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Abstract

In this paper, we design the optimal contract when two agents can collude un-

der asymmetric information. They have correlated types, produce complementary

inputs and are protected by limited liability. Therefore, a joint manipulation of

reports allows them to internalize informational and productive externalities. We

show that by taking advantage of the transaction costs created by asymmetric in-

formation, even though they collude, the principal can achieve the outcome without

collusion regardless of the sign and the degree of correlation. In particular, the

principal can implement a non-monotonic quantity schedule in a collusion-proof

way while this is impossible if collusion occurs under complete information.
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1 Introduction

Collusion is an old and recurring phenomenon in organizations and has been a main

theme of research for organizational sociologists.1 Their common view is that behavior

in organizations is often best predicted by the analysis of group as well as individual

incentives. Hence, they think that incentive schemes must account for the possibility that

members form coalitions to manipulate their functioning. However, the design of such

incentive schemes necessitates a good understanding of coalition formation. In particular,

understanding the transaction costs in coalition formation is fundamental since it helps

us to predict under what circumstances agents can successfully form coalitions and to

design incentive schemes which take advantage of the transaction costs in dealing with

collusions.

In this paper, we study mechanism design when the agents can collude under asym-

metric information. We identify the transaction costs in coalition formation generated

by asymmetric information and derive the optimal mechanism which fully exploits the

transaction costs to deter collusion. In particular, we show that asymmetric information

can effectively create barriers to coalition formation making the agents fail to realize gains

from collusion. Indeed, this result was conjectured by Pfeffer (1981):

�it is probably the lack of knowledge about the preferences and beliefs of others within

the organization that constitutes a major barrier to the formation of coalitions (p. 166).�

More precisely, we study collusion between two units (agents) in a multi-divisional Þrm.

The principal is the owner of the Þrm and the agents produce perfectly complementary

inputs: to produce one unit of the Þnal good, the Þrm needs a unit from each agent. Each

agent has private information about his cost parameter (type) and is protected by limited

liability. An agent can have either an L-type (low cost type) or an H-type (high cost type)

and an agent�s type is correlated with the other�s type. Despite simple and speciÞc features

of out setting, it allows us to capture two general externalities which make collusion have

bites. Precisely, an agent�s report about his type affects the other agent�s payoff through

two channels: correlation creates information externalities and complementarity creates

production externalities.2 Therefore, the agents have the incentive to coordinate their

1See Crozier (1967) and Dalton (1959).
2Complementatiry is not enough to make collusion have a bite in our setting since Laffont and Marti-

mort (1997) show that when the types are independent, collusion can be deterred at no cost even if there
is no transaction cost in coalition formation.
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reports in order to internalize these externalities. Although we apply the model to the

internal organization of a Þrm, our model can also be applied to the regulation of Þrms

producing complementary inputs (Gilbert and Riordan, 1995, Laffont and Martimort,

1997).

Before we study collusion, we characterize the optimal mechanismwithout side-contracting

(i.e. the optimal mechanism when the agents do not collude). In our framework, full rent

extraction, a result well-known from Crémer and McLean (1985), cannot be achieved

since limited liability imposes a bound on the principal�s capacity to penalize the agents.

Hence, the optimal mechanism is derived from a trade-off between efficiency and rent

extraction. The optimal quantity schedule, deÞned with respect to the sum of the agents�

costs, is decreasing in the case of negative or weak positive correlation while the sched-

ule is non-monotonic in the case of strong positive correlation. In the latter case, the

rent obtained by an H-type is mainly determined by the quantity produced when one

agent has an H-type and the other has an L-type. Therefore, it is optimal to introduce a

large downward distortion in the quantity produced at this state of nature such that the

quantity is smaller than the quantity produced when both agents have an H-type.

