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Abstract

This paper analyzes whether standard covariance matrix tests work when dimensionality
is large, and in particular larger than sample size. In the latter case, the singularity of the
sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on
quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the
consistency property and limiting distribution of these tests as dimensionality and sample
size go to infinity together, with their ratio converging to a finite non-zero limit. We find
that the existing test for sphericity is robust against high dimensionality, but not the test
for equality of the covariance matrix to a given matrix. For the latter test, we develop a new
correction to the existing test statistic that makes it robust against high dimensionality.

JEL Classification Numbers: C12, C52.
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1 Introduction

Many empirical problems involve large-dimensional covariance matrices. Sometimes the dimen-
sionality p is even larger than the sample size n, which makes the sample covariance matrix S
singular. How to conduct statistical inference in this case? For concreteness, we focus on two
common testing problems in this paper: 1) the covariance matrix ¥ is proportional to the
identity I (sphericity); 2) the covariance matrix ¥ is equal to the identity I. The identity
can be replaced with any other matrix ¥y by multiplying the data by ¥ 12, Following much
of the literature, we assume normality. For both hypotheses the likelihood ratio test statistic
is degenerate when p exceeds n; see, for example, Muirhead (1982, Sections 8.3 and 8.4) or
Anderson (1984, Sections 10.7 and 10.8). This steers us towards other test statistics that do

not degenerate, such as

1 S ? 1
U= tr [(W - 1) ] and V= tr (5= 17 (1)

where tr denotes the trace. John (1971) proves that the test based on U is the locally most
powerful invariant test for sphericity, and Nagao (1973) derives V' as the equivalent of U for
the test of ¥ = I. The asymptotic framework where U and V have been studied assumes that
n goes to infinity while p remains fixed. It treats terms of order p/n like terms of order 1/n,
which is inappropriate if p is of the same order of magnitude as n. The robustness of tests
based on U and V against high dimensionality is heretofore unknown.

We study the asymptotic behavior of U and V as p and n go to infinity together with
the ratio p/n converging to a limit ¢ € (0,400) called the concentration. The singular case
corresponds to a concentration above one. The robustness issue boils down to power and
size: Is the test still consistent? Is the m-limiting distribution under the null still a good
approximation? Surprisingly, we find opposite answers for U and V. The power and the size
of the sphericity test based on U turn out to be robust against p large, and even larger than n.
But the test of 3 = I based on V is not consistent against every alternative when p goes to
infinity with n, and its n-limiting distribution differs from its (n, p)-limiting distribution under
the null. This prompts us to introduce the modified statistic
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W has the same n-asymptotic properties as V: it is n-consistent and has the same n-limiting
distribution as V under the null. We show that, contrary to V', the power and the size of the
test based on W are robust against p large, and even larger than n.

The contributions of this paper are: (i) developing a method to check the robustness of
covariance matrix tests against high dimensionality; and (ii) finding two statistics (one old and
one new) for commonly used covariance matrix tests that can be used when the sample covari-
ance matrix is singular. Our results rest on a large and important body of literature on the
asymptotics for eigenvalues of random matrices, such as Arkharov (1971), Bai (1993), Girko
(1979, 1988), Jonsson (1982), Narayanaswamy and Raghavarao(1991), Serdobol’skii (1985,
1995, 1999), Silverstein (1986), Silverstein and Combettes (1992), Wachter (1976, 1978), and
Yin and Krishnaiah (1983), among others. Also, we are adding to a substantial list of pa-
pers dealing with statistical tests using results on large random matrices, such as Alalouf
(1978), Bai, Krishnaiah, and Zhao (1989), Bai and Saranadasa (1996), Dempster (1958, 1960),
Lauter (1996), Saranadasa (1993), Wilson and Kshirsagar (1980), and Zhao, Krishnaiah, and
Bai (1986a, 1986b).



The remainder of the paper is organized as follows. Section 2 compiles preliminary results.
Section 3 shows that the test statistic U for sphericity is robust against large dimensionality.
Section 4 shows that the test of > = I based on V is not. Section 5 introduces a new statistic W
that can be used when p is large. Section 6 reports evidence from Monte-Carlo simulations.
Section 7 addresses some possible concerns. Section 8 contains the conclusions. Proofs are in
the Appendix and tables and figures are at the very end of the paper.

2 Preliminaries

The exact sense in which sample size and dimensionality go to infinity together is defined by
the following assumptions.

