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Abstract

In this paper we survey the last developments of simulation techniques
of dynamic stochastic models with rational expectations. We concentrate the
discussion on applications to macroeconomics and financial economics, and we
argue that the use of simulations techniques has permitted progress in many
different topics, including asset pricing models with heterogeneous agents, asset
pricing and endogenous production, distortionary taxation, game theory, mech-
anism design and monetary economics. We describe the classes of algorithms
that have been applied in the last few years, including some new algorithms
that permit the analysis of new types of models. We argue that theoretical
work can be done with ’theory on the computer’, in the sense of studying the
properties of a model by simulation, when analytic solutions are not available;
in this case, some of the problems that have to be adressed are the choice of the
parameter values of the model, how to report the results, and how to make the
results easy to reproduce by the reader. Finally, some estimations and testing
methods used in empirical work are discussed, including maximum likelihood,
the method of simulated moments, and calibration.




1. Introduction

The use of dynamic stochastic models in economics has grown very
quickly during the last fifteen years. The importance of this type of
models became evident in macroeconomics after the paper of Lucas [1972]; he
argued that the basic relations that were taken as given in traditional
macroeconomic models (whether Keynesian or Monetarist), such as the money
demand function, the consumption function, the investment function, were
not invariant to the very type of policy intervention that those models
were designed to analyze. Furthermore, these relations were often mutually
inconsistent. The way around this problem was to analyze models where
objects like preferences of consumers, production technology, information
dissemination etc. were fixed, and where a well specified concept of
equilibrium determined the outcome of the model. The research program,
then, was to analyze the equilibrium of the model under different
environments, (for example, under different policy rules) in order to study
the effect of changes in the economic environment or policy interventions,

taking consumption function, money demand etc. as endogenous.

Nowadays, dynamic stochasti~ models of equilibrium are being used in

virtually all field in economics.

One crucial element of how dynamic models behave is the assumption
about how agents form their expectations. Nowadays, the standard assumption
is that agents behave as if they had rational expectations. This avoids
ad-hoc assumptions about expectations that would not be likely to stay
constant under policy changes if agents were rational. Furthermore, many
recent papers argue that, in many models (though not all) the rational
expectations equilibrium can be justified as the limit of a learning

1
process .

Economists have made a lot of progress on such basic issues as
formulating equilibrium concepts for these models, finding conditions for
existence and uniqueness of equilibria, determining the state variables,
etc. But in order to use our models, that is, in order to characterize

equilibria, evaiuate different policy rules, learn about the importance of




certain assumptions and so on, it is necessary to obtain a solution for the
law of motion of the equilibrium stochastic process. Unfortunately,
progress in finding closed form solutions of dynamic stochastic models has
been very slow; the only model that can be solved in any generality is the
linear-quadratic model’. But in non-linear models, very special assumption
shave to be made in order to obtain analytic solutions; in effect, these

assumptions limit the interest of the exercise.

Closed form solutions are also needed in empirical applications, for
example those using maximum likelihood estimation. The GMM procedure of
Hansen and Singleton [1982] can be used to estimate and test certain
rational expectations models from the Euler equations, even if a closed
form solution is not available, but this technique can not be used if there
are unobservables in the Euler equations. This is often the case in models
with exogenous shocks to preferences, data aggregated over time or over

agents, and models with inequality constraints.

In the last five years, given the difficulties for finding closed form
solutions in models of interest, a growing number of researchers has turned
to studying dynamic stochastic equilibrium models using computer
simulations. With simulations, it is possible to implement empirical tests
of the model and study the behavior of the model wunder different
environments. In this paper we will discuss the usefulness of the
simulation techniques, the progress that has been made in computer
algorithms recently, and many applications of these techniques. Obviously,
it is impossible to cite all the applications that have been done in
economics, and we will discuss some applications to macroeconomics and

financial economics.

With the new algorithms, and refinements on the old ones, we are now
able to simulate very complicated models on desktop computers. Besides
increasing computational speed, the new algorithms have enlarged the class
of models that can be approached by simulation; more precisely, it is no
longer necessary to cast an equilibrium model into a planner’s problem in

order to solve it.




Studies of theoretical interest can be performed using computer
simulations not only for illustrative purposes, as a complement to analytic
results, but as the main tool being for reaching conclusions of theoretical
interest. We will argue that it is possible to do ’theory on the computer’,
much in the way that it is possible to do theory by proving theorems. In
fact, this is probably the only way of making any progress in many models
of interest, since analytic solutions are so difficult to obtain. Some
issues that arise in doing theory on the computer are how to report
results, how to choose the parameter values and issues about accuracy of
the solution; we will discuss these below. On the issue of choosing
parameter values, one alternative is to use those parameters that make the
equilibrium of the model close to the observed series; in this respect,
dynamic stochastic models are easy to handle, because they have very

clear-cut implications for observed time series.

In section 2 we illustrate the difficulties for obtaining analytic
closed form solutions by studying a simple asset pricing model; we discuss
the limitations of the model and some extensions that have been performed
using simulation; we also review the literature on other topics where
simulation studies have proved useful. Section 3 reviews some of the recent
progress in solution algorithms and the usefulness of the new approaches.
Section 4 discusses the use of simulations in theoretical exercises; we
argue that this kind of exercise is as valid as analytic techniques and
review some of the applications; we also discuss how to report the results,
choose parameter values and issues about accuracy of the solution. Section
S discusses how to apply simulations in empirical studies; we discuss
applications to maximum likelihood, the method of simulated moments and
calibration. Section 6 is a response to Ken Judd’s discussion of this

paper.




2. Analyzing Dynamic Economies with Simulation. Some Applications.

First of all, we want to illustrate the need for simulation in
equilibrium dynamic stochastic models. To this end, we show the limitations
of analytic solutions to a well known asset pricing model and discuss how

this and other models have been enriched by the use of simulations.

2.1 Analytic Solution to Lucas’ Asset Pricing Model

Let us consider analytic solutions for asset prices in the model of
Lucas [1978]. Since this is a well known model, the description will be

brief.

There is an exogenous, stochastic stream of dividends (dt) that is
produced exogenously by an infinitely lived productive unit. Agents have a
right to this dividend if they hold shares of ownership of the productive
unit for ever; shares can be bought and sold costlessly at any time period
and all markets are perfectly competitive. There is only one type of agent,
so it will simplify notation if we assume that there is only one
representative agent who behaves competitively. Dividends are the only
source of the only consumption good in this economy. At time t, the agent
observes all current and past variables. The representative agent chooses

streams of consumption and share holdings in order to solve
© oot
max E z 8 ulc)
0 t
t=0

s.t. ¢, +P S = ( pt+dt ) S, for t=0,1,...; s =1

taking the process for dividends and stock prices (dt,pt) as given.
Normalizing the number of shares to one, the equilibrium conditions in this

model are




The first order conditions are
(2.1) p, U (ct) =& Et [ (pt+1+dt+l) u (Ct+1) ] ,

which, using recursive substitution and the equilibrium condition for the

consumption good can be rewritten as

(2.2) p, = E, [ 12:: 6d wd )/ uvd) ]

To describe the behavior of equilibrium asset prices in this economy
we need to find a closed form solution for the asset prices in terms of the
dividend process. The above formulas are not closed form solutions because
they are written in terms of a conditional expectation that is difficult to
solve unless special assumptions are introduced. So, we have to specialize
this already very simple model in order to find a closed form solution.

st erees 4
Here are a few possibilities:

Example 2.1.

Assume that (dt) is identically independently distributed. Letting C=

E[ dt u’(dt) ] , we obtain from (2.2)

(2.3) p, = cs /| u’(dt) (1-8) ]

This is a closed form solution up to the constant C, which could be
found explicitely if more assumptions were placed on the functional form of
u(.) and on the distribution of dt. Alternatively, this constant can be

easily calculated by numerical integration.
Example 2.2
Assume that u(ct) = log(ct). Then u'(dt)=1/dt and (2.2) becomes

(2.4) p, = 8 d/(1-8)




This formula holds for any dividend process.

