension in rationality, see e.g. Simon (1978)
and Sen (1997). A model of rational behavior combining processes and consequences is
tentatively explored in Le Menestrel (1999, 2001a, 2001b). See also Le Menestrel & Van
Wassenhove (2001). For a resembling (proportional) lack of discrimination in psychology
(see e.g. Suppes & Al. 1989).
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1. Strict Partial Order: x Â y ) y 6Â x; (x Â y and y Â z)) x Â z.
2. Commutativity; Associativity: x ± y = y ± x; (x ± y) ± z = x ± (y ± z).
3. Positivity: x Â y =) x ± z Â y:
4. Replicated Independence: x Â y , (nx Â ny for all n 2 N>0); where

nx is de…ned inductively by 1x = x and (n+ 1)x = nx ± x:
5. Archimedean: If x Â y; then there exists n 2 N>0 such that nx Â

(n+ 1)y:

A partially ordered positive structure hA; Â; ±i is said to be homogeneous
if it satis…es the following condition, for all x; y 2 A :

6. Homogeneity: mx = ny for some (m;n) 2 N>0 £ N>0:

A nonempty set A endowed with a closed associative and commutative
binary operation ±; is called a commutative semigroup.3 A commutative
semigroup A is said to be regular (respectively replicated-regular) if for all
x 2 A; the mapA! A; y 7¡! x±y (respectively the mapN>0 ! A; n 7¡! nx)
is injective. Let hA; Â; ±i be a partially ordered positive structure. Then (by
replicated independence and asymmetry) the commutative semigroup A is
replicated-Â-regular: (x Â y or y Â x) ) (nx 6= ny for all n 2 N): Clearly,
the four notions of regularity we have introduced in this paper satisfy the
following implications:

regularity ) Â-regularity ) replicated-Â-regularity,

and

regularity ) replicated-regularity ) replicated-Â-regularity.

It is not di¢cult to verify (see the proof of Theorem 1 below) that if
A is homogeneous, then it is also replicated-regular. In particular (always
assuming A is homogeneous), this implies that for all x; y 2 A, the set
fm
n
: m;n 2 N>0;mx = nyg is reduced to one element.

3See Fuchs (1963) for a seminal algrebraic treatment. There, axiom 5 is said to exclude
“anomalous” pairs. It has been introduced by Alimov in 1950, see reference above (p.
162s) and also footnote 4 below. The name for axiom 4 has been suggested to us by Peter
Fishburn.
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Theorem 1 Let hA; Â; ±i be a partially ordered positive homogeneous
structure. Then there exist a function u : A ! R>0 and a real number
0 < ® 6 1 such that for all x; y 2 A

x Â y () ®u(x) > u(y); (i00)

u(x ± y) = u(x) + u(y): (ii)

If (v; ¯) is another pair satisfying (i00) and (ii) ; then ¯ = ® and there
exists a real number ¸ > 0 such that v = ¸u: Moreover, u is injective if and
only if A is regular, u can be chosen with values in Q>0; and ® 2 Q if and
only if there exist x; y 2 A such that ®u(x) = u(y):
Proof. Since Â is not empty, there exist x; y 2 A such that x Â y: Let

z; z0 2 A; and choose (m;n); (m0; n0) 2 N>0 £ N>0 such that mx = nz and
m0y = n0z0 (homogeneity). By replicated independence, we have m0mx Â
mm0y; i.e. pz Â qz0 with p = m0n and q = mn0: Take z = z0; and suppose
there exists (a; b) 2 N>0 £ N>0 such that a > b and az = bz: Then we have
(b + k(a ¡ b))z = bz for all k 2 N>0; hence m00(b + k(a ¡ b))z = m00bz for
all (m00; k) 2 N>0 £ N>0: Taking m00 = q; we can choose k big enough so
that q(b + k(a ¡ b)) > pb: Since pbz Â qbz (replicated independence), by
positivity we obtain q(b+ k(a¡ b))z Â qbz; which is impossible. This implies
the replicated-regularity of A:
For x 2 A; we de…ne the subsets of Q>0

Qx = fm
n
: mx % nx; 9(m;n) 2 N>0 £N>0g;

Px = fm
n
: mx Â nx; 9(m;n) 2 N>0 £N>0g:

By homogeneity and replicated independence, for all x; y 2 A; we have
Qx = Qy and Px = Py: So we can drop the index x in the notation Qx and
Px: From the previous paragraph, P is not empty, and 1 2 Q: We also have
Q>0 = Q [P¡1 = Q¡1 [ P and Q \ P¡1 = Q¡1 \ P = ?:
By positivity and replicated independence, we have q 2 Q ) Q¸q ½ Q

and q 2 P ) Q¸q ½ P :
We de…ne r = infRQ and s = infRP :
Because 1 2 Q, we have 0 · s · 1: Because of positivity, we have r ¸ 1:
If s = 0; then for all (m;n) 2 N>0£N>0; there exists (m0; n0) 2 N>0£N>0

such that (m0; n0) 2 Q and m0
n0 <

m
n
: Hence m

n
2 Q. Therefore P = ?;

contradiction. Hence 0 < s · 1: The same argument implies that Q>s ½ Q:
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Suppose s 2 Q nQ: Take (m;n) 2 N>0 £ N>0 such that s = m
n
: Since

s 62 Q; we have nx Â mx and thus pnx Â (p + 1)mx for some p 2 N>0
(Archimedean): Therefore (p+1)

p
s 62 Q which contradicts Q>s ½ Q: Therefore,

s 2 Q implies s 2 Q:
Finally, we have Q = Q¸s; and also P = Q> 1

s
: Hence, r = 1

s
:

