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Abstract

We establish the validity of subsampling confidence intervals for the mean of a dependent
series with heavy-tailed marginal distributions. Using point process theory, we study both
linear and nonlinear GARCH-like time series models. We propose a data-dependent method
for the optimal block size selection and investigate its performance by means of a simulation
study.

JEL CLASSIFICATION NOS: C10, C14, C32.

KEYWORDS: GARCH, Heavy tails, Linear time series, Subsampling.

2



1 Introduction

Estimation of the mean is often the first step in an analysis of a stationary time series. If
the observations can be assumed to be generated by a stationary model with finite variance,
there is a well-known asymptotic theory for the sample mean, see e.g. Section 7.1 of Brockwell
and Davis (1991) and a large body of research devoted to the estimation of the asymptotic
variance.

In this paper we assume that the observations follow the model Xt = µ + Yt, where {Yt}
is a zero mean stationary time series with heavy tailed univariate marginal distributions. We
assume that these distributions are regularly varying with index κ satisfying 1 < κ < 2, so that
the mean exists but the variance is infinite. Linear processes with infinite variance heavy tailed
distributions have been studied by Cline and Brockwell (1985), Mikosch et al. (1995), Anderson
and Meerschaert (1997) and Kokoszka and Taqqu (1994, 1996, 2001), among others. It has
recently been established that the popular GARCH processes have regularly varying marginal
distibution which may exhibit infinite variance for some choices of parameters, see Basrak,
Davis and Mikosch (2002a, 2002b) and the asymptotic theory for sample autocovariances and
extrema for such processes has been developed, see Davis and Mikosch (1998), Mikosch and
Stărică (2000).

We investigate the validity of the subsampling confidence intervals for µ based on the
statistic

Tn = n1/2 X̄n − µ

σ̂n
,(1.1)

where

σ̂2
n =

1
n

n∑

t=1

(Xt − X̄n)2.(1.2)

Thus we approximate the sampling distribution of Tn by

Ln,b(x) =
1

n− b + 1

n−b+1∑

t=1

1

{
b1/2(X̄n,b,t − X̄n)

σ̂n,b,t
≤ x

}
.(1.3)

We refer to Politis et al. (1999) for a systematic account of the subsampling methodology.
A theoretical justification for the subsampling method considered in this paper is based on
Theorem 1.1 which is stated below. It is almost identical to Theorem 11.3.1 of Politis et al.
(1999), the only difference being that we do not assume independent observations. For the
sake of completeness we state here this result and outline its proof.

Suppose we have observed a sample X1, . . . , Xn and θ̂n is an estimator of θ and Jn is the
sampling distribution of τn(θ̂n − θ)/σ̂n, where σ̂n > 0. Set also

Jn(x) = P
{
τn(θ̂n − θ)/σ̂n ≤ x

}
.(1.4)

Assumption 1.1 There are nondegenerate distributions J, V,W , such that W has no mass at
the origin, an positive sequences {tn} and {un} such that τn = tn/un and

Jn
d→ J ;(1.5)

tn(θ̂n − θ) d→ V ;(1.6)

unσ̂n
d→ W.(1.7)
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Consider the subsampling approximation to Jn(x) given by

Ln,b(x) =
1

n− b + 1

n−b+1∑

t=1

1

{
τb(θ̂n,b,t − θ̂n)

σ̂n,b,t
≤ x

}
,(1.8)

where θ̂n,b,t, σ̂n,b,t are computed from the observations Xt, Xt+1, . . . , Xt+b−1.

The definition of strong mixing is recalled in Section 2.

Theorem 1.1 Suppose the process {Xt} is strong mixing, Assumption 1.1 holds, and

b →∞,
b

n
→ 0,

τb

τn
→ 0,

tb
tn
→ 0..

Then, the following conclusions hold:
(i) If x is a continuity point of J(·), then Ln,b(x) P→ J(x).

(ii) If J(·) is continuous, then supx |Ln,b(x)− J(x)| P→ 0.

(iii) Denote
cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α};

c(1− α) = inf{x : J(x) ≥ 1− α}.
If J(·) is continuous at c(1− α), then

P
{
τn(θ̂n − θ)/σ̂n ≤ cn,b(1− α)

}
→ 1− α,

that is, the subsampling confidence intervals yield asymptotically correct coverage probability.

The proof of Theorem 1.1 is the same as of Theorem 11.3.1 in Politis et al. (1999), except that
to show the convergence

1
n− b + 1

n−b+1∑

t=1

1

{
τb(θ̂n,b,t − θ)

σ̂n,b,t
≤ x

}
P→ J(x)

one must follow the argument in the proof of Theorem 3.2.1. of Politis et al. (1999), rather
then use an argument for independent observations.

The difficulty of applying Theorem 1.1 lies in verifying Assumption 1.1 for a specific class of
time series of interest. In Section 2 we study two popular classes of dependent processes which
exhibit both dependence and heavy tails, the case of independent observations was studied
in Chapter 11 of Politis et al. (1999). Both classes are defined in a broad nonparametric
setting and are shown to contain popular parametric models. The first class consists of moving
average models with heavy-tailed innovations and was independently investigated by McElroy
and Politis (2002). Their method of proof relies on representing the partial sum of observations
as a multiple of the partial sum of the noise plus a small remainder term. We use point process
techniques which yield somewhat shorter arguments. These techniques are also useful for
the second class of models which includes nonlinear time series like GARCH. Thus the point
process approach may be more widely applicable in other contexts as well. Section 3 focuses
on the practical implementation of the subsampling method and illustrates its applicability by
means of a simulation study. The critical issue is the choice of the block size b. McElroy and
Politis (2002), who report only results for several fixed choices of b, stress the need for finding
a good procedure for determining b. We propose a fairly general data-dependent approach.
Mathematical proofs are collected in the Appendix.
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Remark 1.1 The approximation (1.8) allows for the construction of one-sided or equal-tailed
two-sided confidence intervals for µ. As an alternative, two-sided symmetric confidence inter-
vals could be constructed by estimating the two-sided distribution function

Jn,|·|(x) = P
{
τn|θ̂n − θ|/σ̂n ≤ x

}
.(1.9)

The according subsampling approximation is given by

Ln,b,|·|(x) =
1

n− b + 1

n−b+1∑

t=1

1

{
b1/2|X̄n,b,t − X̄n|

σ̂n,b,t
≤ x

}
.(1.10)

The asymptotic validity of this approach follows immediately from the validity of (1.8) and
the continuous mapping theorem.