Example 2.3

Assume that u(ct) = (ct)%l/('ﬂl) and that dt=dt—l€t ,  where €, is

i.i.d. Let u=E(c7t’")

guaranteed, for example, if E(et)=1 and y<-1 ), then the formula for asset

; under the additional assumption that &u<l (which is
prices is

0
(2.5) p, = z (su) d’{" / d’{ = sud / (1-8w)
1i=1

The point of having analytic examples in a paper that deals with
simulation techniques 1is that, even in this simple model, very strong
assumptions have to be made in order to find closed form solutions. To the
non-expert, the kind of exercise done in the above examples seems pure
magic: we start with a complicated, hard to interpret formula like (2.2)
and out come these neat, elegant formulas (2.3), (2.4) and (2.5). To the
untrained eye, these formulas seemed to appear out of nowhere, but we all
know that we put just the right cards in our sleeves (i.e., we made enough

assumptions) to make the conditional expectation in (2.2) disappear.

Finding «closed form solutions after making these very extreme
assumptions has certainly improved our knowledge about equilibrium asset
pricing, but it turns out to be an exercise with limited possibilities. We
would like to explore versions of that model where more general utility
functions are used, perhaps allowing for shocks to preferences, non
time-separable utility functions, and for dividend processes that come

closer to the dividend series observed in real data.

More importantly, there are many questions that can not be addressed
even in the most general version of Lucas’' mode]. For example, the effects
of liquidity constraints, market incompleteness, private information,
heterogeneity of  consumers, effects of transaction costs, limited
enforcement of contracts are some of the features that play a potentially

important role in securities markets, but they can not be introduced in




Lucas’ model without major changes.

Also, one of the reasons that securities markets receive so much
attention is probably that they may be the first markets to reflect news in
the productive sector. But any relation between productivity and asset
prices can not be analyzed in Lucas’ model because production is exogenous.
Brock [1982] provided a theoretical framework for formulating asset pricing
models with endogenous production, but the properties of these models have

not been explored until very recently.

Nevertheless, there is no general way of obtaining closed form
solutions in models with these type of generalizations and so the effect of
market incompleteness, heterogeneity of agents, etc. has been largely
unknown for a long time. There are some papers that have made just the
right assumptions to solve models of this type, for example Scheinkman and
Weiss [1986], Hansen [1987] and Hansen and Sargent [1990], but the

generality of their results is almost impossible to explore.

2.2 Beyond the Representative Agent Asset Pricing Model.

The main reason that so many important issues can not even be addressed
in asset pricing models with a representative agent is that there is no
trading of securities in a representative agent model; for example,
introducing or eliminating securities markets never has an effect on asset

prices or on welfare; predictions about trading make no sense, etc.

Nevertheless, these are relevant problems in economics, nowadays. For
example, there has been recently some political pressure to reduce the
amount of securities trading in U.S. stock exchanges by introducing a tax
on securities trading, but in a representative agent model it is clear that
this measure would not have any effect because there is no trading of
assets to begin with. Another example: recently an options market and a
futures market started operating in Spain; presumably these markets are
being established because somebody thinks they are wuseful, but the
representative agent model would say that they serve no purpose and they

will have no effect on the economy.




On the other hand, there are well documented and abundant empirical
failures of the representative agent model: from the very popular equity
premium puzzle of Mehra and Prescott [1985], to the excessive volatility of
individual consumptions, to the excess volatility of asset prices of

Grossman and Shiller [1981].

Only during last year, the study of equilibrium asset pricing models
with heterogeneous agents, incomplete markets and liquidity constraints
seems to have taken off. The papers by D. Lucas [1990], Marcet and
Singleton [1990] and Ketterer and Marcet [1989] have two types of agents
that can differ in their preferences or income processes. Only a few
securities exist in this economy (stocks, bonds or call options), agents
face liquidity constraints on the securities. Perfect competition and
perfect information is assumed. The first two papers study empirical issues
like  volatility of individual consumption, how often the liquidity
constraints are binding, and the risk premium puzzle. The third paper
dicusses the effects of introducing derivative securities in a model with
incomplete markets. Other papers by Hansen and Imrohoroglu [1992] and Diaz
and Prescott {1990] study monetary models where money has value because of
market incompleteness. Rios [1990] studies an overlapping generations model
with uncertainty and a large number of generations alive at any point in
time; he studies issues the life-cicle, insurance among generations and the
effects of market incompleteness. Finally, Brock and le Baron [1989]

introduce liquidity constraints on the side of the firms.

Although it is impossible to summarize all the results from these
papers in a short space we will remark two features they seem to have in
common. The first feature is methodological: all of the above papers rely
heavily on simulations for their results. The second point is a more
substantive one: in most of these models market incompleteness on its own
is not capable of generating results that are very different from the
complete contingent markets case. So, it turns out that there is barely any
risk premium, individual consumptions are not very volatile, and the losses
in utility from market incompleteness and liquidity constraints are not

very large. It appears as if agents can do a great deal of consumption




smoothing just by buying and selling stocks of their securities; in the
terminology of Deaton [1989], assets act as a buffer stock that can be

adjusted to cope with unforeseen shocks.

This is a nice example of how simulation can enhance our understanding
of dynamic modelling. It seems as if these generalizations of Lucas’ model
do not automatically produce much better results than the representative
agent, at least in the cases that have been explored up to now. This is
striking because so many papers had suggested that model like this would
easily explain some empirical puzzles, for example Mehra and Prescott
{1985], Hayashi [1987]. Also, from a theoretical point of view many
negative results seemed to arise from papers with incomplete markets; for
example, many papers with analytic examples argued that incomplete market
models would generate strong suboptimalities and would have a very large

number of equilibria. We will discuss this further in section 4.1.

2.3 Recent Applications of Simulation Technigues,

Besides asset pricing with heterogenous agents, there have been many
other recent appiications of simulation in economics. One example is asset
prices and endogenous production, such as in the model of Brock [1982]. In
section 3 we will use this model as our main example for how different
algorithms work, and we will look at simulations of this model. Some papers
in this area are: Rowenhorst [1990] studies the effects of leverage on
asset prices, the relationship between productivity and asset returns and
studies some empirical implications; den Haan [1990bl studies the shape of
the term-structure of interest rates in an equilibrium monetary model with
leisure; Marcet [1989] argues that a simple model with endogenous
production, can produce a complicated covariance structure for asset prices

and can generate humped term structures of the interest rate.

Besides the more radical departures that we have discussed in the
previous subsection, there have been many extensions of the representative
agent asset pricing model where equilibria have been studied by
simulations. Some of these applications are the following: Novales [1990]

studies the effects of introducing habit persistence of consumption for the




behavior of interest rates; Ingram [1986] studies a model with myopic
agents in asset markets and Heaton [1990] studies the effects of habit

persistence and time aggregation.

Other applications have been in Monetary Economics. A few years ago
there was a large body of research on how to endogeneize the existence of
money in an economy. Early papers by Wallace, Townsend and Bewley studied
models with heterogeneous agents where money is held because it facilitates
exchange across generations or across individuals in different locations.
The cash in advance papers of Lucas and Stokey and the Sidrausky-type
models were introduced a long time ago. But most applications of these
models were in very specialized setups where uncertainty was often ruled
out. Recently, uncertainty has been introduced in many monetary models
thanks to simulation techniques. Cooley and Hansen [1989] introduce
monetary shocks in a real business cycle model; den Haan [1990a] studies
the optimal monetary policy in a model where money reduces the
shopping-time; the Diaz and Prescott paper mentioned above is also a paper
on monetary theory. Coleman [1989] and Baxter [1990] study a
cash-in-advance model, and Marshall [1988] studies the empirical
implications for inflation of a representative agent where money is valued

because of exogenously imposed transaction costs.

There have been also several applications to models with distortionary
taxes. Braun [1989], Chang [1989] and MecGratten [1989] study the business
cycle properties of these models from an empirical point of view, Bizer and
Judd [1988] discuss the optimality of a stochastic taxation scheme and
Otker [1990] studies the welfare loss due to the presence of distortionary
taxation. Jones, Manuelli and Rossi [1990] and Chari, Christiano and Kehoe

(1990] study optimal distortionary taxes.

The formulation of models with incentive compatibility constraints and
mechanism design has received great attention since the seventies. The
implications of these models for empirical data and characterization of
equilibria in dynamic settings, however, have been difficult to study
analytically. Using simulation, Phelan and Townsend [1989] characterize the

sequentially optimal contracts in a non-growth economy with limited

10




information and they document the welfare loss from private information;
Phelan [1991] argues that the consumption choices of individual agents are
better explained by incentive compatibility models; Marcet and Marimon
[1992] study the effects of limited information and limited enforcement on

the growth path of an economy.