After analyzing the optimal mechanism without side-contracting, we study the col-

lusion between the two agents. Drawing on the methodology developed by Laffont and

Martimort (1997, 2000), we model the collusion by a side-contract offered by a benevolent

and uninformed third-party who maximizes the sum of the agents� payoffs. The third-

party uses the side-contract to implement joint manipulations of reports. We show that

the collusion-proofness principle holds in our model and characterize the set of collusion-

proof mechanisms. A mechanism is collusion-proof if it satisÞes the coalition incentive

constraints. In the presence of asymmetric information between the agents, the constraints

are written in terms of the virtual costs instead of the real costs.

Before we analyze the impact of asymmetric information on collusion, we investigate

whether the optimal mechanism without side-contracting exhibits any room for collusion

by considering the case in which collusion takes place under complete information be-

tween the agents. It turns out that, under Bayesian implementation, there exists room

for collusion only when the optimal quantity schedule is not monotonic (equivalently,

when there is strong positive correlation). However, when we require dominant-strategy

implementation,3 there exists room for collusion when there is negative correlation as well.

As the main result, we show that under Bayesian implementation, the optimal mech-

3For the distinction between Bayesian implementation and dominant-strategy implementation, see
Fudenberg and Tirole (1992, pp. 270-271).
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anism without side-contracting can be implemented in a collusion-proof way without any

loss regardless of the sign and the degree of correlation if collusion takes place under

asymmetric information.4 We also show that in the case of weak negative correlation, the

principal can implement the optimal quantity schedule in dominant strategies and in a

collusion-proof way without loss if collusion takes place under asymmetric information.

To give an intuition of the main result, we consider the case of strong positive cor-

relation. We Þrst note that, in this case, there exists room for collusion only when one

agent has an L-type and the other has an H-type. In this state of nature, the agents

have an incentive to report that both of them have an H-type since, given the non-

monotonic quantity schedule, this manipulation of reports makes each of them to produce

more quantity and this increase in quantity allows an L-type to obtain more rent while it

does not hurt an H-type since the latter�s ex post participation constraint always binds.

However, the fact that the manipulation makes an H-type produce more quantity creates

an incentive problem within the coalition; an L-type�s incentive to pretend to have an

H-type to the third-party is larger in the presence of the manipulation than in its absence

since his rent is increasing in the quantity produced by an H-type. Therefore, in order to

implement the collusion, the third-party has to give an L-type more rent than he would

obtain in the absence of collusion. This additional rent is the transaction costs created

by asymmetric information. Since the transaction costs are larger than the gains from

collusion, the agents fail to collude.

From a theoretical point of view, our paper extends Laffont and Martimort (2000)

who study collusion in a framework of public good provision when agents� types are cor-

related.5 The main difference in terms of the setting is that they do not assume limited

liability and therefore the principal can fully extract the rent in the absence of collusion as

in Crémer and McLean (1985). They furthermore limit their analysis to the case of weak

positive correlation and the two polar cases of almost perfect correlation and no correla-

tion. As their main result, they show that collusion prevents the principal from achieving

the Þrst-best outcome and restores the continuity in the principal�s payoff. However, in

their optimal collusion-proof mechanism, asymmetric information does not generate any

transaction cost except in the limit case of almost perfect correlation. We show that when

the agents have limited liability, collusion is irrelevant in that the principal can imple-

4This means that, in the case of strong positive correlation, the principal can implement the optimal
non-monotonic schedule in a collusion-proof way without additional cost. This result holds as long as the
probability of having two L-types is larger than the probability of having one L-type and one H-type,
which is satisÞed if the probability of having two L-types is close to the probability having two H-types.

5They also study a two-type setting.
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ment the optimal mechanism without side-contracting in a collusion-proof way without

loss regardless of the sign and the degree of correlation by exploiting the transaction

costs.6

Collusion under dominant-strategy implementation was Þrst studied by Laffont and

Maskin (1980). Using a differential approach, they show that there is a strong tension

between individual and coalition incentives when dominant-strategy implementation is

required. Laffont and Martimort (1997) show that in the case of no correlation, the

optimal contract without side-contracting can be implemented in a collusion-proof way

and in dominant strategies. Hence, we generalize their result to the case of weak positive

and weak negative correlation.