2 Main results

In this section we verify that the assumptions of Theorem 1.1 are satisfied by two commonly
used classes of time series. The first class consists of moving averages with innovations which
are in the domain of attraction of a stable law with index 1 < κ < 2. Such time series arise for
example in modelling teletraffic and server workload data, see e.g. Resnick (1997). The second
class includes GARCH-like processes which, unlike the processes from the previous class, do not
exhibit “linear” dependence, but possess “dependence in absolute values”. Such time series are
commonly used in modelling financial and economic data; for example, see Gouriéroux (1997).

In Theorem 1.1 we assume that the time series under consideration is strongly mixing.
We recall here the appropriate definitions and some related facts. Suppose {Xt, t ∈ Z} is a
stationary random sequence. The mixing rate function mk of {Xt} is defined as

mk = sup {|P (A ∩B)− P (A)P (B)|, A ∈ σ(Xs, s ≤ 0), B ∈ σ(Xs, s > k)} ,(2.1)

with the σ-algebras in (2.1) defined in the usual way. (The mk in (2.1) are usually denoted
αk but we want to avoid confusion with the coefficients in the GARCH specification (2.14).)
If mk → 0 as k →∞, the sequence {Xt} is said to be strong mixing or α-mixing, and if there
are constants K > 0 and 0 < a < 1 such that mk < Kak, it is said to be strongly mixing
with geometric rate. We refer to Doukhan (1994) or Bradley (1986) for systematic accounts of
mixing conditions. .

2.1 Heavy-tailed moving averages

We consider moving averages of the form

Yt =
∞∑

j=0

cjZt−j(2.2)

with the weights cj satisfying
∞∑

j=0

|cj | < ∞.(2.3)

This model nests causal ARMA(p, q) and AR(∞) specifications. The iid innovations Zt are
assumed to be mean zero and in the domain of attraction of a stable law. Thus the Zt satisfy
the following assumption:
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Assumption 2.1 There is 1 < κ < 2, a slowly varying function L and nonnegative constants
a and b satisfying a + b = 1 such that

P (|Zt| > x) = x−κL(x),(2.4)

P (Zt > x)
P (|Zt| > x)

→ a,
P (Zt < −x)
P (|Zt| > x)

→ b.(2.5)

In addition, EZt = 0.

The moving averages of the form (2.2) have been studied, among others, by Davis and
Resnick(1985, 1986) and Mikosch et al. (1995).

The moving average (2.2) has the same tail behavior as the innovations Zt. More precisely,
if (2.4), (2.5) hold, then

lim
x→∞

P (|∑∞
j=0 cjZt−j | > x)

P (|Zt| > x)
=

∞∑

j=0

|cj |κ.(2.6)

Relation (2.6) was established by Cline (1983).
In order to ensure that the moving average (2.2) is strong mixing, we must assume that the

innovations Zt have a density. It follows from Gorodetskii (1977) that (2.2) is strong mixing
under the following assumption:

Assumption 2.2 The density, f , of the Zt and the weights cj satisfy: (i) There is a constant
C such that

∫∞
−∞ |f(x + y) − f(x)|dx ≤ C|y|; (ii) C(z) =

∑∞
j=0 cjz

j 6= 0 for |z| ≤ 1; (iii)
∑∞

i=0

(∑∞
j=i |cj |

)1/2
< ∞.

Proposition 2.1 Suppose Assumptions 2.1 and 2.2 hold. Then there is a constant M such
that for the moving average (2.2),

mk ≤ M
∞∑

i=k



∞∑

j=i

|cj |



1/2

.

Remark 2.1 If the Zt have a stable distribution, then they have a density which satisfies
condition (i) of Assumption 2.2. To see this, recall that in this case the characteristic function
of Zt is φ(θ) = exp {−σκ|θ|κ(1− iβ(signθ) tan(πκ/2)} , see Definition 1.1.6 in Samorodnitsky
and Taqqu (1994) for the details. Thus, differentiating the inversion formula,

f(x) =
1
2π

∫ ∞

−∞
e−ixθφ(θ)dθ

we obtain, for some constant C, |f ′(x)| ≤ C
∫∞
0 u exp(−uκ)du < ∞.

Condition (ii) in Assumption 2.2 is satisfied, for example, by causal and invertible ARMA
processes, see e.g. Section 2 in Kokoszka (1996). Condition (iii) is implied, for instance, by∑∞

j=1 j|cj |1/2 < ∞. Notice also that condition (iii) implies (2.3).

In order to verify the assumptions of Theorem 1.1, we also need the following result:

Theorem 2.1 Suppose the Yt are defined by (2.2). If (2.3) and Assumption 2.1 hold, then
(

1
n1/κL0(n)

n∑

t=1

Yt,
1

n2/κL2
0(n)

n∑

t=1

Y 2
t

)
d→


(

∞∑

j=0

cj)V, (
∞∑

j=0

c2
j )W

2


 ,

where V is mean zero κ-stable with the skewness parameter a−b and W 2 is positive κ/2-stable,
and where L0 is a slowly varying function.
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The proof of Theorem 2.1, which is presented in the Appendix, relies on an analogous result
for the innovation sequence established by Logan et al. (1973) and the ideas used in the proof
of Theorem 4.1 in Davis and Resnick (1985) who showed componentwise convergence using
very different methods for each component.

With Theorem 2.1 in hand, it is easy to check that the assumptions of Theorem 1.1 hold
with

θ = µ, θ̂n = X̄n, tn =
n1−1/κ

L0(n)
, un =

n1/2−1/κ

L0(n)
.(2.7)

Indeed, (1.6) holds because

tn(X̄n − µ) =
tn
n

n∑

t=1

Yt =
1

n1/κL0(n)

n∑

t=1

Yt
d→ (

∞∑

j=0

cj)V.