We also find applications to game theoretical models. Rotemberg and
Woodford [1992] argue that some features of the business cycle can be
better explained with a model of monopolistic competition; Marimon,
McGratten and Sargent [1990] show that in a monetary model with a
multiplicity of Nash equilibria, if agents learn how to trade and how to
maximize utility using rules that make them take more frequently those
actions that provide higher rewards (more precisely, by using some genetic
algorithms that have been used in biology to study the survival of species)
then the economy would converge to the optimal Nash equilibrium. Judd

[1989] compares the equilibrium concepts of Bertrand and Cournot.

3. Algorithms for Solving Non-Linear Dynamic Stochastic Models.

3.1 New Developments in Algorithms

Recently a large amount of research effort has been devoted to the
development of new approaches to solving rational expectations equilibrium
models. The fact that there exist several alternatives for finding
numerical solutions may be confusing to the non-expert but it has several
advantages. First of all, when several algorithms can be applied one can
check the solutions that different algorithms provide and see if they are
similar or not. Perhaps more importantly, different approaches work best in
different models; for example, there is wusually a trade-off between
algorithms that can handle complicated models (with strong non-linearities)

and algorithms that can solve larger models with higher speed.

11




When choosing an algorithm for application on a given model, one has
to take into account several factors. Speed of computation is one of these
factors, but not the only one; it is very easy for a researcher who is
introducing a new approach to make it appear as if this approach is very
fast by illustrating its speed with the right model, where his own
algorithm has some comparative advantages. For example, one algorithm might
solve a model with one state variable very efficiently but, if this method
relies on a discretization of the state variables, the computation time

will increase exponentially as the number of state variables increases.

Another important feature of a method is its flexibility. If the same
method can be applied to many different and interesting models the
researcher will be able to use his programs and his expertise in other

applications.

It is important to determine the advantages and disadvantages of
different algorithms to solve particular models. In this section we will
review some algorithms that have been used in a number of papers. The model
we are going to use is Brock’s model of asset pricing with endogenous
production. There are two parts to solving this model: the first is to
determine the consumption and investment allocations; this has to be done

by solving the following growth model
C ot
max EotZOS u(ct)

s.t.
(3.1) c +k ~-(-d)k =k #o
t t t-1 t

(3.2) log(et) =p log(et_l) + € ,

e, ~ N(0,¢%), i.i.d.

The first order condition for this model is:

12




(3.3) =5 E, [ ¥ le k‘:“ o + (1-d) 1 ] ;

With some side conditions that we are going to ignore in this paper, a
sufficient condition for an equilibrium consumption, investment and capital
series is that the system (3.1)-(3.2)-(3.3) be satisfied. It is typical of

equilibrium dynamic stochastic models to take the following general form:

(3.4) g [ Et[¢(ztﬂ)], z, 2z . € ] =0 ,

of which the system (3.1)-(3.2)-(3.3) 1is a special cases; here z,
represents all the serially correlated variables in the model, so that in
the above simple growth model Zt=[kt'ct'et] . A system like (3.4) is
difficult to solve because it involves conditional expectations; we can not
solve for zt untii we know the conditional expectation, but we do not know

this conditional expectation until we know the solution for z,.

We will discuss briefly how to solve the simple growth model with five
different methods. The first two methods are the linear—-quadratic
approximation and the value function iterations approach; these are fairly
standard and they have been widely used in economics. The other three
methods are much more recent: backsolving, iterations on Euler equations
and parameterized expectations. Unfortunately, we will necessarily be
unfair to each of these methods since they have been applied in much more
sophisticated ways than the three line description we are forced to give in

this paper.

Linear—Quadratic Approximation

Substituting the technology restrictions in the objective function we

obtain

[v]
(3.5) max E z s'ulk* 8 -k + (1-d) k]
01~=0 t-1 t t t-1

13




This objective function can be replaced by a linear-quadratic

approximation to the term multiplying st
2]
(3.6) maszat[xAx’+x’B]
) ot_0 t t t ’

where xt = [kt. kt_l, 9{] , and A,B are chosen so that the objective
function in (3.6) is a good approximation of the objective function in

(3.5).
As we said in the introduction, the linear-quadratic model is easy to
solve (almost) analytically, so we can use these traditional techniques to

solve the approximated problem (3.6).

Value Function Iterations

Using dynamic programming, the Bellman equation for the simple growth

model is

(3.7) Vk , 8)= max { uc) + 3E Vk, 6 ) }
t- t t ' tel
(ct,kt)

s.t. c +k -(-d)k = ¥ o
t t t-1 t

If we replace V in the right side of (3.7) by an arbitrary Vo, solve
for the max at every possible point of the state variables (kt-l' 9{). find
the implied v! and we iterate on the Bellman equation, this series of value
functions will converge to the value function that solves the Bellman
equation. To find the max, one usually imposes a grid of values on the
space of (kt—l’et) and searches on this grid for this max. The expectation
in the right side of (3.7) is evaluated as an expectation on a random
variable that can take only finitely many values, so it can be evaluated as

a simple sum.

Backsolving

14




The idea here is to start by assuming a process for the endogenous
variables. If this is done appropriately, then it may be quite easy to
solve for all the variables in the system because we know the expectation

in (3.3). For example, letting

(3.8) A =c 1o kK lasa-d) )
t+] t+1 t+1 t

we assume a process for At, for example

At=€lt-l+nt '

and then solve for consumption
¥ _
c, = 3 & At

The solution for 6t and kt is found from the formula for At and (3.1). The
idea here is that the exogenous process that is finally backed out is the

one that would be consistent with the assumption on At.

Iterations on Euler Equations

Several authors use methods with the following steps:

-Impose a grid on (kt_l,et).

-start at a law of motion for kt, say fo(kt_l,et); this function is
chosen from a family of functions that can approximate a continuous
function and that depends on only finitely many parameters. Different types
of polynomials, splines, linear interpolation or neural networks would

qualify.

-At each point in the grid evaluate the conditional expectation in

(3.3} by quadrature integration or other discrete expectations methods.

~Iterate on the (finitely many) parameters of the law of motion until
the left side of the first order condition (3.3} equals the integral in the
right side.

15




Parameterized Expectations

This method also works from the Euler equation. The idea is to
parameterize the conditional expectations and then iterate until the series
generated is such that the assumed conditional expectation is actually the
best prediction of At (where At is given by (3.8)). The steps to follow are
these:

-substitute the conditional expectation on right side of the first

order condition (3.3) by a parameterized function y(B; kt_l,et), to obtain

7 _ .
(3.9) cy = & (B k_.6)

- Create a long series of c, and kt with (3.9) and (3.1)
- Run a non-linear regression of

Atu on Y(B; kt-l’et)

- Iterate until B coincides with the result of non-linear regression.

This ends our dicussion of the algorithms. For a more detailed
description the reader is referred to the January 1990 issue of the Journal
of Business and Economic Statistics, where different authors described how
to solve this simple growth model with alternative algorithms; comparisons
are made by Taylor and Uhlig [1990), and some companion articles discuss
how to solve it with different approaches in more detail. The methods
discussed in that issue include different types of linear-quadratic
approximations (by Christiano and McGratten), iterations on the Bellman
equation (by Christiano), iterations on the Euler equation (Coleman and
Baxter, Crucini and Rowenhorst), backwards solution (by Sims and Ingram),
parameterized expectations approach (by den Haan and Marcet), the extended
path algorithm (by Fair and Taylor), the Euler equation method of Labadie,

and a quadrature method (by Tauchen).

Some of these methods provide an approximation to the rational

expectations equilibrium, but they do not have ways of obtaining arbitrary

17




accuracy in their approximations. The linear-quadratic approximations, the
extended path method and the backwards solution procedure are such methods.
They have the disadvantage that they can not be used to approximate the
equilibrium arbitrarily well, and they may not produce solutions to models
with complicated non-linearities like inequality constraints that are
binding in some periods and non-binding in others. On the other hand, they
tend to be much faster than the other methods discussed above; either they
do not require any iterative procedure to find the equilibrium law of
motion or the iterative procedure is very fast. This higher speed of
computation may be the key to some applications that deal with very large
models or that perform very computer intensive tasks like estimating

parameters by the method of simulated moments.

Many of the other iterative methods can obtain arbitrary accuracy to
non-linear models by refining the approximations. For example, the value
function iterations and the methods of Coleman, Bizer, Judd and Baxter
provide arbitrarily good approximations by refining the grid on the state
variables and on the stochastic shocks that these authors impose; the
method of Marcet [1989] and Judd [1989] would obtain arbitrary accuracy by
increasing the degree of the polynomials and calculating integrals with
arbitrary accuracy. It is fair to say, however, that these refinements can
be done at a very high computing cost and it is not clear if arbitrary

accuracy can be actually obtained in practice.