By replicated-regularity, for all x; y 2 A; there exists a unique qx;y 2 Q>0
such that fm

n
: m;n 2 N>0;mx = nyg = fqx;yg: Let x 2 A: We de…ne a

function fx : A ¡! Q>0 by fx = qx;y: Let y; y0 2 A: We write mx = ny
and m0x = n0y0 for some (m;n); (m0; n0) 2 N>0£N>0: Since (n0m+ nm0)x =
nn0(y±y0); we have qx;y±y0 = n0m+nm0

nn0 = m
n
+ m0

n0 , i.e. fx(y±y0) = fx(y)+fx(y0):
Moreover,

y Â y0 , n0ny Â nn0y , n0mx Â nm0x, n0m
nm0 2 P ,

n0m
nm0 > r

and

n0m
nm0 > r ,

m

n
> r

m0

n0
, sfx(y) > fx(y

0):

So we have proved that the pair (u; ®) = (fx; s) veri…es the conditions
(i00) and (ii) of Theorem 1. By construction u is Q>0-valued:
Let f 0 : A ! R>0 be a function such that f 0(y ± z) = f 0(y) + f 0(z) for

all y; z 2 A: Let y 2 A; and write mx = ny for some (m;n) 2 N>0 £ N>0:
Then we have mf 0(x) = f 0(mx) = f 0(ny) = nf 0(y); i.e. f 0(y) = ¸fx(y) with
¸ = f 0(x): Then u is unique up to scaling transformation, which implies the
uniqueness of ®: Condition (ii) of the Theorem implies that u is injective if
and only if A is regular. The last assertion of the Theorem is clear.

Reciprocally, if (A; ±) is a commutative semigroup (not necessarily homo-
geneous) endowed with a nonempty binary relation Â such that there exist
a function u : A! R and a real number 0 < ® · 1 satisfying the conditions
(i00) and (ii) of Theorem 1, then the triple hA; Â; ±i is a partially ordered
positive structure. The veri…cation of this assertion is easy and left to the
reader.
Theorem 1 implies that ® = 1 if and only if negative transitivity and

independence hold. We recover the standard theory where (i) and (ii) are
satis…ed.4 In general, the factor ® may not equal to one, “twisting” the
representation and preventing the interpretation that a rational individual
acts as if he maximizes the utility function u.

4When ® = 1; the triple hA; Â;+i is a closed positive extensive structure as de…ned
by Krantz and Al. (1970, p. 73). With respect to the Archimedean axiom used there and
axiom 5 here, see the discussion referred to in footnote 3.
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3 A Continuous Setting Generalization
Formulated using a discrete algebraic approach, Theorem 1 can be general-
ized to a continuous set of goods or objects. Retaining the algebraic approach,
we now introduce such a generalization.5

Let R ½ R>0 be a subset containing 1 such that for all ¸; ¹ 2 R; we have
¸+¹ 2 R; ¸¹ 2 R; and ¸ > ¹) ¸¡¹ 2 R: Since 1 2 R; we have N>0 ½ R.
We call R ¡ semimodule a commutative semigroup (A; ±) endowed with a
closed operation R £ A ! A; (¸; ¹) 7! ¸ ¢ ¹ such that for all x; y 2 A and
¸; ¹ 2 R; we have:

¸ ¢ (x ± y) = (¸ ¢ x) ± (¸ ¢ y);
(¸+ ¹) ¢ x = (¸ ¢ x) ± (¹ ¢ x);
¸ ¢ (¹ ¢ x) = (¸¹) ¢ x;
1 ¢ x = x:

Because of the last condition, for n 2 N>0; we have n ¢x = nx: Therefore,
the notions of commutative semigroup and N>0-semimodule coincide. An
R-semimodule (A; ±; ¢) is said to be R ¡ regular if for all x 2 A the map
R ! A;¸ 7! ¸ ¢ x is injective.