Since unȲn = n−1/2(n1/κL0(n))−1 ∑n
t=1 Yt

P→ 0, we have

u2
nσ̂2

n =
u2

n

n

n∑

t=1

Y 2
t − (unȲn)2 ∼ 1

n2/κL2
0(n)

n∑

t=1

Y 2
t

d→ (
∞∑

j=0

c2
j )W

2,

so (1.7) also holds. Relation (1.5) follows now from the joint convergence in Theorem 2.1.
We have thus established the following result:

Theorem 2.2 If Assumptions 2.1 and 2.2 are satisfied, then for the moving average (2.2) the
conclusions of Theorem 1.1 hold with τn = n1/2, θ = µ, θ̂n = X̄n, σ̂n defined in (1.2) and J

being the distribution of [(
∑∞

j=0 cj)V ]/[(
∑∞

j=0 c2
j )

1/2W ] with V and W defined in Theorem 2.1.

2.2 GARCH-type processes

In this section we consider a nonparametric specification intended to model a time series which
exhibits no “correlation” but has a significant “correlation in absolute values”. As mentioned
above, series with such characteristics arise in finance and economics. Condition (2.8), in
which v→ denotes vague convergence, together with (2.9) is equivalent to the requirement that
the one-dimensional marginal distributions are in the domain of attraction of an κ-stable law,
see e.g. Meerschaert and Scheffler (2001), Proposition 6.1.37. If we assume, as we do in this
paper, that a stochastic process has infinite variance, we cannot assume that the observations
are uncorrelated because the covariances do not exist. Instead we assume condition (2.10)
below which means that truncated variables are uncorrelated. Other assumptions are collected
in Assumption 2.3. We have found it convenient to use the theory of point processes, as it
has been successfully applied in the context of GARCH processes in Davis and Mikosch (1998)
and Mikosch and Stărică (2000). Our approach draws heavily on Davis and Hsing (1995) and
we refer the reader to this paper for further details. In particular, condition (2.11) is implied
by a very weak form of mixing, which in turn is implied by strong mixing which is necessary
for the validity of the subsampling method. Our proofs rely, however, only on condition (2.11)
and the other conditions in Assumption 2.3.

Assumption 2.3 The sequence {Yt} is strictly stationary with symmetric univariate marginal
distributions which satisfy

nP (Y1/an ∈ ·) v→ µ(·),(2.8)

with the an defined by nP (|Y1| > an) → 1 and the measure µ given by

2µ(dx) = κ|x|−κ−11{x < 0}dx + κx−κ−11{x > 0}dx.(2.9)
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Moreover we assume that for every y > and t 6= s

E[Yt1{|Yt| ≤ y}Ys1{|Ys| ≤ y}] = 0(2.10)

and
n∑

t=1

δYt/an

d→
∞∑

i=1

∞∑

j=1

δPiQij ,(2.11)

with the limiting point process as in Theorem 2.3 and Corollary 2.4 of Davis and Hsing (1995).

Remark 2.2 We assume a symmetric distribution to avoid lengthy mathematical arguments
and notation. The case of a nonsymmetric distribution could be handled similarly as in Davis
and Hsing (1995) by introducing appropriate centering constants.

Theorem 2.3 If Assumption 2.3 holds, then
(

1
an

n∑

t=1

Yt,
1
a2

n

n∑

t=1

Y 2
t

)
d→ (S1, S2),(2.12)

where S1 is the distributional limit, as ε → 0, of
∑∞

i=1

∑∞
j=1 PiQij1{Pi|Qij | > ε} (the existence

of this limit was established in Theorem 3.1 of Davis and Hsing (1995)) and W 2 is equal in
distribution to

∑∞
i=1

∑∞
j=1 P 2

i Q2
ij. The random variable S1 is symmetric κ-stable and S2 is

positive κ/2-stable.

As verified in Section 2.1, the asymptotic validity of the subsampling confidence intervals
for the mean follows from Theorem 2.3 under the additional assumption that the process is
strong mixing.

In the remainder of this section we focus on the popular class of GARCH processes. The
observations Y1, . . . , Yn are said to follow a GARCH(p, q) model if they satisfy the equations:

Yt = σtεt,(2.13)

σ2
t = ω +

p∑

j=1

αjY
2
t−j +

q∑

j=1

βjσ
2
t−j .(2.14)

The innovations εk in (2.13) are iid and ω, αj , βj are nonnegative parameters.
Several authors formulated conditions under which a GARCH process is strong mixing

with geometric rate, see Boussama (2000), Maercker and Moser (1999) Basrak et al. (2002b),
Carasco and Chen (2002). These conditions are not rescritive but are difficult to verify as
they are often formulated in terms of abstract quantities which are very difficult to estimate
from the available observations. Basrak, Davis and Mikosch (2002a, 2002b) showed that under
similar conditions the finite dimensional distributions of of GARCH processes are multivariate
regularly varying, a property which implies pareto-like tails considered in this paper. The
special cases of ARCH(1) and GARCH(1,1) are considered, respectively, in Davis and Mikosch
(1998) and Mikosch and Stărică (2000). Finally, notice that if the innovations εt in (2.13) are
symmetric, then (2.10) holds.

We conclude this section by noting that for GARCH(1,1) the tail index κ can be found as the
solution of the equation E(α1ε

2
1 + β1)κ/2 = 1, see Theorem 2.1 in Mikosch and Stărică (2000).

This equation can be solved analytically only in a few special cases; in general simulations
must be used.
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3 Choice of the block size and a simulation study

3.1 Choice of the block size

The application of the subsampling method requires a choice of the block size b; the problem
is very similar to the choice of the bandwidth in applying smoothing or kernel methods. Un-
fortunately, the asymptotic requirements b →∞ and b/n →∞ as n →∞ give little guidance
when faced with a finite sample. Instead, we propose to exploit the semi-parametric nature of
models treated in this paper to estimate a ‘good’ block size in practice.