3.2 Solutions Without a Planner’s Problem.

There are many models in economics that yield suboptimal equilibria.
This is usually the case, for example, in models with externalities, public
goods, distortionary taxation, imperfect competition, monetary models,
models with incomplete markets, etc. Until recently, a large amount of
effort was devoted to finding some planner’s problem whose solution would
coincide with the equilibrium of the suboptimal model at hand. Jones and
Manuelli [1989] show how to cast a large number of models in a planner’s
problem. Part of the reason for these efforts was that the most widely used
techniques were the linear-quadratic approximation and the value function

iterations, two techniques borrowed from other sciences that had been
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constructed with the purpose of solving dynamic, stochastic maximization
problems, like the one involved in the planner’s decision. To our
knowledge, for some models (for example, models with liquidity constraints)

nobody has yet found the corresponding planner’'s problem.

All  the methods we have described above other than the
linear-quadratic and value function iterations are designed to work
independently of the specification of a planner’s problem. These methods
work directly from the Euler equations and the equilibrium conditions of
the model, which are easy to find even if no equivalent planner’s problem
is at hand. Although casting suboptimal equilibria in some planner’s
problem is often wuseful, it is no longer a prerequisite for computing

equilibria.

Actually, even LQ and VFI have been used in setups without a planner’s
problem. For example, Cooley and Hansen [1989] solve a cash-in-advance
model, where one of the processes that are exogenous to the agent is the
price level, but this process is in itself endogenous. Cooley and Hansen
proceed by assuming a linear law of motion for the price level, and they
iterate on this law of motion until it is consistent with the consumption
allocations; in principle, the linearization of the law of motion for
prices introduces more inaccuracies in the solution, since they end up
approximating not only the objective function of the agents but also the
law of motion of the prices (which, in principle, is non-linear) but
it® permits the use of linear-quadratic techniques which, as we said

before, are very fast.

Also, Rios [1990] uses the linear-quadratic approach to solve an
overlapping generations model. The equilibrium is again suboptimal, but
application of linear-quadratic is still possible. In Rios’ model agents
live one-hundred and fifty periods (trying to mimick the number of
trimesters of active life), so that the wealth of all agents are state
variables of the model. With such a high dimensional model it is
inconceivable to use most iterative methods, but linear-quadratic

techniques make this model tractable.
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Finally, Diaz and Prescott [1989] solve a suboptimal equilibrium using
value function iterations. They assume a process for the price level and
back out the level of government spending that is consistent with such a
process. Once they have assumed a process for the price level they can do
the value function iterations in the usual way. This idea of imposing a
process for variables that are endogenous to the model has been used
previously in the backwards solution procedure of Sims-Novales and Ingram;
these authors, however, used the assumption on the endogenous processes to

solve the Euler equation instead of the value function.

3.3 Discretization and the 'Curse of Dimensionality’

Another unfounded belief is that any solution algorithm that tries to
capture non-linearities will necessarily face the so-called ’curse of
dimensionality’. This term refers to the following problem: assume that we
have a state variable that takes on continuous values; for example, in the
simple growth model of section 3.1 the state variables, namely kt_l and e‘
are both continuous. Even though the model would still be interesting if 6‘
was assumed to follow a discrete-valued Markov process, the capital stock
is by its own nature a continuous variable. For a solution algorithm that
must discretize the state variables or use some kind of grid in the space
where the state variables live, it is very expensive to find the solution
as soon as more variables are added to the problem; for example, if we
discretize the capital stock to take on 100 possible values, and if we add
a second type of capital to the model—,l the state variables now can take
10000 possible values; in other words, the computational cost of the model
increases, roughly, exponential rate of 100 with the number of

{continuous) state variables.

Some of the methods we mentioned that suffer from this problem in
different degrees are the following: value function iterations can only
solve discrete problems, so they need very fine grids to get anywhere close
to the true continuous solution; the method of Coleman, Bizer and Judd can
produce continuous-valued series, but it uses a grid on the state variables
where the Euler equation is evaluated; also, this method and that of

Tauchen use quadrature integration, which means that a second grid has to

20




be imposed on the space of stochastic shocks. This last group of methods
does not need as fine a grid as the value function iteration approach,
because by their own nature they produce continuous simulations, so the
computation time does not explode as quickly. For example, Judd uses 20
possible values of the capital stock. Nevertheless, the computation time
still grows exponentially and a model with two or three continuous state

varaibles would be very costly to solve.

The reader should now get an idea why this is called a ’curse’.
Discretization means that even models with only two state variables are
very costly to solve means that we have to wait the time necessary for
computer builders to increase computing power by 100 until we can add one

more state variable.

There are, however, several methods that completely avoid the
discretizations and, therefore, they avoid the ’curse of dimensionality’.
Obviously, models with more state variables are harder to solve with any
method, but the key here is to use a procedure where the computational cost

of the problem does not increase exponentially.

Clearly the ‘’fast’ methods described before: linear-quadratic,
backsolving and extended path, do not need any discretization. For models
that can provide arbitrary accuracy, it is possible to avoid the grids in
evaluating integrals if quadrature is replaced by Monte-Carlo integr‘ations.
In effect, the parameterized expectations approach of Marcet [1989] and the
method of Smith [1989] substitute quadrature integration by Monte—Carlo
integration, since they evaluate expectations as time averages. It is true
that as stochastic shocks are added to a model Monte-Carlo integration is
more costly, because more observations are needed in the averages that make
up the calculation; but the number of observations increases at a speed
much lower than exponential.g The parameterized expectations approach, also
avoids the discretization of the state variables by evaluating integrals
using long run simulations of the endogenous series; in this way

discretization of the state variables or of the integrands is avoided.

3.4 Endogenous Oversampling
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One of the reasons for the ’curse of dimensionality’ is that, when
grids are imposed exogenously by the researcher, the algorithm explores all
points in the grid, the space of state variables, giving equal importance
to all possible points in this space, even though most of these points will
rarely happen. This can be avoided with techniques that do endogenous
oversampling, where the algorithm is designed in a way that only the

relevant points of the state variables are explored by the algorithm.

Consider the simple growth model of section 3.1, assume that we are
interested in finding the solution at the steady state distribution. If we
use a method that has to impose a grid on the state variables and, in order
for the productivity shock to have close to a continuous distribution we
could impose a grid of, say, 100 points for the productivity shock and a
grid of 100 points for the capital stock. Then, there are 10000 possible
values of the state variables (or pairs of 9‘ and kt—l) and we will spend
equal computing time in all of them. In this case, all points are equally
important for the algorithm, so that no eversampling is done. This is a
waste of computing power, since many of these pairs happen very rarely; in
fact, when the grid is imposed exogenously, many of these pairs will never

happen. Let us see this problem in some more detail.

First of all, it is very hard to establish reasonable bounds for the
endogenous state variables before knowing the solution. In the above growth
model one can easily place bounds on the productivity shock: we can limit
9t to stay within, say, four standard deviations of the mean; we will
denote these bounds by 8 and 6. But the capital stock, we know that it has
to stay in the interval (0,k’), where k'’ is the maximum capital that is
physically possible; this value depends on the depretiation rate °'d’ and
the maximum productivity shock. But in the steady state distribution and
for most parameter values, the capital stock will never get anywhere close

to these bounds.

To see this point, we can have a familiar picture with the optimal

decision functions, represented by f(.,0):
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Figure 1

we know that the steady state distribution will never leave the interval
[g,i]. If the researcher knew the true law of motion, he could impose these

bounds on the grid, but this law of motion is the solution we are seeking.

But even if we knew }5 and ﬁ, we would still be wasting computer time
by looking at all possible grid points within these bounds. The reason is
that many combinations of the state variables never happen; for example,
very high values of the shock et never happen together with very low values
of the capital stock, and viceversa. Figure 2 describes this situation:
out of all the possibilities in the set [E,E]x[g,al only values in the
parabola happen, but the discretization methods will tend to spend as much
time computing the solution in points as B as in A, even though points near

B never happen, and points near A happen very frequently.
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Figure 2

There has been a great deal of attention to this problem in other
sciences. For example, the genetic algorithms used in biology and applied
to economics by Marimon, McGratten and Sargent [1990] are designed to do
endogenous oversampling. The parameterized expectations approach described
above is also designed to do endogenous oversampling; in that method
integrals are calculated by averaging out long run simulations of the
endogenous variables; since in the long run the variables stabilize around
the steady state distribution, the algorithm does not pay any attention to
regions of the state space that do not happen and the polynomial
approximations used are good approximations precisely at values that happen

often in the steady state distribution.