Assumption 1 (Asymptotics) Dimensionality and sample size are two increasing integer
functions p = pr and n = ny of an index k = 1,2,... such that klim P = +00, klim ng = +00
—00 — 00

and there ezists ¢ € (0,+00) such that klim pr/nK = c.
— 00

The case where the sample covariance matrix is singular corresponds to a concentration ¢ higher
than one. In this paper, we refer to concentration asymptotics or (n, p)-asymptotics. Another
term sometimes used for the same concept is “increasing dimension asymptotics (i.d.a)”; for
example, see Serdobol’skii (1999).

Assumption 2 (Data-Generating Process) For each positive integer k, Xy is an (ng +
1) X px. matriz of ni, + 1 i.i.d. observations on a system of py random variables that are jointly

normally distributed with mean vector uy, and covariance matriz Xy. Let A1, ..., Ap, k denote
the eigenvalues of the covariance matriz X. We suppose that their average o = Y 2%, X, /Dy
and their dispersion 6% = Pe Nk — a)?/pr are independent of the index k. Furthermore we

require o > 0.

Sk is the sample covariance matrix with entries s;; 5 = % Z?:ll (@it e — M4 ) (211 —mj ) Where

m;p = n%rl Z?:Jrll Z;1.%- The null hypothesis of sphericity can be stated as 6% =0, and the null
¥ = I can be stated as 62> = 0 and a = 1. We need one more assumption to obtain convergence

results under the alternative.

Assumption 3 (Higher Moments) The averages of the third and fourth moments of the
eigenvalues of the population covariance matriz Y 2%, (Nix)! /pk (7 = 3,4) converge to finite
limits, respectively.

Dependence on k will be omitted when no ambiguity is possible. Much of the mathematical
groundwork has already been laid out by research in the spectral theory of large-dimensional

random matrices. The fundamental results of interest to us are as follows.

Proposition 1 (Law of Large Numbers) Under Assumptions 1-3,

1 P
Etr(S) — « (3)
;tr(SQ) L 1+ ¢)a? + 42 (4)

where = denotes convergence in probability.



All proofs are in the Appendix. This Law of Large Numbers will help us establish whether or
not a given test is consistent against every alternative as n and p go to infinity together. The
distribution of the test statistic under the null will be found by using the following Central
Limit Theorem.

Proposition 2 (Central Limit Theorem) Under Assumptions 1-2, if 6> = 0 then

%tr(S)—a 0 202 /c 4(1+1)a?
nx[;tr(sz)—”ﬂfla?] lﬁV’([O], ( ) ]) (5)

4(1+1)a® 4(2+5+2) 0
where 2 denotes convergence in distribution and N the normal distribution.

3 Sphericity Test

It is well-known that the sphericity test based on U is n-consistent. As for (n,p)-consistency,
Proposition 1 implies that, under Assumptions 1-3,
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Since ¢ can be approximated by the known quantity p/n, the power of this test to separate
the null hypothesis of sphericity §2/a? = 0 from the alternative 62/a? > 0 converges to one as
n and p go to infinity together: this constitutes an (n,p)-consistent test.

John (1972) shows that, as n goes to infinity while p remains fixed, the limiting distribution
of U under the null is given by

7U - Y% p(pt1)—1 or, equivalently, (7)
D 2

where Yy denotes a random variable distributed as a y? with d degrees of freedom. It will
become apparent after Proposition 4 why we choose to rewrite Equation (7) as Equation (8).
This approximation may or may not remain accurate under (n, p)-asymptotics, depending on
whether it omits terms of order p/n. To find out, let us start by deriving the (n,p)-limiting
distribution of U under the null hypothesis §2/a? = 0.

Proposition 3 Under the assumptions of Proposition 2,

nU — p -2 N(1,4). (9)
Now we can compare Equations (8) and (9).

Proposition 4 Suppose that, for every k, the random variable Y1 is distributed as

5Pk (Prt1)+a
a x?% with %pk(pk + 1) + a degrees of freedom, where a is a constant integer. Then its limiting
distribution under Assumption 1 satisfies

2

—pr = N(1,4). (10)
Pk

1ok (pr+1)+a



Using Proposition 4 with a = —1 shows that the n-limiting distribution given by Equation (8)
is still correct under (n, p)-asymptotics.

The conclusion of our analysis of the sphericity test based on U is the following: the existing
n-asymptotic theory (where p is fixed) remains valid if p goes to infinity with n, even for the
case p > n.