Our goal is to construct a 1− α confidence interval for the mean µ, but the methodology
described below can be adapted to other parameters of interest as well. In finite samples,
a subsampling interval will typically not exhibit coverage probability exactly equal to 1 − α;
moreover, the actual coverage probability generally depends on the block size b. Indeed, one can
think of the actual coverage level 1−λ of a subsampling confidence interval as a function of the
block size b, conditional on the underlying probability mechanism P—that is, the fully specified
moving average or GARCH-type model in our application—and the nominal confidence level
1−α. The idea is now to adjust the ‘input’ b in order to obtain the actual coverage level close
to the nominal one. Hence, one can consider the block size calibration function g : b → 1− λ.
If g(·) were known, one could construct an ‘optimal’ confidence interval by finding b̃ that
minimizes |g(b)− (1− α)| and use b̃ as the block size; note that |g(b)− (1− α)| = 0 may not
always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is
therefore unknown. We now propose a semi-parametric bootstrap method to estimate it. The
idea is that in principle we could simulate g(·) if P were known by generating data of size n
according to P and computing subsampling confidence intervals for θ for a number of different
block sizes b. This process is then repeated many times and for a given b one estimates g(b) as
the fraction of the corresponding intervals that contain the true parameter. The method we
propose is identical except that P is replaced by an estimate P̂n whose mean is equal to X̄n,
the sample mean of the original data.

We suggest to make use of the assumed model class in the estimation of P̂n. For example, if
a general moving average process is assumed, one would start by determining the order of the
process by a model selection criterion that is robust against infinite variance; for example, see
Bhansali (1988). (Note that even if the true process has order infinity, for a fixed sample size
n, a finite-order model should serve as a good approximation.) Say the so-estimated order is
q̂. Fitting an MA(q̂) model to the zero mean data Ŷt = Xt− X̄n, say by the Whittle estimator
technique of Mikosch et al. (1995), then yields estimated coefficients ĉ0, . . . , ĉq̂ and centered
residuals Ẑq̂+1, . . . , Ẑn. We can now define P̂n as the law of the following sequence X∗

1 , . . . , X∗
n

(and the definition makes it obvious how to generate such a sequence in practice):

• Draw Z∗−q̂+1, . . . , Z
∗
n iid from the empirical distribution of the centered Ẑq̂+1, . . . , Ẑn.

• Let Y ∗
t =

∑q̂
j=0 ĉjZ

∗
t−j , for t = 1, . . . , n.

• Let X∗
t = X̄n + Y ∗

t , for t = 1, . . . , n.

Of course if a finite ARMA(p,q) model of known order is assumed, this model should be used
instead; the modifications are obvious.

To give another example, if a GARCH(1,1) model is assumed, one would start again by
computing the Ŷt = Xt − X̄n. Then, the model parameters ω, α1, and β1 are estimated from
the Ŷt by quasi maximum likelihood, assuming conditional normality. Using the estimated
parameters, and resampling from the centered and normalized residuals, one then builds up
the Y ∗

t sequence. And in the last step, the sample mean X̄n of the original data is added to
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them in order to arrive at the X∗
t sequence. Again, the probability mechanism that gives rise

to this sequence is P̂n.
The following algorithm describes how to pick the block size b in practice.

Algorithm 3.1 (Choice of the Block Size)

1. Fix a selection of reasonable block sizes b between limits blow and bup.

2. Generate K pseudo sequences X∗
k1, . . . , X

∗
kn, k = 1, . . . , K, from an estimated model

P̂n. For each sequence, k = 1, . . . , K, and for each b, compute a subsampling confidence
interval CIk,b for µ.

3. Compute ĝ(b) = #{X̄n ∈ CIk,b}/K.

4. Find the value b̃ that minimizes |ĝ(b)− (1− α)|.

Remark 3.1 There is no universal good block size. For each combination of confidence level
and confidence interval type (one-sided, equal-tailed, or symmetric) a separate block size should
be computed.

Remark 3.2 Algorithm 3.1 is by an order of magnitude more expensive than the computation
of the final subsampling interval once the block size has been determined. While it is advisable
to choose the selection of candidate block sizes in Step 2 as fine as possible (ideally, include
every integer between blow and bup), this may computationally not be feasible, especially in
simulation studies. In those instances, a coarse grid should be employed.

3.2 Simulation Study

We now present a small simulation study. Two data generating processes (DGP) are considered.
The first DGP is an AR(1) model with stable innovations with index κ1 By choosing positive
values for ω, α1 and β1 such that the equation E(α1ε

2
1+β1)κ/2 = 1 has a solution 1 < κ < 2, we

can generate GARCH(1,1) time series with finite mean but infinite variance. We also consider
the IGARCH model defined by the requirement that α1 + β1 = 1 because it is often used in
practice; for example, see Engle and Bollerslev (1986). This is a model with infinite variance
but κ = 2, so it is not covered by the theory developed in the present paper. We must therefore
rely solely on simulations to assess the performance of the subsampling method. A theoretical
investigation of this case would be difficult.

Without loss of generality, the true mean µ is always set equal to zero. Of interest is
the coverage probability of two-sided subsampling confidence intervals with nominal coverage
levels 95% and 90%. We include two types of intervals in the study, the two-sided equal-tailed
interval and the two-sided symmetric interval. The sample sizes considered are n = 200 and
n = 500. To keep the computational cost at a reasonable level in this simulation study, we
choose K = 300 in Algorithm 3.1 and select a very coarse grid of 3 input block sizes. (Note
that when applying the method to a real life data set one should choose K = 1000 and a finer
grid.) As outlined above, we resample from the (standardized and) centered residuals and do
not use the knowledge of their distributional form.

1The stable innovations were generated using software of John Nolan; see the web page

http://academic2.american.edu/∼jpnolan/. as in McElroy and Politis (2002), who only present results for

fixed block sizes:

Yt = φYt−1 + Zt.