Obviously, when one is not interested in the steady state distribution
it is not correct to oversample values that happen often in the steady
state distribution. For example, in the simple growth model one may be
interested in calculating the growth path from a very low initial capital
stock towards the steady state distribution. In this case, the initial
capital stock may be so low that it never happens in the steady state
distribution and a good approximation around the steady state is not valid.
It is clear that some parts of the model behave very differently with low
capital stocks; for example, the marginal productivity of capital and the
marginal utility of consumption (which are the factors determining the

investment decision) are much higher than at any point in the steady state
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distribution. In this case we need to calculate the law of motion by
oversampling at low capital stocks. With the parameterized expectations
approach, this can be easily accomplished by using many independent draws
of short simulations, each simulation with enough periods for the capital
stock to go from its low initial level to the steady state distribution;
letting the number of draws go to infinity one can obtain arbitrary
accuracy in the integrals being evaluated. This scheme has been used in
Marshall [1988] to deal with a non-stationary growth rate of the money
supply, and in Marcet and Marimon [1992] to study a growth model where the
capital grows from a very low initial capital stock to the steady state

value.

Techniques like value function iteration and the method of Coleman,
Bizer and Judd, as they are used by these authors, do not do any kind of
oversampling, so that their grids are bound to become unmanageable as soon
as they solve problems with a high number of state variables. These
techniques would improve in speed by introducing some scheme that
eliminated the grid-points that happen rarely, much in the way that genetic

algorithms eliminate actions that give high payoffs with small probability.

On the other hand, these methods will perform better if a good
approximation for any initial value of the state variables is needed. For
example, in game theoretical models, if one looks for the perfect Nash
equilibrium, then the equilibrium restrictions have to be satisfied at all
nodes of the decision tree, even if they have zero probability in
equilibrium; in this case endogenous oversampling would not look at

crer 10
equilibrium at those states .




4. Theoretical Research by Simulation.

4.1 Economic Theory on the Computer.

The use of computer simulations of structural models for empirical
purposes, as will be discussed in section 5, is a common practice and its
validity is generally accepted. More recent and perhaps more controversial
is the use of simulations in theoretical work. There is a growing number of
papers that study highly abstract models and reach conclusions about the
behaviour of those models by studying computer simulations. These should be
considered theoretical papers because they do not try to explain the real

economy beyond, perhaps, some stylized facts.

For example, one result that seems to emerge from several papers we
discussed in section 2.2, is that introducing market incompleteness by
merely closing down some markets and introducing liquidity constraints does
not produce many differences from the complete market or the representative
agent case. This is a qualitative statement about how certain models
behave, so it is a theoretical statement. It is also a statement that can
be justified only because of the knowledge we have gained from computer
simulations, and it stands in contrast with many negative theoretical
results available in the literature about the behavior of incomplete market
models. These results claimed that these models would have very different
equilibria from the complete market case, and that strong non-optimalities
would be present with incomplete markets. Perhaps other departures from the
complete market assumption, like private information, the possibility of
default, introducing different types of heterogeneity, or having costly

exchange of securities will yield more striking results.

Another use of simulation for theorists may be as a tool for
acquiring intuition about results that can be proved analytically.
Theorists have regularly used ad-hoc models and graphical techniques for
this purpose. For example, Mas Colell and Geanakopolous [ ] proved that
removing only one security from a complete market setup, the model would
have a very large number of equilibria. The reason why the above

simulations pick out one equilibrium may be that the algorithms used impose
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a time-invariant policy function and there is only one equilibrium in the
Mas Colell- Geanakopoulos setup that has a time-invariant law of motion. As
will be discussed in section 4.4, if one restricts the analysis to
equilibria that can be the limit of a learning process, a restriction like

time-invariance of the law of motion may be necessary.

There are many other striking theoretical ’results’ we have learnt
from simulation studies. For example, den Haan 1990] argues that in a
stochastic monetary model with a shopping time technology the k-percent
rule is nearly optimal; this contradicts some statements in Hahn [1971]
that, because in a stochastic model money serves as insurance, money could
have a lower return in equilibrium and it may be optimal to run an
inflation. Bizer and Judd [1989] argue that stochastic taxation can improve
welfare over deterministic taxation when the tax is distorting. In the
incentive compatibility literature, Marcet and Marimon [1992] argue that
limited enforcement of contracts has a very significant effect in reducing
growth, while limited information has very little effect. Phelan and
Townsend ([1990] argue that the optimal incentive compatible contract causes

a very small utility loss.

It is necessary for economists to start considering theory on the
computer as a necessary tool, due to the evolution of the models that we
are working with. In fact, this has been a routine practice in the natural
sciences like physics, biology, chemistry etc. The discussion should not be
about ’if’, but ’how’ this type of exercise should be performed. In other
words, we must think of the standards that theory on the computer should
meet. Some of the questions that come up in this respect are: how to report
results, how to choose parameter values and accuracy of the solution. We
will discuss these points in the remainder of this section. The aim of the
following discussion is not to close the debate on these matters, but of

highlighting their importance.

4.2 Reporting Simulation Results.

One of the reasons some people may be uncomfortable with theoretical

results derived by simulation is that it seems easier to report results
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that are incorrect with a simulation than with a theorem. While with
analytic methods it is possible to fit all the derivations in a paper, it
is impossible to report all the calculations and all the programs used in
simulation in a journal article, so, the issue of how to report simulation
results is an important one; besides preventing careless work, adequate

reporting should make the results more convincing to the reader.

Similar problems in reporting results are faced by the experimental
sciences and, closer to our experience, by empirical work in economics.
Psychologists (and experimental economists) must detail carefully how their
experiments have been conducted, how were the subjects of the experiment
selected, what instructions were given to them etc. Economists doing
empirical work must report what data sources the are using, what
observations they ignored, what how was the data transformed ... Similarly,
economic simulators should give as much detail as possible about how the
solution was actually implemented, what was the level of the approximation,

what parameter values were used, some measure of computation time etc.

Ideally, the actual law of motion should be reported in the paper;
this would make it possible for some readers to easily write a computer
program that calculates the simulations and study the simulation on his
own, perform accuracy tests, and explore issues of the model that the
authors may not have reported, without having to implement the whole

iterative procedure that finds the corresponding fixed point.

4.3 Parameter Selection

In order to obtain a simulation one must assume certain values for the
parameters of the model. This is, perhaps, more of a problem in economics
than in natural sciences, since we tend to have more uncertainty about the

parameters of our models.

The wusual practice is to use parameter values generating equilibria
that closely reproduce some features of the data. Economists have
accumulated by now considerable experience on this type of exercise. Part

of the research agenda should be to discover precisely what are interesting
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parameter values to use in a given model.

Some parameters are easy to choose because they have direct
implications on the technology and they can be measured in a fairly direct
way; for example, the depretiation rate ’d’ in the simple growth model can
be easily measured by the depretiation of aggregate capital observed on
average in real data; measures of this depretiation rate in the United
States put its value to about 107 a year. Then we would have d=.9 in a

yearly model, d=.975 in a quarterly model and so on.

Other parameters for the simple growth model can be set using the
equilibrium of the model. These are usually harder to choose, because the
implications on this dimension are less clear. For example, in the
representative agent asset pricing model the inverse of & (the discount
factor of the utility function) is close to the average gross return of a
real riskless bond. In U.S. data this return is around 1% so that, if we
used this asset to pin down the value of &8, we should choose 6=.99 in a
yearly model. But it turns out that in the simple growth model there is
virtually no risk premium, so that 5! is also close to the average return
of a risky stock that pays the return on capital. In U.S. data the average
return of stocks is about 7% , so by this measure & should be set equal to
.93 . This is an example of how it may be hard topin down some parameters
due to the fact that our models do not replicate closely some aspects of
the data. Most authors choose a compromise and they set & somewhere in
between these two values, but ideally one would want to explore different

values of parameters like this that are not easily pinned down.

Assuming that the instantaneous utility function is defined as

C—7+1
t

U(Ct) = ?

then 7 is the coefficient of relative risk aversion. The implications of a
parameter of this type are even harder to work out, so y is even harder to
choose convincingly. Mehra and Prescott [1985] report several microeconomic
empirical work that sets y around one; to be safe, they explore all values

of ¥ between 1 and 10.
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If a researcher does not feel comfortable with choosing fixed values
for the parameters“, then one should explore the parameter space in a
systematic way. If this has to be done by imposing a grid on many
parameters we will encounter similar problems as were discussed in section

3. More research on how to do this exploration would be useful.

4.4 Accuracy of Simulations.

So far there is no widely accepted measure of accuracy of numerical
approximations. This may be an important issue since inaccurate solutions

may distort considerably our conclusions.