De…nition 2 Let A be a nonempty set, Â a nonempty binary relation
on A; ± a closed binary operation on A; and ¢ a closed operation of R on A:
The quadruple hA; Â; ±; ¢i is a partially ordered positive R¡structure if and
only if the following …ve axioms are satis…ed for all x; y 2 A :

1. Strict Partial Order (De…nition 1, axiom 1).
2. (A; ±; ¢) is a R-semimodule.
3. Positivity (De…nition 1, axiom 3):
4. R¡independence: x Â y , (¸x Â ¸y for all ¸ 2 R):
5. R¡archimedean: If x Â y; then there exist ¸; ¹ 2 R with ¸ < ¹ 2 R;

such that ¸ ¢ x Â ¹ ¢ y:

A partially ordered positive R-structure hA; Â; ±; ¢i is said to be homoge-
neous if it satis…es the following condition, for all x; y 2 A :

6. R-homogeneity: ¸ ¢ x = ¹ ¢ y for some (¸; ¹) 2 R £ R:
5The algebraic approach is slightly more general than the topological one (see Wakker

1988b).
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Let F (R) ½ R>0 be the subset de…ned by F (R) = f¸¹ : ¸; ¹ 2 Rg: Since
1 2 R; we have the inclusions N>0 ½ R ½ F (R): And for all ¸; ¹ 2 F (R); we
have ¸ + ¹ 2 F (R); ¸¹ 2 F (R); and ¸ > ¹ ) ¸¡ ¹ 2 F (R): In particular;
we have:
- if R ½ Q; then F (R) = Q>0,
- if R = R>0; then F (R) = R>0.

Theorem 2 Let hA; Â; ±; ¢i be a partially ordered positive homogeneous
R¡structure. Then there exist a function u : A ! R>0 and a real number
0 < ® 6 1 such that for all x; y 2 A and ¸ 2 R; we have

x Â y () ®u(x) > u(y); (i00)

u(x ± y) = u(x) + u(y); (ii)

u(¸ ¢ x) = ¸u(x): (iii)

If (v; ¯) is another pair satisfying (i00) ; (ii) and (iii) ; then ¯ = ® and
there exists a real number ° > 0 such that v = °u: Moreover, u is injective
if and only if the semigroup (A; ±) is regular, u can be chosen with values in
F (R); and ® 2 F (R) if and only if there exist x; y 2 A such that ®u(x) =
u(y):

Proof. Roughly speaking, it su¢ces to replace N>0 by R and Q>0 by
F (R) in the proof of Theorem 1. We sketch this brie‡y. Let z; z0 2 A: Since
Â is nonempty, by R-homogeneity and R-independence, there exist ¸; ¹ 2 R
such that ¸ ¢ z Â ¸ ¢ z0: Take z = z0; and suppose there exists (a; b) 2 R £ R
such that a > b and a ¢ z = b ¢ z: Since a ¡ b 2 R, for all k 2 N>0; we have
(b+ k(a¡ b)) ¢ z = b ¢ z: Choosing k big enough so that ¹(b+ k(a¡ b)) > ¸b;
by R-independence and positivity, we obtain ¹(b+k(a¡b)) ¢z Â ¹b ¢z; which
is impossible. This implies the R-regularity of the R-semimodule (A; ±; ¢):
For x 2 A; we de…ne the (nonempty) subsets of F (R)

Qx = f¸
¹
: ¸ ¢ x % ¹ ¢ x; 9(¸; ¹) 2 R £ Rg;

Px = f¸
¹
: ¸ ¢ x Â ¹ ¢ x; 9(¸; ¹) 2 R £ Rg:
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By R-homogeneity and R-independence, we can drop the index x in the
notation Qx and Px: We have F (R) = Q [ P¡1 = Q¡1 [ P and Q \ P¡1 =
Q¡1\P = ?: By positivity andR-independence, we have q 2 Q ) F (R)¸q ½
Q and q 2 P ) F (R)¸q ½ P :We de…ne r = infRQ and s = infRP: Because
1 2 Q, we have 0 · s · 1; and because Â is nonempty, we have s > 0 and
F (R)>s ½ Q: This last inclusion, joint to the R-archimedean axiom, implies
that if s 2 F (R); then s 2 Q: So we have Q = F (R)¸s;P =F (R)¸s¡1 and
r = s¡1:
By R-regularity, for all x; y 2 A; there exists a unique qx;y 2 F (R) such

that f¸
¹
: ¸; ¹ 2 R; ¸ ¢ x = ¹ ¢ yg = fqx;yg: Let x 2 A: We de…ne a function

fx : A ¡! F (R) by fx(y) = qx;y: As in the proof of Theorem 1, we verify that
the pair (u; ®) = (fx; s) veri…es the conditions (i00) and (ii). By construction
u is F (R)-valued and u(¸ ¢ x) = ¸fx(y) (¸ 2 R; y 2 A): The uniqueness of u
up to scaling transformation is obtained as in the proof of Theorem 1, using
R-homogeneity and condition (iii) : All the remaining assertions of Theorem
2 are clear.
Finally, if (A; ±; ¢) is a R-semimodule (not necessarily R-homogeneous)

endowed with a nonempty binary relation Â such that there exist a function
u : A! R and a real number 0 < ® · 1 satisfying the conditions (i00), (ii) ;
and (iii) of Theorem 2, then the quadruple hA;Â; ±; ¢i is a partially ordered
positive R-structure.
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