4 Test that a Covariance Matrix Is the Identity

As n goes to infinity with p fixed, S £, 3., therefore V £, %tr (X - 1)2] . This shows that
the test of ¥ = I based on V is n-consistent. As for (n,p)-consistency, Proposition 1 implies
that, under Assumptions 1-3,

1

V= Lir(82) = 2r(9) +1 5 (1 + 0)a 402 — 20 + 1 = ca? + (o — 1) + 6% (11)
p P

Since %tr[(Z —I)?] = (o — 1)? + 6% is a squared measure of distance between the population

covariance matrix and the identity, the null hypothesis can be rewritten as (oo — 1)? 4 §2 = 0,
and the alternative as (o — 1)2 + 62 > 0. The problem is that the probability limit of the
test statistic V is not directly a function of (a — 1)2 + 6% it involves another term, ca?,
which contains the nuisance parameter 2. Therefore the test based on V may sometimes be
powerless to separate the null from the alternative. More specifically, when the triplet (¢, a, 0)
satisfies

ca? +(a—1)2+6% =g, (12)

the test statistic V' has the same probability limit under the null as under the alternative. The

clearest counter-examples are those where §2 = 0, because Proposition 2 allows us to compute

the limit of the power of the test against such alternatives. When 62 = 0 the solution to
l1—c

Equation (12) is a = 7¢.

Proposition 5 Under Assumptions 1-2, if ¢ € (0,1) and there ezists a finite d such that

B =c+ % + 0 (%) then the power of the test of any positive significance level based on V' to
reject the null X = I when the alternative 3 = %—jril 18 true converges to a limit strictly below

one.

We see that the n-consistency of the test based on V' does not extend to (n,p)-asymptotics.

Nagao (1973) shows that, as n goes to infinity while p remains fixed, the limiting distribution
of V under the null is given by
D
—

% 1% or, equivalently, (13)

D 2
nV—p — ;Y%p(pﬂ) —-p (14)
where, as before, Y; denotes a random variable distributed as a x? with d degrees of freedom.
It is not immediately apparent whether this approximation remains accurate under (n,p)-
asymptotics. The (n, p)-limiting distribution of ¥V under the null hypothesis (a — 1)2 4 §2 =0
is derived in Equation (41) in the Appendix as part of the proof of Proposition 5:

nV —p -5 N(1,4 + 8c). (15)



Using Proposition 4 with a = 0 shows that the n-limiting distribution given by Equation (14)
is incorrect under (n, p)-asymptotics.

The conclusion of our analysis of the test of ¥ = I based on V is the following: the existing
n-asymptotic theory (where p is fixed) breaks down when p goes to infinity with n, including
the case p > n.

5 Test that a Covariance Matrix Is the Identity: New Statistic

The ideal would be to find a simple modification of V' that had the same n-asymptotic proper-
ties and better (n,p)-asymptotic properties (in the spirit of U). This is why we introduce the
new statistic

1 p [l > p
W= -tr|(S—1)? —=|=tr(S =. 16
Culs- 17 -2 Cus)| +2 (16)
As n goes to infinity with p fixed, W £, %tr [(X — I)?], therefore the test of ¥ = I based on W
is n-consistent. As for (n, p)-consistency, Proposition 1 implies that, under Assumptions 1-3,

WLcaz—}-(a—1)2+(52—ca2+c:c+(a—1)2—1—52. (17)

Since ¢ can be approximated by the known quantity p/n, the power of the test based on W to
separate the null hypothesis (o — 1)2 4 6% = 0 from the alternative (a — 1) + 2 > 0 converges
to one as n and p go to infinity together: the test based on W is (n, p)-consistent.

The following proposition shows that W has the same n-limiting distribution as V' under
the null.

Proposition 6 Asn goes to infinity with p fixed, the limiting distribution of W under the null
hypothesis (a — 1) + 62 = 0 is the same as for V:

%W D, Y%p(pﬂ) or, equivalently, (18)
D 2
"Wep T ey TP (19)

where Yy denotes a random variable distributed as a x? with d degrees of freedom.

To find out whether this approximation remains accurate under (n, p)-asymptotics, we derive
the (n, p)-limiting distribution of W under the null.

Proposition 7 Under Assumptions 1-2, if (a — 1)? 4+ 62 = 0 then

nW —p -5 N(1,4). (20)

Using Proposition 4 with a = 0 shows that the n-limiting distribution given by Equation (19)
is still correct under (n,p)-asymptotics.

The conclusion of our analysis of the test of ¥ = I based on W is the following: the n-
asymptotic theory developed for V' is directly applicable to W, and it remains valid (for W
but not V') if p goes to infinity with n, even in the case p > n.



6 Monte-Carlo Simulations

So far, little is known about the finite-sample behavior of these tests. In particular the question
of whether they are unbiased in finite sample is not readily tractable. Yet some light can be
shed on finite-sample behavior through Monte-Carlo simulations.