The result that asymmetric information can make collusion inefficient was also ob-

tained by Jeon (forthcoming) and Jeon and Menicucci (2005). However, in both papers,

the agents� types are independently distributed. In the Þrst paper, which extends Laffont

and Martimort (1997)�s adverse selection framework by adding moral hazard (effort), the

principal is constrained to use uniform transfers and this generates room for collusion. In

the second paper, they consider a setting of monopolistic screening and room for collusion

arises since buyers can engage in arbitrage by signing a side-contract.

Mailath and Postlewaite (1990) show that when each worker has private information

on his non-wage beneÞt, the workers may receive a total compensation less than their

total contribution since they fail to agree on a division of surplus should they leave for

a new Þrm. Although they analyze coalition formation under asymmetric information,

they do not study the principal�s mechanism design. In contrast, we Þrst characterize the

coalition incentive constraints under asymmetric information and then Þnd the transfer

scheme which allows the principal to implement the second-best quantity proÞle.

Dana (1993) and Jansen (1999) characterize the optimal mechanism under correlated

types and limited liability in a two-type setting. Dana studies the case in which each agent

produces a Þnal product while Jansen studies the case in which each agent produces a

complementary input. None of them studies collusion.7

Our paper is related to the literature analyzing contracting between a principal and

privately informed suppliers of complementary inputs (Baron and Besanko 1992, 1999

and Gilbert and Riordan). They compare the case of informational decentralization in

6We note that the principal�s payoff in our optimal collusion-proof mechanism is continuous since
limited liability restores continuity, as is shown by Robert (1991).

7Our framework is more general than Jansen�s one since, in our paper, the principal decides the
quantity to produce while, in his paper, the principal decides solely whether to produce or to shutdown.
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which each agent knows only the cost of producing his own input with the case of infor-

mational consolidation in which one consolidated agent knows the costs of producing both

inputs without specifying the mechanism which induces the agents to share their private

information. By contrast, in our model, we specify this mechanism and identify the trans-

action costs generated by asymmetric information which, in turn, can be exploited by the

principal.8

The paper is organized as follows. In Section 2, we present the model. In Section

3, we study as a benchmark the optimal grand-mechanism without side-contracting. In

Section 4, we prove the collusion-proofness principle and characterize the set of collusion-

proof grand-mechanisms. In Sections 5 and 6, we study collusion under asymmetric

information distinguishing Bayesian implementation (Section 5) from dominant-strategy

implementation (Section 6). Section 7 concludes. All the proofs which are not presented

in the main texts are relegated to Appendix.

2 The Model

2.1 The Basic Setting

We consider the production decision of a Þrm composed of two divisions (agents). The

production process consists of two stages, intermediary and Þnal stage. Each agent is

charged with one stage. The production technology of the agents is Leontief and one-to-

one: to produce a unit of output, the Þrm needs a unit from each stage. The principal

(the owner) has to decide the quantity of outputs to produce, which is denoted by q.

The principal cannot observe realized costs. She uses transfers to induce the agents to

produce.

Agent i�s utility, with i ∈ {1, 2}, is given by:

Ui = ti − θiq,

where θi represents agent i�s cost parameter and ti the transfer from the principal to agent

i. Agent i�s cost parameter (type) θi is his private information. θ1 and θ2 are drawn from

a joint distribution with the common support Θ ≡ {θL, θH}. The joint distribution is
supposed to be common knowledge. Let ∆θ ≡ θH − θL > 0. The agent with θi = θL

is called an L-type and the agent with θi = θH is called an H-type. Let p(θi, θj) denote

8Furthermore, in their models, consolidation changes the participation constraint from the individual
one to a group participation constraint. and types are independently distributed.
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the probability of having a state of nature (θi, θj) for (i, j) ∈ {1, 2}. For expositional
simplicity, we introduce the following notation:

p(θL, θL) = pLL, p(θL, θH) = p(θH , θL) = pLH , p(θH , θH) = pHH .