The second DGP is a GARCH(1,1) model with normal innovations.
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The results, based on 2,000 replications, are presented in Tables 1–6. It can be seen that
the ‘optimal’ fixed block size depends on the sample size, the DGP, the parameter values,
the interval type, and, to a lesser extent, the confidence level. Hence, it is very important
to have a reliable data-dependent method to select a good block size in practice. It is seen
that our method works very well when κ is close to 2 but that the intervals overcover when
κ is close to 1. In general, the coverage properties are better for the symmetric interval in
agreement with previous simulation studies for other parameters of interest and/or probability
mechanisms; for example, see Chapters 9, 11, and 12 of Politis et al. (1999).

4 Appendix

Proof of Theorem 2.1. In this proof we denote for brevity

an = n1/κL0(n).

According to the discussion on p. 789 of Logan et al. (1973)
(

a−1
n

n∑

t=1

Zt, a−2
n

n∑

t=1

Z2
t

)
d→

(
V, W 2

)
.(4.1)

We first prove the result for finite moving averages

Y
(m)
t =

m∑

j=0

cjZt−j .

Consider the random vector
(

a−1
n

n∑

t=1

Zt, a
−1
n

n∑

t=1

Zt−1, . . . , a
−1
n

n∑

t=1

Zt−m, a−2
n

n∑

t=1

Z2
t , a−2

n

n∑

t=1

Z2
t−1, . . . , a

−2
n

n∑

t=1

Z2
t−m

)
.(4.2)

By an elementary argument, see p. 190 of Davis and Resnick (1985), it follows from (4.1) that
vector (4.2) converges is distribution to the random vector

(V, V, . . . , V,W 2, W 2, . . . , W 2).(4.3)

Let λ and µ be arbitrary real numbers. Multiplying (4.2) and (4.3) on the right by the vector

(λc0, λc1, . . . , λcm, µc2
0, µc2

1, . . . , µc2
m)T

and using the continuous mapping theorem, we obtain

λa−1
n

n∑

t=1

Y
(m)
t + µa−2

n

n∑

t=1

m∑

j=0

c2
jZ

2
t−j

d→ λ




m∑

j=0

cj


 V + µ




m∑

j=0

c2
j


 W 2.

Thus in order to claim that
(

a−1
n

n∑

t=1

Y
(m)
t , a−2

n

n∑

t=1

[Y (m)
t ]2

)
d→


(

m∑

j=0

cj)V, (
m∑

j=0

c2
j )W

2


(4.4)

we must show that

a−2
n

n∑

t=1

∑

1≤j<k≤m

cjckZt−jZt−k
P→ 0.(4.5)
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Using E|Z| < ∞ and (2.3), we obtain

a−2
n E

∣∣∣∣∣∣

n∑

t=1

∑

1≤j<k≤m

cjckZt−jZt−k

∣∣∣∣∣∣

≤ a−2
n

∑

1≤j<k≤m

|cj ||ck|E|Zt−j |E|Zt−k| = O(na−2
n ) = o(1).

Consequently (4.5) holds, and the verification of (4.4) is complete.
In light of Theorem 3.2 of Billingsley (1999), to complete the proof of Theorem 2.1, it

suffices to verify that for any r > 0

lim
m→∞ lim sup

n→∞
P

(
a−1

n

∣∣∣∣∣
n∑

t=1

[Yt − Y
(m)
t ]

∣∣∣∣∣ > r

)
= 0(4.6)

and

lim
m→∞ lim sup

n→∞
P

(
a−2

n

∣∣∣∣∣
n∑

t=1

[Y 2
t − (Y (m)

t )2]

∣∣∣∣∣ > r

)
= 0.(4.7)

Relation (4.6) is verified on pp. 190-191 of Davis and Resnick (1985). To verify (4.7) observe
that by defining c

(m)
j = 2cj if j ≤ m, c

(m)
j = cj if j > m, we have

Y 2
t − (Y (m)

t )2 =

[ ∞∑

k=0

c
(m)
k Zt−k

] 


∞∑

j=m+1

cjZt−j


 =

∞∑

j=m+1

c2
jZ

2
t−j +

∞∑

k=0

∑

m<j 6=k

c
(m)
k cjZt−kZt−j .

Note that

E

∣∣∣∣∣∣
a−2

n

n∑

t=1

∞∑

k=0

∑

m<j 6=k

c
(m)
k cjZt−kZt−j

∣∣∣∣∣∣
= O


a−2

n

n∑

t=1

∞∑

k=0

∑

m<j 6=k

|c(m)
k ||cj |


 = O(na−2

n ) = o(1).

Consequently, relation (4.7) follows from Lemma 4.1 below.

Lemma 4.1 Under the assumptions of Theorem 2.1, for any r > 0

lim
m→∞ lim sup

n→∞
P


a−2

n

n∑

t=1

∑

j>m

c2
jZ

2
t−j > r


 = 0.

Proof. We will verify that

lim
m→∞ lim sup

n→∞
P


a−2

n

n∑

t=1

∑

j>m

c2
jZ

2
t−j1 {|Zt−j | > an} > r


 = 0(4.8)

and

lim
m→∞ lim sup

n→∞
P


a−2

n

n∑

t=1

∑

j>m

c2
jZ

2
t−j1 {|Zt−j | ≤ an} > r


 = 0.(4.9)

Verification of (4.8): Fix p so that 1 < 2p < κ and observe that

E


a−2

n

n∑

t=1

∑

j>m

c2
jZ

2
t−j1 {|Zt−j | > an}




p

(4.10)

12



≤ a−2p
n


 ∑

j>m

|cj |2p


 nE

[
|Z|2p1 {|Zt−j | > an}

]
.

Note that

E
[
|Z|2p1 {|Zt−j | > an}

]
= a2p

n P (|Z| > an) +
∫ ∞

a2p
n

P (|Z| > t1/2p)dt.(4.11)

Thus the expectation in (4.10) is bounded above by

 ∑

j>m

|cj |2p


 nP (|Z| > an) +


 ∑

j>m

|cj |2p


 a−2p

n n

∫ ∞

a2p
n

P (|Z| > t1/2p)dt.(4.12)

Since nP (|Z| > an) → 1, the limm→∞ lim supn→∞ of the first term in (4.12) is zero. To deal
with the second term, note that U(t) = P (|Z| > t1/2p) ∈ RV−κ/2p, so by Theorem 0.6 of
Resnick (1987) ∫ ∞

a2p
n

P (|Z| > t1/2p)dt ∼ 2p

κ− 2p
a2p

n P (|Z| > an).