Monte-Carlo simulations are used to find the size and power of the test statistics U, V,

and W for p,n = 4,8,...,256. In each case we run 10,000 simulations. The alternative
against which power is computed has to be “scalable” in the sense that it can be represented
by population covariance matrices of any dimension p = 4,8, ...,256. The simplest alternative

we can think of is to set half of the population eigenvalues equal to 1, and the other ones equal
to 0.5.

Table 1 reports the size of the sphericity test based on U. The test is carried out by
computing the 95% cutoff point from the y? n-limiting distribution in Equation (8). We see
that the quality of this approximation does not get worse when p gets large: it can be relied
upon even when p > n. This is what we expected given Proposition 4.

Table 2 shows the power of the sphericity test based on U against the alternative described
above. We see that the power does not become lower when p gets large: power stays high
even when p > n. This confirms the (n, p)-consistency result derived from Equation (6). The
table indicates that the power seems to depend predominantly on n. For fixed sample size, the
power of the test is often increasing in p, which is somewhat surprising. We do not have any
simple explanation of this phenomenon but will address it in future research focusing on the
analysis of power.

Using the same methodology as in Table 1, we report in Table 3 the size of the test for
Y = I based on V. We see that the x? n-limiting distribution under the null in Equation (14)
is a poor approximation for large p. This is what we expected given the discussion surrounding
Equation (15).

Using the same methodology as in Table 2, we report in Table 4 the power of the test based
on V against the alternative described above. Given the discussion surrounding Equation (12),
we anticipate that this test will not be powerful when ¢ = [(a—1)?+62%]/(1—a?) = 2/7. Indeed
we observe that, in the cells where p/n exceeds the critical value 2/7, this test does not have
much power to reject the alternative.

Using the same methodology as in Table 1, we report in Table 5 the size of the test for
Y = I based on W. We see that the x? approximation in Equation (19) for the null distribution
does not get worse when p gets large: it can be relied upon even when p > n. This is what we
expected given the discussion surrounding Equation (15).

Using the same methodology as in Table 2, we report in Table 6 the power of the test based
on W against the alternative described above. We see that the power does not become lower
when p gets large: power stays high even when p > n. This confirms the (n,p)-consistency
result derived from Equation (17). As with U, the table indicates that the power seems to
depend predominantly on n, and to be increasing in p for fixed n.

Overall, these Monte-Carlo simulations confirm the finite-sample relevance of the asymp-
totic results obtained in Sections 3, 4, and 5.



7 Possible Concerns

For the discussion that follows, recall the definition of the rth mean of a collection of p non-
negative reals, {s1,...,sp}, given by
1 P\1/p
= { U 20
i—1 5 ifr=20
A possible concern is the use of John’s statistic U for testing sphericity, since it is based on the
ratio of the first and second means (that is, M (1) and M(2)) of the sample eigenvalues. The
likelihood ratio (LR) test statistic, on the other hand, is based on the ratio of the geometric
mean (that is, M(0)) to the first mean of the sample eigenvalues; for example, see Muirhead
(1982, Section 8.3). It has long been known that the LR test has the desirable property of
being unbiased; see Gleser (1966) and Marshall and Olkin (1979, pages 387-388). Also, for the
related problem of testing homogeneity of variances, it has long been established that certain
tests based on ratios of the type M (r)/M(t) with r > 0 and ¢t < 0 are unbiased; see Cohen
and Strawderman (1971). No unbiasedness properties are known for tests based on ratios of
the type M(r)/M(t) with both » > 0 and ¢ > 0.

Still, we advocate the use of John’s statistic U over the LR statistic for testing sphericity
when p is large compared to n. First, the LR test statistic is degenerate when p > n (though
one might try to define an alternative statistic using the non-zero sample eigenvalues only
in this case). Second, when p is less than or equal to n but close to n some of the sample
eigenvalues will be very close to zero, causing the LR statistic to be nearly degenerate; this
should affect the finite-sample performance of the LR test. (Obviously, this also questions
the strategy of constructing a LR-like statistic based on the non-zero sample eigenvalues only
when p > n.) Our intuition is that tests whose statistic involves a mean M (r) with » < 0
will misbehave when p becomes close to n. The reason is that they give too much importance
to the sample eigenvalues close to zero, which contain information not on the true covariance
matrix but on the ratio p/n; see Figure 1 for an illustration.