We denote conditional probability by p(· |·). We assume that θ1 and θ2 can be positively or
negatively correlated.9 When θ1 and θ2 are positively correlated, the following inequality

holds:
pLL
pLH

>
pLH
pHH

.

When θ1 and θ2 are negatively correlated, the reverse of the above inequality holds. Let

ρ ≡ pLLpHH − (pLH)2 denote the degree of correlation.
The principal maximizes her proÞt, which consists of revenue from selling outputs

minus transfers. Her objective function is given by:

π = S(q)−
2X
i=1

ti,

where S 0(·) > 0, S 0(0) = ∞ and S
00
(·) < 0. We assume that the revenue from selling

outputs is large enough to employ both agents for any realization of cost parameter.

According to the revelation principle, a grand-mechanism, M , between the principal

and the agents takes the following form:

{t1(bθ1, bθ2), t2(bθ1, bθ2), q(bθ1, bθ2)},
where bθi is agent i�s report about his cost parameter to the principal.
Each agent�s reservation utility is normalized to zero regardless of his type. Each agent

is protected by limited liability in that he has the option of terminating his relationship

with the principal at any time before incurring the production cost10. Therefore, each

agent�s participation constraints must be satisÞed ex post:

ti(θ1, θ2)− θiq(θ1, θ2) ≥ 0, ∀(θ1, θ2) ∈ Θ2.
9The independent case is included in our framework as a particular case with measure zero.
10We assume limited termination penalties, which are common in practice. See Sappington (1983),

Dana (1993) and Lewis and Sappington (1997). If termination pemalities are large enough, the principal
can achieve the Þrst-best outcome as in Crémer and McLean (1985).
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2.2 Collusion

We model collusion between the two agents by a side-contract offered by a benevolent and

uninformed third-party denoted by T as in Laffont and Martimort (1997, 2000).11 The

third-party uses the side-contract to implement joint manipulations of reports. He maxi-

mizes the sum of the agents� rents subject to a set of incentive compatibility, acceptance,

budget balance and ex post participation constraints.

A side-contract takes the following form:

{φ(eθ1, eθ2), y1(eθ1, eθ2), y2(eθ1, eθ2)},
where eθi is agent i�s report about his cost parameter to the third-party. φ(·) is the
manipulation of report function. This maps any pair of reports made by the agents to

the third-party into the set of (possibly stochastic) reports to the principal. yi(·) is the
monetary transfer from agent i to the third-party.

We assume that the third-party is not a source of money and therefore require that

the following ex post budget balance constraint be satisÞed for all states of nature:

2X
i=1

yi(θ1, θ2) = 0, ∀(θ1, θ2) ∈ Θ2.

We note that there is no loss of generality in restricting the set of feasible side-contracts

to direct revelation mechanisms since the revelation principle applies at this stage of the

game. We assume as in Laffont and Martimort (1997, 2000) that the side-contract is

enforceable even though the secrecy of this contract implies that there is no court of

justice available to enforce it.12

2.3 Timing

The timing is as follows.

1. Nature draws each agent�s cost parameter. Each agent learns only his own param-

eter.
11The readers might wonder why we do not use an extensive form of bargaining between the agents

to describe collusion. However, any outcome of an extensive form of bargaining can be achieved by a
side-contract designed by the third-party. Hence, the modelling strategy of using the third-party as a
side-contract designer is a shortcut which allows us to characterize the highest bound of what can be
achieved by collusion.
12This assumption allows us to focus on the highest bound of what can be achieved by collusion. It is a

shortcut to capture in a static-context the reputations of the third-party and the agents which guarantee
that the self-enforceability of these contracts would emerge in repeated relationship.
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2. The principal proposes a grand-mechanism M .

3. Each agent accepts or refuses it. If at least one agent refuses, each agent gets the

reservation utility and the following sequences do not occur.

4. The third-party offers the side-contract S.

5. Each agent accepts or refuses it. If at least one agent refuses, the grand-mechanism

is played non-cooperatively. In this case, reports are directly made in the grand-mechanism

and the next two stages do not occur.