Thus the second term in (4.12) is asymptotically equal to the first term up to a multiplicative
constant.

Verification of (4.9): Note that

E


a−2

n

n∑

t=1

∑

j>m

c2
jZ

2
t−j1 {|Zt−j | ≤ an}


 =


 ∑

j>m

|cj |2p


 a−2

n nE
[
Z21 {|Z| ≤ an}

]
(4.13)

and

E
[
Z21 {|Z| ≤ an}

]
=

∫ a2
n

0
P (|Z| > t1/2)dt.(4.14)

Since U∗(t) = P (|Z| > t1/2) ∈ RV−κ/2, by Theorem 0.6 of Resnick (1987),

∫ a2
n

0
P (|Z| > t1/2)dt ∼ 2

2− κ
a2

nP (|Z| > an).(4.15)

Combining (4.13). (4.14) and (4.15), we see that the expectation in (4.13) is bounded above
by C

(∑
j>m |cj |2p

)
nP (|Z| > an), and so (4.9) follows.

Proof of Theorem 2.3. As in the proof of Theorem 3.1 in Davis and Hsing (1995), note
that for any ε > 0 and real t1, t2 the map

Tε :
∑

i

δxi 7→
∑

i

(t1xi + t2x
2
i )1{|xi| > ε}(4.16)

is continuous with respect to the point process
∑∞

i=1

∑∞
j=1 δPiQij . Therefore by (2.11) and the

Continuous Mapping Theorem, we obtain

t1S1n(ε) + t2S2n(ε) d→ t1S1(ε) + t2S2(ε),(4.17)

where

S1n(ε) = a−1
n

n∑

t=1

Yt1{|Yt| > εan}, S2n(ε) = a−2
n

n∑

t=1

Y 2
t 1{|Yt| > εan}(4.18)
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and

S1(ε) =
∞∑

i=1

∞∑

j=1

PiQij1{Pi|Qij | > ε}, S2(ε) =
∞∑

i=1

∞∑

j=1

P 2
i Q2

ij1{Pi|Qij | > ε}.(4.19)

The remainder of the proof relies on Theorem 3.2 of Billingsley (1999). We will show that there
are random variables S1 and S2 such that (S1(ε), S2(ε)) converges in distribution to (S1, S2),
as ε → 0, and that for any r > 0

lim
ε→0

lim sup
n→∞

P [|S1n − S1n(ε)| > r] = 0(4.20)

and
lim
ε→0

lim sup
n→∞

P [|S2n − S2n(ε)| > r] = 0,(4.21)

where

S1n =
1
an

n∑

t=1

Yt, S2n =
1
a2

n

n∑

t=1

Y 2
t .(4.22)

Finally, we will identify the distributions of S1 and S2.
Denote by

φε(t1, t2) = E exp[it1S1(ε) + it2S2(ε)]

the joint characteristic function of S1(ε) and S2(ε). We will show that φε(t1, t2) is uniformly
Cauchy on the set {(t1, t2) : max(|t1|, |t2|) ≤ 1}. This implies that φε(t1, t2) converges pointwise
to a function which is continuous at the origin, so by the multivariate Continuity Theorem,
see e.g. Remark on p. 147 of Durrett (1991), there exist random variables S1 and S2 such that
(S1(ε), S2(ε)) converges in distribution to (S1, S2), as ε → 0.

Similarly as in Davis and Hsing (1995) we write

φv(t1, t2)− φu(t1, t2) =: E1(t1, t2; u, v; δ) + E2(t1, t2; u, v; δ) =: E1 + E2,(4.23)

where

E1 = E {exp(it1S1(v) + it2S2(v)) [1− exp(it1(S1(u)− S1(v)) + it2(S2(u)− S2(v)))]

×1{max(|S1(u)− S1(v)|, |S2(u)− S2(v)|) ≤ δ}} ;

E2 = E {exp(it1S1(v) + it2S2(v)) [1− exp(it1(S1(u)− S1(v)) + it2(S2(u)− S2(v)))]

×1{max(|S1(u)− S1(v)|, |S2(u)− S2(v)|) > δ}} .

Fix η > 0 and choose δ so that E1 < η/2 provided max(|t1|, |t2|) ≤ 1. Observe that

|E2| ≤ 2P [|S1(u)− S1(v)| > δ] + 2P [|S2(u)− S2(v)| > δ].

On p. 897 of Davis and Hsing (1995) it is verified that for sufficiently small ε > 0

sup
0<u<v<ε

2P [|S1(u)− S1(v)| > δ] < η/4,(4.24)

provided that for each r > 0

lim
ε→0

lim sup
n→∞

P

[
a−1

n |
n∑

t=1

Yt1{|Yj | ≤ εan}| > r

]
= 0.(4.25)

Note that condition (4.25) follows from assumptions (2.8) and (2.10), c.f. (4.14) and (4.15).
Indeed,

Var

[
a−1

n

n∑

t=1

Yt1{|Yj | ≤ εan}
]

= a−2
n nE[Y 2

1 1{|Y1| ≤ εan}(4.26)
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∼ 2(2− κ)−1ε2nP [|Y1| > any] ∼ 2(2− κ)−1ε2−κ, as n →∞.