To check this intuition, we run a Monte-Carlo on the LR test for sphericity for the case
p < n. Critical values are obtained from the y? approximation under the null; for example, see
Muirhead (1982, Section 8.3). The simulation set-up is identical to that of Section 6. Table 7
reports the simulated size of the LR test and severe size distortions for large values of p
compared to n are obvious. Next we compute the power of the LR test in a way that enables
direct comparison with Table 2: we use the distribution of the LR test statistic simulated
under the null to find the cutoff points corresponding to the realized sizes in Table 1 (most of
them are equal to the nominal size of 0.05, but for small values of p and n they are lower).
Using these cutoff points for the LR test statistic generates a test with exactly the same size
as the test based on John’s statistic U, so we can directly compare the power of the two tests.
Table 8 is the equivalent of Table 2 except it uses the LR test statistic for n > p. We can see
that the LR test is slightly more powerful than John’s test (by one percent or less) when p is
small compared to n, but is substantially less powerful when p gets close to n. Hence, both
in terms of size and power, the test based on U is preferable to the LR test when p is large
compared to n, and this is the scenario of interest of the paper.

Another possible concern addresses the notion of consistency when p tends to infinity. For
p fixed, the alternative is given by a fixed covariance matrix Y and consistency means that
the power of the test tends to one as the sample size n tends to infinity. Of course, when
p increases the matrix > of the alternative can no longer be fixed. Our approach is to work
within an asymptotic framework that places certain restrictions on how ¥ can evolve, namely



we require that the quantities o and 6% cannot change; see Assumption 2. Obviously, this
excludes certain alternatives of interest such as ¥ having all eigenvalues equal to 1 except for
the largest which is equal to p®, for some 0 < 8 < 0.5. For this sequence of alternatives, the
test based on John’s statistic U is not consistent and a test based on another statistic would
have to be devised (e.g., involving the maximum sample eigenvalue). Such other asymptotic
frameworks are deferred to future research.

8 Conclusions

In this paper, we have studied the sphericity test and the identity test for covariance matrices
when the dimensionality is large compared to the sample size, and in particular when it exceeds
the sample size. Our analysis is restricted to an asymptotic framework that considers the
first two moments of the eigenvalues of the true covariance matrix to be independent of the
dimensionality. We found that the existing test for sphericity based on John’s (1971) statistic U
is robust against high dimensionality. On the other hand, the related test for identity based
on Nagao’s (1973) statistic V' is inconsistent. We proposed a modification to the statistic V'
which makes it robust against high dimensionality. Monte-Carlo simulations confirmed that
our asymptotic results tend to hold well in finite sample.

Directions for future research include: applying the method to other test statistics; finding
limiting distributions under the alternative to compute power; searching for most powerful
tests (within specific asymptotic frameworks for the sequence of alternatives); relaxing the
normality assumption.
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Appendix

Proof of Proposition 1 The proof of this proposition is contained inside the proof of the
main theorem of Yin and Krishnaiah (1983). Their paper deals with the product of two
random matrices but it can be applied to our set-up by taking one of them to be the identity
matrix as a special case of a random matrix. Even though their main theorem is derived
under assumptions on all the average moments of the eigenvalues of the population covariance
matrix, careful inspection of their proof reveals that convergence in probability of the first two
average moments requires only assumptions up to the fourth moment. The formulas for the
limits come from Yin and Krishnaiah’s second equation on the top of page 504. O

Proof of Proposition 2 Changing « simply amounts to rescaling %tr(S) by a and %tr(S2)

by a2, therefore we can assume without loss of generality that a = 1. Jonsson’s (1982)
Theorem 4.1 shows that, under the assumptions of Proposition 2,

tr(S) — E[tr(9)]
"y 7 } (21)
CEse {tr(5%) - Blex($7)]

converges in distribution to a bivariate normal. Since p/n — ¢ € (0, 400), this implies that

. { Lir(S) — B [Lex(9)] ]

(22)
Lir($?) - B [%tr(bﬂ)}

also converges in distribution to a bivariate normal. %tr(S) is the average of the diagonal
elements of the unbiased sample covariance matrix, therefore its expectation is equal to one.
John (1972, Lemma 2) shows that the expectation of %tr(52) is equal to %pﬂ. So far we have
established that
tr(S) — 1 ]

1

n X p
1
Ltr(SQ) — Lrﬁ*

converges in distribution to a bivariate normal. Since this limiting bivariate normal has mean
zero, the only task left is to compute its covariance matrix. This can be done by taking the limit
of the covariance matrix of the expression in Equation (23). Using once again the moments
computed by John (1972, Lemma 2), we find that