6. If the side-contract has been accepted, reports in the side-contract are made.

7. The corresponding side-transfers and the reports in the grand-mechanism are made.

8. Production and transfers are enforced.

After the third-party proposes S, a two-stage game is played: Þrst, the agents accept

or refuse S and then they send their messages either to the principal or to the third-party

depending on their acceptance decisions at the previous stage. We call this two-stage

game the game of coalition formation. We assume that after agent i rejected the side-

contract offered by the third-party, the other agent j (with j 6= i) does not change his

own beliefs about i�s type.

3 Benchmark: Optimal grand-mechanismwithout side-

contracting

In this section, we analyze, as a benchmark, the optimal grand-mechanism when there

is no side-contracting. Since the two agents are perfectly symmetric, there is no loss

of generality in looking for the optimal contract within the class of mechanisms which

are symmetric. For expositional simplicity, we introduce the following notation: for the

transfers,

tLL = t1(θL, θL) = t2(θL, θL), tLH = t1(θL, θH) = t2(θH , θL),

tHL = t1(θH , θL) = t2(θL, θH), tHH = t1(θH , θH) = t2(θH , θH);

and for the quantity of outputs to produce,

q = q(θL, θL), bq = q(θL, θH) = q(θH , θL), q = q(θH , θH).
The optimal grand-mechanism should satisfy the following incentive compatibility con-

straints to induce truth-telling: for an L-type,

pLL(tLL − θLq) + pLH(tLH − θLbq) ≥ pLL(tHL − θLbq) + pLH(tHH − θLq); 13 (1)

13In fact, the original expression for the incentive constraint is given by: pLL
pLL+pLH

(tLL − θq) +
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and for an H-type,

pLH(tHL − θH bq) + pHH(tHH − θHq) ≥ pLH(tLL − θHq) + pHH(tLH − θH bq). (2)

The grand-mechanism should satisfy the following ex post participation constraints:

tLL − θLq ≡ uLL ≥ 0, (3)

tLH − θLbq ≡ uLH ≥ 0, (4)

tHL − θH bq ≡ uHL ≥ 0, (5)

tHH − θHq ≡ uHH ≥ 0, (6)

where, for instance, uLL represents the utility that an L-type obtains when the other

agent reports that he has an L-type.

The principal maximizes expected proÞt, given below, subject to the constraints (1)

to (6):

E(π) = pLL[S(q)− 2tLL]

+2pLH [S(bq)− tLH − tHL] + pHH [S(q)− 2tHH ].
The optimal grand-mechanism without side-contracting is characterized in the next

proposition.

Proposition 1 We assume that for ρ > ρ∗ ≡ p2LH
pLL
, ∆θ is small enough relative to θ14.

The optimal grand-mechanism without side-contracting is characterized as follows:

(i) Only the L-type�s incentive constraint and the H-type�s ex post participation con-

straints are binding.

(ii) The optimal quantity schedule is given by:

S0(q∗) = 2θL,

S 0(bq∗) = θL + θH + pLL
pLH

∆θ,

S 0(q∗) = 2θH + 2
pLH
pHH

∆θ.

pLH
pLL+pLH

(tLH − θbq) ≥ pLL
pLL+pLH

(tHL − θbq) + pLH
pLL+pLH

(tHH − θq). After multiplying both sides of the
inequality by pLL + pLH , we obtain (1).
14This condition allows us to focus on the case in which the H-type�s incentive constraint is slack: for

more details, see the proof of proposition 1.
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It is decreasing (q∗ > bq∗ ≥ q∗) for ρ ≤ ρ∗ but non-monotonic (q∗ > q∗ > bq∗) for
ρ > ρ∗.15

(iii) The following transfer scheme implements the optimal quantity schedule:

(a) for an H-type: t∗HL = θH bq∗, t∗HH = θHq∗.
(b) for an L-type:

t∗LL = θLq
∗ +∆θbq∗, t∗LH = θLbq∗ +∆θq∗, for ρ ≤ ρ∗,

t∗LL = θLq
∗ +∆θbq∗ + pLH

pLL
∆θq∗, t∗LH = θLbq∗, for ρ > ρ∗.