In addition to (4.24) we must show that for sufficiently small ε

sup
0<u<v<ε

2P [|S2(u)− S2(v)| > δ] < η/4.(4.27)

Relation (4.27) follows from Lemma 4.2 below.
Relation (4.20) is the same as (4.25) and has already been verified, whereas relation (4.21)

follows from (4.26).
We have established that (2.12) holds for some random variables S1 and S2. Applying the

projection onto the first coordinate we obtain the marginal distribution of S1 from Theorem
3.1 of Davis and Hsing (1995). Similarly, setting Wi =

∑∞
j=1 Q2

ij , and using the notation

introduced in Lemma 4.2, we get the representation
∑∞

i=1

∑∞
j=1 P 2

i Q2
ij = γ2/κ ∑∞

i=1 Γ−κ/2
i Wi

with E|Wi|κ/2 < ∞. The series
∑∞

i=1 Γ−κ/2
i Wi converges absolutely a.s., see e.g. Remark 4 on

p. 29 of Samorodnitsky and Taqqu (1994), so S2(ε)
a.s.→ ∑∞

i=1

∑∞
j=1 P 2

i Q2
ij .

Lemma 4.2 Under Assumption 2.3, for each δ > 0,

lim
u,v→0

P



∞∑

i=1

∞∑

j=1

Γ−2/κ
i Q2

ij1{u < Γ−1/κ
i |Qij | ≤ v} > δ


 = 0,

where Γi =
∑i

k=1 ξk and the ξk are iid exponential with mean 1. (Recall that we can take
Pi = γ1/κΓ−1/κ

i with the constant γ defined in Theorem 2.3 of Davis and Hsing (1995).)

Proof. It is well-known that in the series representations of the type considered in the
present lemma, the term involving Γ1 dominates the remaining terms, see e.g. the discussion
on pp. 26-28 of Samorodnitsky and Taqqu (1994). We will therefore first show that

lim
u,v→0

P


Γ−2/κ

1

∞∑

j=1

Q2
1j1{u < Γ−1/κ

1 |Qij | ≤ v} > δ


 = 0(4.28)

and then verify that

lim
u,v→0

P



∞∑

i=2

∞∑

j=1

Γ−2/κ
i Q2

ij1{u < Γ−1/κ
i |Qij | ≤ v} > δ


 = 0.(4.29)

To prove relation (4.28), it suffices to show that

lim
u,v→0

P



∞∑

j=1

|Q1j |κ1{Γ1u
κ < |Q1j |κ ≤ Γ1v

κ} > Γ1δ


 = 0.(4.30)

The probability in (4.30) is equal to

∫ ∞

0
P



∞∑

j=1

|Q1j |κ1{xuκ < |Q1j |κ ≤ xvκ} > xδ


 e−xdx,

so by the Dominated Convergence Theorem it is enough to check that that for any fixed x > 0

lim
u,v→0

P



∞∑

j=1

|Q1j |κ1{xuκ < |Q1j |κ ≤ xvκ}

 = 0
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which in turn will follows from

lim
u,v→0

∞∑

j=1

E [|Q1j |κ1{xuκ < |Q1j |κ ≤ xvκ}] = 0.(4.31)

By Theorem 2.6 of Davis and Hsing (1995),
∑∞

j=1 E|Q1j |κ < ∞, so relation (4.31) follows from
the Dominated Convergence Theorem.

To verify (4.29), observe that if for i ≥ 2, EΓ−2/κ
i < ∞ and that in this case EΓ−2/κ

i =
Γ(i− 2/κ)/Γ(i) ∼ i−2/κ. Therefore, since Q2

ij ≤ |Qij |κ, we have

E

∣∣∣∣∣∣

∞∑

i=2

∞∑

j=1

Γ−2/κ
i Q2

ij

∣∣∣∣∣∣
≤

( ∞∑

i=2

EΓ−2/κ
i

) 

∞∑

j=1

EQ2
1j


 = O

( ∞∑

i=2

i−2/κ

)
= O(1).

Thus relation (4.29) follows from Markov’s inequality and the Dominated Convergence Theo-
rem.
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totic normality and bootstrap. Beiträge zur Statistik 58. Universität Heidelberg. Available at
http://www.statlab.uni-heidelberg.de/reports/www.html .

McElroy, T. and Politis, D. N. (2002). Robust inference for the mean in the presence of serial correlation
and heavy-tailed distributions. Econometric Theory; Forthcoming.

Meerschaert, M. M. and Scheffler, H. P. (2001). Limit Theorems for Sums of Independent Random
Vectors. Wiley, New York.
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5 Tables

Table 1: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence
intervals based on 2,000 replications. The DGP is an AR(1) model with stable innovations
and the sample size is n = 200. ET stands for equal-tailed and SYM stands for symmetric.
The data-dependent choice of block size is denoted by b̃.

φ = 0.5; κ = 1.2
Type Target b = 10 b = 30 b = 50 b̃

ET 0.90 0.82 0.78 0.72 0.81
SYM 0.90 0.98 0.96 0.91 0.97
ET 0.95 0.88 0.80 0.74 0.88

SYM 0.95 0.99 0.97 0.94 0.99

φ = 0.5; κ = 1.5
Type Target b = 10 b = 25 b = 40 b̃

ET 0.90 0.87 0.82 0.77 0.86
SYM 0.90 0.96 0.93 0.90 0.94
ET 0.95 0.92 0.85 0.80 0.92

SYM 0.95 0.99 0.96 0.93 0.98

φ = 0.5; κ = 1.8
Type Target b = 10 b = 20 b = 30 b̃

ET 0.90 0.90 0.86 0.82 0.89
SYM 0.90 0.92 0.88 0.85 0.90
ET 0.95 0.95 0.90 0.85 0.95

SYM 0.95 0.97 0.94 0.91 0.95
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Table 2: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence
intervals based on 2,000 replications. The DGP is an AR(1) model with stable innovations
and the sample size is n = 500. ET stands for equal-tailed and SYM stands for symmetric.
The data-dependent choice of block size is denoted by b̃.