Var [ntr(S)} = E l(ntr(S))Q] — (E [ntr(S)}>2 = M —n?= % — 2

p p p p

var[ZmSQ)} - EM”(SQ))Q]_(EB“(SQ)DQ

pnd + (2p% + 2p + 8)n? + (p* + 2p* + 21p + 20)n + 8p? + 20p + 20

(23)

pn
—(n+p+1)?
8 20p%+20p  8p® + 20p% + 20p
= —F 2 + 2
p p p°n

8
— — 420+ 8ec.
c

11



Finally we have to find the covariance term. Let s;; denote the entry (7,j) of the unbiased
sample covariance matrix S. We have:

p p P
Eftr(S)tr(5%)] = 30373 Blsiisj

i=1j=11=1
= p(p—1)(p — 2)E[s11833] + p(p — DE[s11535] + 2p(p — 1)E[s11575] + pE[s}]
pp—1)(p—2)

n+2 n+2)(n+4
SINCES (R
n

= BPZ T L pp— 1)”TJr2 +2p(p— 1) (24)

3 2 2
+p°+4 4p* + 4
= p2+p b p+ L p.

3

n n2

The moment formulas that appear in Equation (24) are computed in the same fashion as in
the proof of Lemma 2 by John (1972). This enables us to compute the limiting covariance
term as

Po(s), Ln(s?)] = E(S)u(s)] - B[ L Pir(s?
Cov 5tr(S),Etr(s )} = pQE[t (S)tr(S?)] E[pt (S)]xE[pt (S )] (25)
2
S P A TS IR (26)
p p
n 4
= 4o+ (27)
— 4<1+i). (28)

This completes the proof of Proposition 2. O

Proof of Proposition 3 Define the function f(z,y) = %—1. ThenU = f (%tr(S), Z%tr(Sz)).
x
Proposition 2 implies that, by the delta method,

1
n+p+a2> 2, N(0,lim A), where
n

202 /c 4(14—%) o? ] [ % Ea, ”+£+10¢2§ ]

4(1—1—1)043 4(%+5—|—20>a4 g—; a,%pﬂaz

C

nlv-7(a

T
of n+p+1 2

r \ & n <&

of n+£+1 o2

oy «,

A=

and T denotes the transpose. Notice that

f (a, n—l—p+1aQ) _ b 1 (29)
n n
of (a, n+p+1a2) _ _gntptl (30)
ox n no
of [ n+p+1 2) 1
dy <a, ma— = 3 (31)

Replacing the last two expressions into the formula for A yields

1) 1 1 2
A = 8(n+p:)—16(1+>n+p++4<+5+20) (32)
cn C n C
1+c)? 1 2
8! tc) —16<1+c>(1+c)+4<c+5+2c>:4 (33)

This completes the proof of Proposition 3. O

12



Proof of Proposition 4 Let z1,z9,... denote a sequence of i.i.d. standard normal random

variables. Then Y%pk(pk+1)+a has the same distribution as 22 + ... + Zik(pk+1)/2+a' Since
E[2?] = 1 and Var[z?] = 2, the Lindeberg-Lévy central limit theorem implies that
\/p (r+1)/2+a Y%Pk(l?k—&-l)—&-a 1 L]\/(O 2) (34)
k (Pk - ,2).
pr(pe +1)/2+a

Multiplying the left-hand side by +/pk(px + 1) + 2a/px, which converges to one, does not affect
the limit, therefore

V2, o+l av2 b
r Lpe(prt+1)+a /2 I

Subtracting from the left-hand side av/2/py,, which converges to zero, does not affect the limit,
therefore

(0,2). (35)

V2 pr+1
pikyépk(PkJrl)Jra N V2 — N(0,2). (36)

Rescaling Equation (36) yields Equation (10). O

Proof of Proposition 5 Define the function g(z,y) = y—2z+1. Then V =g (%tr(S), %tr(SQ)).
Proposition 2 implies that, by the delta method,

1
n [V —g (a, Wazﬂ L, N(0,lim B), where
n

-
9g n+p+l 2 2 1) .3 9g ntp+l 2

o (a, "= 20 /¢ 4(1—|—C)a o (a, ™=

Jdg n+£+1a2

ay | 4(1—!—%)(13 4(%—{—5—!—20)&4 g—g a,%pﬂoﬂ

B:

Notice that

1 1
g (a, S O‘2> = (a-12+ P (37)
n n

dg n+p+1 2) B
o (0" ) = (38)
g n+p+1 2>
-7 R - 1.
9y (a, . o (39)

Replacing the last two expressions into the formula for B yields

a? 1\ 4 2 A
B=8——16(1+-)a"+4(-+5+2)a’. (40)

First let us find the (n,p)-limiting distribution of V' under the null. Setting a equal to one

yields g (1, %pﬂ) = pnil and B =4 + 8c. Hence, under the null,

n(V—T) i>/\/’(O,4—i—80). (41)

Now let us find the (n,p)-limiting distribution of V' under the alternative. Setting « equal to