In both cases, the principal has a residual degree of freedom in choosing the transfers

(tLL, tLH).16

When the ex post participation constraints have to be satisÞed, an H-type has to be

given at least zero rent for every state of nature and this makes the principal concede

a positive rent to an L-type.17 Therefore, the optimal quantity schedule is determined

by the trade-off between efficiency and rent extraction. In this trade-off, as usual, the

relevant cost for an agent is his virtual cost. An L-type�s virtual cost is equal to his real

cost while an H-type�s one is larger than his real cost. The H-type�s virtual cost changes

depending upon the sign and the degree of correlation. To give an intuition about how

the virtual cost is determined, we consider the intermediate state of nature (θL, θH) or

(θH , θL). Suppose that ρ ≤ ρ∗ holds and that the principal increases bq by dbq. This will
increase, when the state of nature is (θL, θL), from t∗LL in proposition 1(iii)(b), the rent
abandoned to each L-type by ∆θdbq. The total increase in cost is given by the sum of the
increase in the production cost 2pLH(θL + θH)dbq and the increase in the rent 2pLL∆θdbq
while the increase in revenue is given by 2pLHS0(bq)dbq. Therefore, an H-type�s virtual cost
is given by θH +

pLL
pLH
∆θ.

The optimal quantity schedule is decreasing in the sum of the two agents� cost param-

eters (q∗ > bq∗ ≥ q∗) if there is negative or weak positive correlation (ρ ≤ ρ∗). In the case
of strong positive correlation (ρ > ρ∗), the sum of the agents� virtual costs is smaller when
both agents have an H-type than when one has an L-type and the other has an H-type.

This makes the schedule non-monotonic: q∗ > q∗ > bq∗. Intuitively, in this case, when an
15An interesting thing to note is that our case of strong positive correlation ρ > ρ∗ exactly corresponds

to the case of strong positive correlation in Armstrong and Rochet (1999) in which they characterize the
solution of a two-dimensional screening problem. We are grateful to Jean-Charles Rochet for this remark.
16See Appendix 1 for the range of the transfers.
17In terms of the binding constraints, our characterization of the optimal mechanism is similar to those

obtained by Dana (1993) and Jansen (1997).
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L-type pretends to have an H-type, the probability for him to produce bq is much higher
than the probability to produce q. Since his rent is mainly determined by bq, it is optimal
for the principal to introduce a large downward distortion in bq.
The principal has a residual degree of freedom in choosing the transfers (tLL, tLH)

which satisfy the Bayesian incentive constraints. When the optimal quantity schedule is

decreasing, by using the degree of freedom, she can satisfy the incentive compatibility

constraints in dominant strategies, given as follows: for an L-type,

tLL − θLq ≥ tHL − θLbq, (7)

tLH − θLbq ≥ tHH − θLq; (8)

for an H-type,

tHL − θH bq ≥ tLL − θHq, (9)

tHH − θHq ≥ tLH − θH bq. (10)

LetMD denote the optimal grand-mechanism implemented in dominant strategies. Under

MD, transfers are given as follows: tLL = θLq
∗ + ∆θbq∗, tLH = θLbq∗ + ∆θq∗, tHL =

θH bq∗, tHH = θHq∗.
When the optimal quantity schedule is not monotonic, the H-type�s Bayesian incen-

tive constraint may not be satisÞed if the principal proposes MD. In this case, using a

transfer scheme in which the principal gives a rent only when both agents have an L-type

maximizes the chance to satisfy theH-type�s Bayesian incentive constraint.18 In the proof

of proposition 1, we show that when ∆θ is small enough, the principal can strictly satisfy

the H-type�s Bayesian incentive constraint by using this scheme. Thus, in this case, she

still has a residual degree of freedom.

4 Collusion-proof grand-mechanisms under asymmet-
ric information

In this section, we assume that there is asymmetric information between the agents. We

deÞne the collusion-proof grand-mechanism, prove the collusion-proofness principle and

characterize the set of collusion-proof grand-mechanisms.