One position is to be clear about what the approximation was, the
solution reported can be taken as an approximation. For example, in methods
that use polynomial approximations some authors just state that a second,

or third degree polynomial was used.

If one wants to claim that the solution is accurate, though, some
testing of the solution needs to be done. Unfortunately, testing the
accuracy for these solutions beyond any doubt is an impossible task.
Finding the solution amounts to finding a non-linear function that can be
changed in uncountably many directions, and it is impossible to check all
of them. The best we can do is to challenge our solution with different
tests of accuracy that experience indicates are good a selecting inaccurate
solutions. Another possibility is to find error bounds; ideally one would
want to find variance bounds for the part of the model he is interested in,

whether it is a covariance, a mean etc.

One such challenge is to compare solutions obtained with different
methods that have been proved reliable in the past. The comparisons done by
Taylor and Uhlig have been proved useful in this respect. Much has been
made about the differences in the solutions obtained with different methods
in that JBES issue; rather than just observe that there are some

differences it may be more instructive to try to explain where those
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differences arose. In particular, methods that simulated discrete series
with relatively coarse grids tended to give different results; this is not
surprising since the discreteness forces the solution for investment to be

more variable.

Some methods have intrinsic ways of challenging the solution. For
example, in the method of Coleman, Bizer and Judd one can change the grid
points at which the Euler equation is evaluated and see if the solution
changes considerably; the parameterized expectations approach can use
different draws of stochastic shocks in order to find the non-linear
regressions used in finding the law of motion in that method. These changes
should not yield laws of motion that differed too much if the solution is

accurate.

Another way of challenging a solution in order to test for accuracy is
proposed in den Haan and Marcet [1990b]. They propose to test if the error
in the Euler equation is orthogonal to functions of past variables; this
amounts to testing the first order conditions of a maximization problem in
certain directions. This test does not translate directly into bounds for
the error in the simulated series, but in several examples it seems to
select correctly the more accurate solution. Also, Taylor and Uhlig ran
this test for the solutions of the different methods; they found that the
methods that performed well in this test (namely, the solution of Coleman,
backsolving, parameterized expectations and some of the linear-quadratic

approximations) yielded similar solutions.

Finally, one can refine the aproximation and check whether the
solution changes considerably. For example, the value function iterations
would use a finer grid, the methods of Coleman, Bizer and Judd and
parameterized expectations would use a more refined approximation scheme in
the class of functions used to approximate the solution (which can be
either polynomials or splines). Christiano (1990b) has made such
comparisions between the linear—-quadratic and the value-function iterations

solution.

It is clear that, given a particular way of checking for accuracy, it
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is possible to find examples where the test would not work, but reporting a
number of these checks should convince the reader and the author himself

that the solution is reasonably accurate.

4.5 Multiplicity of Equilibria and Learning Algorithms

It has been well documented in the literature of rational expectations
that, in some models, there exists a multiplicity of equilibria. Often this
multiplicity takes the form of a continuum of equilibria. This situation
may present some problems in doing theory on the computer that are worth

discussing.

If we study a model with a multiplicity of equilibria by simulation,
depending on the model and on the algorithm, two things may happen: the
solution algorithm can have as a limit point any one of the multiple
equilibria, or the algorithm can have only one equilibrium as a limit
point. In the first case, there will be numerical problems because the
algorithm may start drifting from one equilibrium to the other; in the
second case, if the algorithm does converge to one equilibrium, we will

never know if that equilibrium is more interesting than the others.

One way to approach this problem is to use algorithms that replicate
learning schemes. There is now a large literature discussing how learning
schemes can select one rational expectations equilibrium as a limit point
in certain models with a multiplicity of equilibria; that is, only one
rational equilibrium is stable under learning in these models. Papers that
discuss learning schemes that may converge to equilibria suggest
computational algorithms that mimick the learning mechanism; these
algorithms, then, will only converge to the equilibria that are stable
under learning. The remaining equilibria will go unnoticed but, if one
believes that we should concentrate our study on solutions that are stable
under learning, ignoring the other equilibria is the correct alternative.
One such algorithm has been used by Marcet [1989] among many others, where
the iterative scheme mimicks the evolution of least squares learning about

expectations and, therefore, that algorithm only converges to solutions
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that are stable under learning.

5. Empirical Research by Simulation.

We will discuss two ways of estimating and testing dynamic models that
are based on numerical simulations of structural models: maximum likelihood

and the method of simulated moments.

5.1 Estimation: Maximum Likelihood and Method of Simulated Moments.

To see how maximum likelihood can be used and what its limitations are
let us consider, again, the simple growth model. Assume we have data on
only on the capital stock'Z. Given values for the parameter vector A we have

a law ofmotion of capital of the following form:

(5.1) k,=h(k_,8) ;

here A = ( o, d, p, trz, 8, 7 1, the fundamental parameters of the model.
If we have a solution for the law of motion h)\ {which we have to find

numerically), equation (5.1) allows us to back out 9t from the observation

on kt and kt_l ; more explicitely, we can find the function f A that
satisfies
(5.2) Gt_l = f)\(kt-l’ kt-z) ;

that is consistent with (5.1). Then we can substitute this expression in
(5.1) and write down the likelihood of kt conditional on past observations
{as is required in time series models). More applications of maximum

likelihood estimation are surveyed in Rust [1988].
Unfortunately, in models with a larger number of unobservable than

observable variables we can not back out solutions for the unobserved

shocks as in (5.2); in this case there is a manifold of unobservables that
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is consistent with the observations and a given parameter value and putting
probabilities on this type of manifolds is very cumbersome. There are many
cases of interest where this problem arises: models with private
information will typically have ’too many’ shocks; in applications with
aggregation over agents have a similar problem, and the same happens with
aggregation over time. Notice that even when we have too many unobservables
the model can be identified if enough restrictions are imposed. This has
been done, for example in the time aggregation literature of estimating

continuous time models with discrete data.

In the cases where maximum likelihood can not be applied for the
reasons just described, and if we are able to numerically solve our model,
we can use the method of simulated moments. This procedure has been used in
a time series framework by Ingram [1990] to test an asset pricing model
with myopic agents, Garcia-Mila [1987] in a model with both private and
public capital, Heaton [1990] in an asset pricing model with habit
persistence in the instantaneous utility function, Bossaerts and Hillion
1989] in an option pricing model with early exercise, Smith [1989] in a
capital accumulation model. Applications to microeconomic problems are

reviewed in Pakes and Rust [1991].

The idea in the simulated method of moments is very simple: the
estimator is determined by finding the value of the parameters that make
certain moments of the simulated series as close as possible to the
analogous moments of the observed series. More formally, assume we have T
observations on m  time series denoted z >I=o , Wwhere each z, is
m-dimensional; assume that we can generate simulations of a the model to be
estimated; let { _z-t(A) >f=o be a simulation of length S of the model we
want to test at a given parameter vector A. Let h:R™—>R?Y be a function
such that E(h(zt)) are the moments we want to match; typically, g>n, where
n is the number of parameters to be estimated. Finally, let H and H be the

actual and simulated moments:

T S
H_ = (l/T)tZoh(zt) and H(a) = (l/S)tZOh(zt(A)) ,
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Then, the method of moments estimator AT is defined as

(5.4) AT = arimm [HT - HS(A)] WT'S [HT - HS(A)] ,
where WTS is a positive definite qxq matrix that defines the distance

between the simulated moments }_{S(A) and the actual moments HT.

This is a complete method for doing statistical inference: one can
obtain consistency and asymptotic distribution results as T and S go to
infinity. These results have been proved in the case of serially
independent observations by Pakes and Pollard [1989] and, in a slightly
different setup, by Mcfadden [1989]; these authors allow for

non-differentiatle simulationsm

The asymptotic results for the time series case has been analyzed by
Ingram and Lee [1991], and Duffie and Singleton [1990]; the last paper
allows for endogenous state variables, it handles the non-stationarity that
arises in simulated series that start up at a fixed value for the state
variable, and it provides conditions for checking ergodicity of ths model.
These authors have to assume that simulations are differentiable with
respect to the parameter set A; they need this assumption because they use
the mean value theorem in obtaining the asymptotic distribution for the
estimator AT. Asymptotic results for time series assuming only continuity
(but not differentiability) of the simulations, has been partially analyzed
by Bossaerts [1989]. Up to now, there exist no theorems allowing for time

series dependence and discontinuous simulations.