%—;gyields
. 1—c7n+p+1><(1—c)2 _ (1—0_1>2+p+1(1—c>2
1+c¢ n (1+c)? l+e¢ n \l+c¢
p+1c(2—c)xd+1+o(1)
n (1+c)? n
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and

1—c\2 1\ /1—=c\? 2 1—c\*
B = 8( C) —16<1+)( C) +4(+5+2c)< C)
c\1l+c c 1+e¢ c 1+e¢

o1+ 5c% + 2¢3

= 4(1-
(1=¢) (14 ¢)?
Hence, under the alternative,
p+l> D c(2—c)(d+1) 51+ 5c% +2¢3
V—-—— — A4l — ) —— | . 42

Therefore the power of a test of significance level 8 > 0 to reject the null ¥ = I when the
alternative ¥ = %—;EI is true converges to:

®L(1 — 0) A+ 8¢ — LI
1-® 21+5 o <1 (43)
\/4 1 B C (14+c)*
where ® denotes the standard normal c.d.f. O
Proof of Proposition 6 Assuming p fixed, it is easily seen that
1 2

nW-V) = p (1 - {ptr(S)} ) (44)
2p (1 — 042) = 0 (under the null) (45)

Hence, under the null, n(W — V) converges to zero in probability, as n goes to infinity for
p fixed. The proof is completed by applying Slutzky’s Theorem. O

Proof of Proposition 7 Define h(z,y) = y—22+1—L2?+2. Then W = h (%tr(S), %tr(52)>.
Proposition 2 implies that, by the delta method,

1
n W—h<1,”+p+> D, N(0,1im ©), where
n
.
oh +p+1 1
- Oh 1 n+p+1
’ n

Oh (1 ntptl

ox ) n

oh (1 ntpt1l |-
oy Y on

2
4(1+1) 4(%+5+2c)

Notice that

1 1
h (1, TH—p-i—) _ P + (46)
n n
1
8h<1,n+p+ ) _ _2n+p (47)
x n n
Oh n+p+1
— (1 = 1 48
5 (1) (15)
Replacing the last two expressions into the formula for C' yields
2 1
c = 8(”+f)—16(1+>"+p+4( +5+2c> (49)
cn c n
1+ c)? 1 2
8( tc) —16<1+C)(1+c)+4(c+5+20>:4 (50)

This completes the proof of Proposition 7. O
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9 Tables and Figures

p n| 4 8 16 32 64 128 256
4 0.01 0.03 0.04 0.05 0.05 0.05 0.05
8
1

0.03 0.04 0.04 0.05 0.05 0.05 0.05

6 0.04 0.05 0.056 0.05 0.05 0.05 0.05
32 0.05 0.05 0.05 0.05 0.05 0.05 0.05
64 0.05 0.05 0.056 0.05 0.05 0.05 0.05
128 | 0.05 0.05 0.05 0.05 0.05 0.05 0.05
256 | 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 1: Size of Sphericity Test Based on U. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the x? approximation. Actual size con-
verges to nominal size as dimensionality p goes to infinity with sample size n. Results come
from 10,000 Monte-Carlo Simulations.

p n| 4 8 16 32 64 128 256
4 0.02 0.06 0.15 0.37 0.76 0.98 1.00
8
1

0.06 0.09 0.18 0.42 0.85 1.00 1.00

6 0.06 0.11 0.20 0.48 0.90 1.00 1.00
32 0.08 0.13 0.22 0.50 093 1.00 1.00
64 0.09 0.13 024 0.52 095 1.00 1.00
128 1 0.09 0.14 0.23 053 095 1.00 1.00
256 | 0.09 0.14 024 054 096 1.00 1.00

Table 2: Power of Sphericity Test Based on U. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the y? approximation. Data are generated
under the alternative where half of the population eigenvalues are equal to 1, and the other
ones are equal to 0.5. Power converges to one as dimensionality p goes to infinity with sample
size n. Results come from 10,000 Monte-Carlo Simulations.
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p n| 4 8 16 32 64 128 256
4 0.12 0.10 0.08 0.07 0.06 0.05 0.05
8
1

0.18 0.15 0.11 0.09 0.08 0.07 0.06

6 0.25 021 0.15 0.12 0.09 0.07 0.06
32 0.31 027 0.21 0.17 0.13 0.09 0.07
64 0.35 033 029 0.22 0.17 0.13 0.09
128 1040 038 034 029 023 0.17 0.12
256 | 043 041 038 034 028 022 0.17

Table 3: Size of Equality Test Based on V. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the x? approximation. Actual size does
not converge to nominal size as dimensionality p goes to infinity with sample size n. Results
come from 10,000 Monte-Carlo Simulations.