18Given the thee binding constraints, the principal has only one degree of freedom in choosing the
transfers. Transforming all the transfers as a function of tLH from the binding constraints and injecting
them into the H-type�s incentive constraint reveals that minimizing tLH maximizes the chance to satisfy
the constraint.

11



4.1 DeÞnition

In order to deÞne the collusion-proof grand mechanism, we need to introduce some deÞ-

nitions.

DeÞnition 1 A side-contract S∗ = {φ∗(·), y∗1(·), y∗2(·)} is coalition-interim-efficient with
respect to a grand-mechanism M = {t1(·), t2(·), q(·)} providing the reservation utilities
Vi(θi) if and only if it is the solution of the following program (thereafter denoted by (T )):

max
φ,y1,y2

pLL[t1(φLL) + t2(φLL)− 2θLq(φLL)]

+pLH [t1(φLH) + t2(φLH)− (θL + θH)q(φLH)]
+pLH [t1(φHL) + t2(φHL)− (θH + θL)q(φHL)]
+pHH [t1(φHH) + t2(φHH)− 2θHq(φHH)]

subject to

Ui(θi) =
X
Θj

p(θj|θi)[ti(φ(θi, θj))− yi(θi, θj)− θiq(φ(θi, θj))], ∀θi ∈ Θ;

(BIC) Ui(θi) ≥
X
Θj

p(θj|θi)[ti(φ(bθi, θj))− yi(bθi, θj)− θiq(φ(bθi, θj))], ∀(θi, bθi) ∈ Θ2;
(BIR) Ui(θi) ≥ Vi(θi), ∀θi ∈ Θ;

(BB)
2X
k=1

yk(θi, θj) = 0, ∀(θi, θj) ∈ Θ2;

(Ex post IR) ti(φ(θi, θj))− yi(θi, θj)− θiq(φ(θi, θj)) ≥ 0, ∀(θi, θj) ∈ Θ2.

A side-contract is coalition-interim-efficient if it maximizes the sum of the agents� ex-

pected utilities subject to incentive, acceptance, budget balance and ex post participation

constraints. We note below the difference between the acceptance constraint and the ex

post participation constraint. The Þrst is deÞned in Bayesian terms with respect to the

reservation utility Vi(θi) that agent i can obtain when he plays non-cooperatively the

grand-mechanism after rejecting the side-contract.19 The second is deÞned in ex post

terms with respect to zero reservation utility. Therefore, both the principal and the

third-party have equal standing in that the agents are protected by limited liability.

19We note that Vi(θi) represents i�s utility when j (j 6= i) does not change his beliefs on i�s type after
observing i�s rejection of the side-contract.
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DeÞnition 2 The null side-contract is the side-contract where there is no manipulation
of report (φ(·) = Id(·)) and no transfer between agents (y1(·) = y2(·)).

We now deÞne the collusion-proof grand-mechanism.

DeÞnition 3 A grand-mechanism M = {t1(·), t2(·), q(·)} providing the reservation utili-
ties Vi(θi) is collusion-proof when the null-side contract is coalition-interim-efficient with

respect to this mechanism.

4.2 Characterization

We Þrst show that the collusion-proofness principle is valid in our model.

Proposition 2 There is no loss of generality in restricting the principal to offer collusion-
proof mechanisms to characterize the outcome of any perfect Bayesian equilibria of the

game of grand-mechanism offer cum coalition formation.

In general, if the third-party has an informational advantage over the principal or can

use Þner instruments than the principal can, the collusion-proofness principle may not

hold. However, in our framework, the third-party has no informational or instrumental

advantage and is subject to the incentive, acceptance, budget balance and ex post partici-

pation constraints. Hence, all the outcomes that can be implemented by allowing collusion

to happen can be mimicked by the principal in a collusion-proof way without any loss.

This collusion-proofness principle simpliÞes our analysis, since what can be achieved by

the principal is contained in the set of collusion-proof grand-mechanisms.