Under standard assumptions of stationarity, ergodicity,
differentiability of the simulations and assuming that Lim T/S = <t ,
T—>w

one can prove consistency and asymptotic normality of the method of

simulated moments. Letting AO be the true parameter value, and letting

[+ ¢}
SW:Z

E[[h(z)—Eh(z)]olh(z)—Eh(z)]'] and
| t t t-1 t-1

-
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3
B=——E h(zt(Ko)) ,
a A’
where these expectations are calculated assuming that z, is actually
generated by the model at hand, and assume that WTS converges in

’

probability to a non-singular matrix W.

A necessary condition for identification is that B should have full
column rank. This translates into the wusual condition that the objective
function in (5.4} have a unique local minimum at the true value of the
parameters. With this condition it can be shown that the estimator is
consistent and that TV? [AT—Ao] asymptotically has a normal

distribution with mean zero and variance-covariance matrix equal to
[B'WB]" B° WS_ W B [B'WBI” (I+7) .

The efficient matrix W in the sense of minimizing this
variance-covariance matrix is W=S‘;,l . To test the overidentifying
restrictions of the model one can use the fact that wunder the null
hypothesis that the model is correct and using the optimal weighting matrix

W=S‘;l, the test-statistic

— . -1 =
(5.6) T [HT - HS(RT)] SW [HT HS(AT)]

converges in distribution to a xz_n . This is, then, a natural measure of
goodness of fit; the interpr‘etati‘(lm is, as usual in these procedures, that
we have n parameters so that we can fit q moments perfectly, but there are
still g-n dimensions that do not perfectly fit but that, if the model is

correct, they must be close to zero.

There are many aspects of this method that are yet to be explored. As
we said, asymptotic results for the case of time series with discontinuous
simulations have not yet been proved. Also, it is not known how to extend
this procedure to non-stationary models that can not be normalized in an
obvious way. Another area for research is the robustness of this estimator:

MSM is a parametric method in the sense that the results hinge on
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distributional assumptions about the wunderlying shocks. Finally, given that
the numerical solutions are approximations and, therefore, they are not the
correct solution, there is the issue of what effect these approximations
have, if any, on the asymptotic results; as suggested by Pakes and Rust
[1990]), this problem can probably be handled by reinterpreting the

parameter being estimated.

5.2 Calibration and the Method of Simulated Moments.

The paper by Kydland and Prescott [1982] has been one of the earliest
and most influential applications of simulation techniques to dynamic
stochastic models. They applied the linear-quadratic as an approximation to
a non-linear stochastic model; they simulated a capital accumulation model
with a complicated delay structure for converting investment into capital,
and durability of the utility from leisure. That paper also introduced the
so-called ’calibration’ approach for validating dynamic stochastic models;
using this validation approach Kydland and Prescott argued that their
aggregate real business cycle model came close to matching several moments
of the data and a large literature has developped since over the issue of
whether or not the business cycle can be explained by real models or some
monetary aspects are essential to the business cycle. Calibration has been
used recently in many papers, among many others, Hansen [1986], Rogerson |
], Prescott [1986], and there has been continued debate about wheter the
calibration approach was <called to replace traditional econometric

procedures in testing dynamic models.

The principles of calibration can be summarized as follows: choose
some moments of interest that the model at hand should explain, we will
denote these as MTE (moments to be explained); choose the parameter values
of the model from data or moments different from MTE; compare the MTE
generated by the model at those parameters with the MTE from real data. To
decide if the simulated moments are close enough, Kydland and Prescott
obtain a large number of independent simulations and look at the dispersion
of MTE's from these simulations; in this way they construct a 95%
confidence interval for each MTE. If the corresponding MTE from the real

data falls within this interval, they declare this particular moment as
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being satisfactorily explained by the model.

This procedure can be interpreted as a simplified version of the
method of simulated moments (MSM) and it may be instructive to look at it
in this light. Using some of the moments for finding parameter estimates
and the remaining moments for testing amounts to using a weighting matrix W
in (5.4) with n entries in the main diagonal equal to one and all other
entries equal to zero. This matrix will pick out the n moments used for
estimation and match them perfectly; then, in the part that tests the
goodness of fit, one could derive a chi-square statistic analogous to
(5.6), that in effect tests if the remaning (q-n) moments are well

explained by the simulated models.

Rather than testing all the overidentifying restrictions at once,
calibration looks at each moment one by one. Also, instead of relying on
asymptotic distribution as in the test statistic (5.6), it constructs
short-sample confidence intervals by Monte-Carlo integration, fixing the

parameter values as if they were known with certainty.

From the point of view of statistical inference, this procedure
ignores several important issues: by testing the moments one by one and
ignoring uncertainty on the parameters the confidence intervals are
incorrect; by using an arbitrary weighting matrix W the estimates contain a
larger amount of sampling error than is necessary and by not reporting the
uncertainty on the parameter estimates it is difficult to know how reliable
the results are. Recently, Burnside, Eichenbaum and Rebelo [1990] have
argued that by ignoring the uncertainty in the parameter estimates of the
productivity shock of a business cycle model, some inadequacies of the real

business cycle models are overlooked.

The justification given by calibrators for using different moments for
estimation and for the goodness of fit test is that if the same moments are
used for estimation and testing somehow this favors acceptance of the
model; in the language of statistical inference this translates into the
familiar statement that the test for goodnes of fit is not powerful against

reasonable alternatives. While this proposition may be true, it has not

38




been studied formally.

Nevertheles, calibration studies have helped us understand the working
of dynamic models. The main advantage of calibration lies precisely in its
simplicity. Estimating optimal weighting matrices, finding confidence
intervals, reporting variance-covariance matrices etc. is very cumbersome.
Perhaps it is more instructive for economists to spend time thinking about

economic modelling instead of dwelling on statistical issues!.

Since we see econometricians too often forgetting about economic
modelling, any voices that force econometricians to concentrate on the
economics of their models are welcome influence. But calibration contains
too many arbitrary choices to be considered as the final word in testing a

model. 1

6. Response to Judd’s Comments

The discussion of this paper by Ken Judd (see his comments in this
volume) is, to say the least, controversial. What follows is a detailed

analysis of the substance of Judd’'s discussion.

6.1 Monte—Carlo Integration

Judd seems to disagree with my claim that ’Monte~Carlo integration is
more efficient than quadrature in multidimensional integrals’; he writes
that ’this claim is unsupported’. The reader will note, however, that his
discussion argues that quasi-Monte-Carlo techniques are superior to
straight Monte-Carlo. This is unrelated to my point, which was that
’Monte-Carlo integration is more efficient than quadrature in

multidimensional integrals’, a well known fact that is discussed in the
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paper. Perhaps I should clarify that in most economic models of interest
there are many random variables to integrate over: individual shocks,
sectoral shocks, etc., so multidimensional integration is often needed in
economics. I saw no need to discuss quasi-Monte-Carlo techniques in my
paper due to the fact that they had not been applied in economics at the
time of the Congress. In any event Ken Judd seems to further endorse
Monte~Carlo methods in the secion on ’Theory by Computation’. This is a
change from his original position expressed at the World Congress (among
other places)where he argued that Monte-Carlo was not a good procedure. In
the last two years, a growing number of economists are switching to
Monte-Carlo based simulation methods, as they attack more complicated

problems. 15

6.2 Endogenous Oversampling

It is obviously true that endogenous oversampling will sometimes lead
to bad approximations; this is also true from exogenous oversampling, and
no oversampling at all. But endogenous oversampling reduces the amount of
points in the state space that one looks at, and it permits solving models
with a large number of continuous state variables, for the reasons

explained in the main part of this paper.

Judd disagrees with my comments in favor of endogenous oversampling;
let us analyze his reasoning. First, he gives an example where, if there is
a change in tax policy then, using the law of motion calculated before the
change in policy would yield wrong results. This is just saying that one
needs a different law of motion after a policy change; anybody who is
acquainted with the Lucas’ critique knows that, and nothing in my paper

would suggests that we should ignore the Lucas critique.