p n| 4 8 16 32 64 128 256
4 0.04 0.03 0.03 0.11 0.76 1.00 1.00
8
1

0.03 0.02 0.02 0.03 056 1.00 1.00

6 0.02 0.01 0.00 0.00 0.05 1.00 1.00
32 0.00 0.00 0.00 0.00 0.00 0.14 1.00
64 0.00 0.00 0.00 0.00 0.00 0.00 0.56
128 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Power of Equality Test Based on V. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the y? approximation. Data are generated
under the alternative where half of the population eigenvalues are equal to 1, and the other
ones are equal to 0.5. Power does not converge to one as dimensionality p goes to infinity with
sample size n. Results come from 10,000 Monte-Carlo Simulations.
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p n| 4 8 16 32 64 128 256
4 0.03 0.04 0.05 0.05 0.05 0.05 0.05
8
1

0.04 0.05 0.05 0.05 0.05 0.05 0.05

6 0.06 0.05 0.05 0.05 0.05 0.05 0.05
32 0.06 0.05 0.05 0.05 0.05 0.05 0.05
64 0.06 0.05 0.06 0.05 0.05 0.05 0.05
128 |1 0.06 0.06 0.06 0.05 0.05 0.05 0.05
256 | 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 5: Size of Equality Test Based on W. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the y? approximation. Actual size con-
verges to nominal size as dimensionality p goes to infinity with sample size n. Results come
from 10,000 Monte-Carlo Simulations.

p n| 4 8 16 32 64 128 256
4 0.02 0.02 0.06 0.37 093 1.00 1.00
8
1

0.02 0.03 0.07 0.43 098 1.00 1.00

6 0.02 0.03 0.08 0.51 1.00 1.00 1.00
32 0.02 0.03 0.09 0.53 1.00 1.00 1.00
64 0.02 0.03 0.09 0.56 1.00 1.00 1.00
128 | 0.02 0.03 0.08 0.57 1.00 1.00 1.00
256 | 0.02 0.03 0.09 0.58 1.00 1.00 1.00

Table 6: Power of Equality Test Based on W. The null hypothesis is rejected when the test
statistic exceeds the 95% cutoff point obtained from the y? approximation. Data are generated
under the alternative where half of the population eigenvalues are equal to 1, and the other
eigenvalues are equal to 0.5. Power converges to one as dimensionality p goes to infinity with
sample size n. Results come from 10,000 Monte-Carlo Simulations.
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Figure 1: Sample vs. True Eigenvalues. The solid line represents the distribution of the eigen-
values of the sample covariance matrix based on the asymptotic formula proven by Marcenko
and Pastur (1967) Eigenvalues are sorted from largest to smallest, then plotted against their
rank. In this case, the true covariance matrix is the identity, that is, the true eigenvalues are
all equal to one. The distribution of the true eigenvalues is plotted as a dashed horizontal line
at one. Distributions are obtained in the limit as the number of observations n and the number
of variables p both go to infinity with the ratio p/n converging to a finite positive limit, the
concentration c. The four plots correspond to different values of the concentration.
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p n| 4 8 16 32 64 128 256
4 0.48 0.15 0.09 0.07 0.06 0.06 0.05
8
1

0.87 026 0.11 0.07 0.06 0.05

6 1.00 0.56 0.20 0.10 0.08
32 1.00 096 0.45 0.18
64 1.00 1.00 0.91
128 1.00 1.00
256 1.00

Table 7: Size of Sphericity Test Based on LR test statistic. The null hypothesis is rejected when
the test statistic exceeds the 95% cutoff point obtained from the x? approximation. Actual
size does not converge to nominal size as dimensionality p goes to infinity with sample size n.
Results come from 10,000 Monte-Carlo Simulations.

p n| 4 8 16 32 64 128 256
4 0.01 0.05 0.15 0.38 0.77 0.98 1.00
8 0.06 0.15 042 0.86 1.00 1.00
16 0.08 0.40 0.89 1.00 1.00
32 0.13 0.88 1.00 1.00
64 0.24 1.00 1.00
128 0.58 1.00
256 0.99

Table 8: Power of Sphericity Test Based on LR test statistic. The null hypothesis is rejected
when the test statistic exceeds the 95% size-adjusted cutoff point (to enable direct comparison
with Table 2) obtained from the x? approximation. Data are generated under the alternative
where half of the population eigenvalues are equal to 1, and the other ones are equal to 0.5.
Power does not converge to one as dimensionality p goes to infinity with sample size n. Results
come from 10,000 Monte-Carlo Simulations.
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