φ = 0.5; κ = 1.2
Type Target b = 20 b = 80 b = 140 b̃

ET 0.90 0.80 0.75 0.70 0.80
SYM 0.90 0.98 0.95 0.90 0.96
ET 0.95 0.85 0.77 0.72 0.85

SYM 0.95 0.99 0.97 0.93 0.98

φ = 0.5; κ = 1.5
Type Target b = 20 b = 60 b = 100 b̃

ET 0.90 0.85 0.81 0.77 0.85
SYM 0.90 0.95 0.92 0.88 0.93
ET 0.95 0.89 0.83 0.79 0.89

SYM 0.95 0.98 0.95 0.92 0.97

φ = 0.5; κ = 1.8
Type Target b = 20 b = 50 b = 80 b̃

ET 0.90 0.90 0.85 0.80 0.89
SYM 0.90 0.92 0.88 0.85 0.90
ET 0.95 0.93 0.88 0.84 0.93

SYM 0.95 0.96 0.93 0.90 0.95
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Table 3: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence in-
tervals based on 2,000 replications. The DGP is a GARCH(1,1) model with normal innovations
and the sample size is n = 200. ET stands for equal-tailed and SYM stands for symmetric. The
(approximate) index κ was determined by numerical simulation. The data-dependent choice
of block size is denoted by b̃.

ω = 1, α1 = 1.3, β1 = 0.05; κ ≈ 1.19
Type Target b = 10 b = 35 b = 60 b̃

ET 0.90 0.89 0.82 0.75 0.88
SYM 0.90 0.98 0.95 0.90 0.93
ET 0.95 0.94 0.86 0.79 0.94

SYM 0.95 0.99 0.97 0.93 0.97

ω = 1, α1 = 1.1, β1 = 0.1; κ ≈ 1.43
Type Target b = 10 b = 35 b = 60 b̃

ET 0.90 0.90 0.84 0.76 0.90
SYM 0.90 0.97 0.95 0.90 0.93
ET 0.95 0.95 0.87 0.79 0.95

SYM 0.95 0.99 0.97 0.93 0.97

ω = 1, α1 = 0.9, β1 = 0.15; κ ≈ 1.83
Type Target b = 10 b = 30 b = 50 b̃

ET 0.90 0.90 0.84 0.78 0.90
SYM 0.90 0.95 0.91 0.85 0.90
ET 0.95 0.95 0.86 0.80 0.95

SYM 0.95 0.99 0.95 0.90 0.95
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Table 4: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence in-
tervals based on 2,000 replications. The DGP is a GARCH(1,1) model with normal innovations
and the sample size is n = 500. ET stands for equal-tailed and SYM stands for symmetric. The
(approximate) index κ was determined by numerical simulation. The data-dependent choice
of block size is denoted by b̃.

ω = 1, α1 = 1.3, β1 = 0.05; κ ≈ 1.19
Type Target b = 20 b = 85 b = 150 b̃

ET 0.90 0.86 0.82 0.73 0.86
SYM 0.90 0.97 0.95 0.90 0.92
ET 0.95 0.93 0.85 0.76 0.93

SYM 0.95 0.99 0.97 0.93 0.96

ω = 1, α1 = 1.1, β1 = 0.1; κ ≈ 1.43
Type Target b = 20 b = 60 b = 100 b̃

ET 0.90 0.88 0.85 0.80 0.87
SYM 0.90 0.97 0.95 0.90 0.91
ET 0.95 0.93 0.87 0.83 0.93

SYM 0.95 0.99 0.97 0.95 0.96

ω = 1, α1 = 0.9, β1 = 0.15; κ ≈ 1.83
Type Target b = 20 b = 60 b = 100 b̃

ET 0.90 0.89 0.85 0.80 0.88
SYM 0.90 0.95 0.91 0.88 0.90
ET 0.95 0.93 0.88 0.83 0.93

SYM 0.95 0.98 0.95 0.91 0.95
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Table 5: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence in-
tervals based on 2,000 replications. The DGP is a GARCH(1,1) model with normal innovations
and the sample size is n = 200. ET stands for equal-tailed and SYM stands for symmetric.
The data-dependent choice of block size is denoted by b̃.

ω = 1, α1 = 0.1, β1 = 0.9; κ = 2
Type Target b = 10 b = 20 b = 30 b̃

ET 0.90 0.91 0.88 0.85 0.89
SYM 0.90 0.91 0.89 0.86 0.90
ET 0.95 0.96 0.92 0.89 0.95

SYM 0.95 0.97 0.94 0.92 0.95

ω = 1, α1 = 0.5, β1 = 0.5; κ = 2
Type Target b = 10 b = 30 b = 50 b̃

ET 0.90 0.91 0.85 0.78 0.90
SYM 0.90 0.95 0.91 0.85 0.90
ET 0.95 0.96 0.89 0.83 0.95

SYM 0.95 0.99 0.95 0.90 0.95

ω = 1, α1 = 0.9, β1 = 0.1; κ = 2
Type Target b = 10 b = 25 b = 40 b̃

ET 0.90 0.91 0.88 0.83 0.90
SYM 0.90 0.96 0.94 0.90 0.91
ET 0.95 0.95 0.90 0.86 0.95

SYM 0.95 0.98 0.96 0.94 0.95
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Table 6: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence in-
tervals based on 2,000 replications. The DGP is a GARCH(1,1) model with normal innovations
and the sample size is n = 500. ET stands for equal-tailed and SYM stands for symmetric.
The data-dependent choice of block size is denoted by b̃.

ω = 1, α1 = 0.1, β1 = 0.9; κ = 2
Type Target b = 20 b = 50 b = 80 b̃

ET 0.90 0.90 0.88 0.84 0.89
SYM 0.90 0.92 0.90 0.87 0.90
ET 0.95 0.94 0.90 0.87 0.94

SYM 0.95 0.96 0.94 0.91 0.95

ω = 1, α1 = 0.5, β1 = 0.5; κ = 2
Type Target b = 20 b = 70 b = 200 b̃

ET 0.90 0.90 0.85 0.80 0.90
SYM 0.90 0.94 0.90 0.86 0.91
ET 0.95 0.94 0.88 0.83 0.94

SYM 0.95 0.98 0.95 0.91 0.96

ω = 1, α1 = 0.9, β1 = 0.1; κ = 2
Type Target b = 20 b = 60 b = 100 b̃

ET 0.90 0.89 0.85 0.80 0.89
SYM 0.90 0.93 0.90 0.86 0.90
ET 0.95 0.93 0.88 0.83 0.93

SYM 0.95 0.96 0.94 0.90 0.95
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