It is not true that ’'Marcet acknowledges, (that) any method which uses
endogenous oversampling ... is unsuitable to wuse in game-theoretic
analysis’. What 1 say in the paper is that there may be problems in
calculating Nash perfect equilibria, which is only one class of games. In
fact, parameterized expectations has been used successfully in Marcet and

Marimon (1992] in a mechanism design problem and in Rojas [1992] in a
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differential game (of optimal taxation). Even for Nash perfect equilibria,
the procedure can be modified in order to sample also regions that do not
occur in equilibrium, so Judd’s dismissal of techniques that use endogenous

oversampling is unwarranted.

Judd claims that transitional paths to the steady state can not be
calculated with endogenous oversampling. 1 discuss in enough detail how to
use independent realizations in PEA to calculate this transition in
subsection 3.4, and I will not repeat my arguments. 1 have also made this
argument in the original version of this paper, in my presentation at the
World Congress, and in many seminar presentations (the first one in January
89 at Stanford University). Furthermore, now there are two published papers
(Marshall [1992] and Marcet and Marimon [1992]) that use this scheme. So,

my arguments seem to have been well received in the profession.

Judd claims that endogenous oversampling does not guarantee that the
oversampled region will be approximated more accurately and he cites
counterexamples where the outer regions should be sampled more frequently.
This can not be a generic case, since it is not hard to think of examples

where oversampling the outer regions gives a bad approximation.

Judd cites an example that he does not work out, so it is very hard to
respond precisely and I can only guess as to what is the reason for the bad
approximations he has in mind. 1 suppose that those counterexamples are
ones where the number of points in the fit is the same as the number of
parametersin the polynomial. For example, if we fit five points on a
function with a five degree polynomial, we may get the function fitting
very poorly in some regions. But in algorithms that combine Monte-Carlo
simulation and endogenous oversampling (such as PEA, Smith’s or Heaton's),
we usually face a situation where the order of the polynomial that we fit
is much smaller than the number of points where the fit is performed
(typically the number of points is of several thousand, while the number of
parameters is ten or twenty). In this case, when we oversample in region A
we get more accuracy than in an undersampled region B. More precisely, and
using Judd’s example in the discussion, if we have two intervals of equal

length A and B, and we sample at $n$ equally spaced points, it is easy to
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show that for a given degree of the polynomial, if we choose the polynomial
that minimizes mean square errors and we weight all points equally, as $n$

goes to infinity, region A is better approximated than region B.

Also, our experience shows that this is the case. For example, in an
earlier version of den Haan and Marcet [1990b] we compare the true solution
of a Brock and Mirman model with the approximated solution and the levels

near the steady state are better approximated.

6.3 The Curse of Dimensionality

I do not see any justification to the claim that my discussion of the
curse of dimensionality is "at variance with conventional wisdom". If
anything, Judd’s discussion confirms that many methods suffer from this. I
am sure that future adaptations of the current methods may partly solve the

problem by performing some kind of endogenous oversampling.

6.4 Computational Experience

One must discuss issues of speed of computation with great care.

First, the comparisons reported by Taylor and Uhlig were made within
the NBER Rational Expectations Modelling Group. For example, the solution
time that was reported by parameterized expectations was, in fact, solving
10 different models, since it started with the solution for the capital
growth model with 1007 depretiation and it gradually moved to the 907 , BOZ
until it got to the zero depretiation case. The reason for this was that
den Haan and Marcet [1990] wanted to demonstrate how the homotopy approach
could work in the simplest case; but the solution had to travel a long way,
from the very low capital stock in the 1007 depretiation case to the very
high capital stock of the no-depretiation case. By comparison, Judd
performs the calculation by starting the law of motion at a constant
level, equal to the deterministic steady state; if we use such excellent

initial conditions, we cut the computation time by about 50.
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Second, the Taylor and Uhlig comparisons were not meant as a race.
Rather, the objective was to discern the applicability of the different
methods to different models. Had we known we were in a race, we would have
required much lower accuracy in the fixed point, we would have used better
regression algorithms and used much smaller number of observations. Also,
we would have thought very hard about how to get good initial conditions.
Also, we would have probably asked the group to solve a model with more
random variables and more state variables, where Monte-Carlo integration
and endogenous oversampling perform better. Finally, anybody in the mailing
list could have sent solutions for the comparison before the comparisons

were made.

The fact is that the algorithms based on Monte-Carlo simulation and
endogenous oversampling (the parameterized expectations approach among
them) have produced many applications in a short period of time.
Ultimately, the one and only test of an algorithm is if it produces
interesting economic applications. There is not such a thing as a right or
wrong algorithm; there are just algorithms that are more appropriate for
certain models than others, and I tried to write the paper in a way so as

to help the reader distinguish the advantages.

6.5 Misinterpretation of sentences

Judd clearly misinterprets some of my words.

I never give the impression that ’'numerical simulations of rational
expectations models is a new technique’. I cite many early papers. The only
thing that is new in economics is the use of simulation in theoretical

papers.

Judd criticises my claim that a linear-quadratic approximation does
not provide arbitrary accuracy in non-linear models. His reasoning is that
linear-quadratic is a special case of perturbation methods (although this
is not the way in which it has been viewed in economics) and, therefore (?)
my assertion is not correct. Surely, perturbation methods with higher order

terms may provide arbitrary accuracy, but I never refer to these. One
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detail that is inissing from Judd’s discussion is that perturbation methods
of order higher than one is are considerably more complicated than the
traditional linear—quadratic case; the reason is that in linear-quadratic
we can apply certainty equivalence, and the problem is nearly a
deterministic one in terms of computational costs, while the same is not

true with higher order Taylor approximations.

In Den Haan and Marcet [1990], we never 'have difficulty solving a six
parameter case’. As we explain in that paper and in Den Haan and Marcet
[1990b], the fact that multicollinearity appears for high order terms just
detects the fact that some of these high order terms are irrelevant and the

solution is equally accurate if these are not introduced.

About liquidity constraints, it is clear that I refer to asset pricing
models and the effect of liquidity constraints on issues such as risk

premium, risk sharing, etc.

6.6 Review of the literature

The references that Judd finds missing from my paper are valuable, but
they may give the impression that I was disrespectful with some authors.
Any survey has to concentrate on a subset of the literature, and I say very
clearly in the introduction to my paper and at the World Congress
presentation, that I was going to review papers that have to do with
simulation of dynamic, stochastic non-linear models, and I would
concentrate on applications in the last few years to macroeconomics and

financial economics.

The papers from Agricultural Economics are valuable references, but
the fact is that it took a very long time for them to have an impact on the
literature that I was reviewing. We have to thank Coleman, Baxter, Bizer
and Judd for acquainting macroeconomists with these methods. The study of
why this happened may be an interesting subject for a historian of economic
thought; I can only advance that, perhaps, one of the reasons is that these
papers use very simplified models: linear production functions, constant

.1 . . . ,
prlces6 etc. It may not have been obvious to macroeconomists in the 80’s
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interested in equilibrium models with non-linear utility and production

function how to apply the algorithms in those papers.

Judd points out that many numerical procedures were not discussed in
my paper. For cobvious reasons, ] limited myself to numerical procedures
that had been applied to economics. Writing down a large number of
numerical techniques before actually checking if they are useful in
economics is not an exercise that | ever wanted to perform. I have strong

doubts about the usefulness of such an exercise, especially since numerical

analysis textbooks are readily available."’




Conclusion

Simulation techniques are available to solve many stochastic dynamic
models that can not be handled with analytic methods. To the exent that
these models can be used to ask interesting questions, and perhaps even to
answer some of them, it seems necessary to use simulation techniques.
Algorithms available for solving dynamic stochastic equilibrium models have
progressed to a point that stumbling blocks of the past, like the ’'curse of
dimensionality’ and the need for writing a planner’s problem can be now
side-stepped. Because of this we can now study very complicated models,
with inequality constraints, suboptimal tax schemes, monetary models with
uncertainty, discrete and continuous choices, incomplete markets, many

types of agents, private information, limited enforcement of contracts etc.

There are several techniques available for empirical work that have
been used extensively. The use of simulations for theoretical purposes,
however, is still uncommon and is now starting to be accepted in the
economics profession; there should be active discussion on how these
exercises should be done, in particular, how to report the results, how to
justify the choice of parameter values and what standards of accuracy are

demanded.
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lf"I'his is true, at least, of the papers that I could access. The Gustafson
paper (reference is missing from Judd’s list) is a working paper from the

Department of Agriculture that I could not obtain

"I did miss one application of perturbation methods with higher order terms
that. By the time of the World Congress, there had only one application, in
the unpublished manuscript Judd [1985al.
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