In the next proposition, we characterize the set of symmetric collusion-proof grand-

mechanisms. We focus on the subset of these collusion-proof grand-mechanisms where

the H-type�s incentive constraint is not binding.20

Proposition 3 A grand-mechanism is collusion-proof if and only if there exist δ (≥ 0),
² = ²(δ) > 0 (with pLL

pLH
>
δ

²
≥ 0) and ²0 = ²0(δ) (with ²0(0) > 0) such that:

2tLL − 2θLq ≥ t1(bθ1, bθ2) + t2(bθ1, bθ2)− 2θLq(bθ1, bθ2), ∀(bθ1, bθ2) ∈ Θ2;
tLH + tHL − (θL + θH + δ

²
∆θ)bq ≥ t1(bθ1, bθ2) + t2(bθ1, bθ2)− (θL + θH + δ

²
∆θ)q(bθ1, bθ2),

20In fact, it will be shown later on in section 5.2 that the H-type�s incentive constraint is slack in the
optimal collusion-proof grand-mechanism
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∀(bθ1, bθ2) ∈ Θ2;
When ²0 6= 0, ²0[2tHH − 2(θH + δ

²0
∆θ)q]

≥ ²0[t1(bθ1, bθ2) + t2(bθ1, bθ2)− 2(θH + δ

²0
∆θ)q(bθ1, bθ2)],

∀(bθ1, bθ2) ∈ Θ2;
When ²0 = 0, −δq ≥ −δq(bθ1, bθ2), ∀(bθ1, bθ2) ∈ Θ2;

where δ is the multiplier associated with the L-type�s Bayesian incentive constraint in

the third-party�s program.

In Proposition 3, we characterized the coalition incentive constraints under asymmet-

ric information. If the constraints are satisÞed, the agents have no incentive to jointly

manipulate their reports made to the principal. We note that if δ is equal to zero, the

coalition incentive constraints under asymmetric information are equivalent to the con-

straints derived when there is complete information between the agents. The constraints

under asymmetric information are written in terms of the virtual costs instead of the real

costs. An L-type�s virtual cost is equal to his real cost since the H-type�s Bayesian in-

centive constraint is slack while an H-type�s virtual cost differs from his real cost as long

as δ is strictly positive. δ/² (or δ/²0) represents the cost of giving a rent to an L-type. δ
is equal to zero if the L-type�s Bayesian incentive constraint is slack in the third-party�s

program while δ can be positive when the constraint is binding. Giving a rent to an

L-type can be costly when there exists a tension between incentive, budget balance and

participation constraints. Since an L-type�s rent depends on the quantity produced by an

H-type, an H-type�s virtual cost can be different from his real cost,21 which in turn cre-

ates distortions in the third-party�s decisions to manipulate reports compared to the case

21When the state of nature is (θL, θH) or (θH , θL), as usual, the H-type�s virtual cost, θH +
δ

²
∆θ,

is larger than his real cost. However, when the state of nature is (θH , θH), the H-type�s virtual cost,

θH +
δ

²0
∆θ, can be either larger or smaller than his real cost since ²0 can be positive or negative. ²0 can

be negative, for instance, if there is strong negative correlation. In this case, since the state of nature is
likely to be (θL, θH) or (θH , θL), the utility that an L-type can obtain in the side-contract by pretending
to be an H-type to the third-party is essentially determined by φHH , the manipulation of report when
both agents have an H-type. This makes it very costly for the third-party to give a large utility to the
coalition composed of two H-types; the higher is the utility given to this coalition, the higher is the rent
abandoned to an L-type. When this negative effect dominates the other beneÞts from the manipulation,
the third-party will maximize with respect to φHH an objective having a negative sign and therefore ²0

is negative.
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in which the decisions are taken under complete information. We note that the principal

has some ßexibility in choosing δ/² (or δ/²0) because the null-side contract satisÞes the
necessary and sufficient conditions for optimality in the third-party�s problem for any (δ,

², ²0) satisfying δ ≥ 0, pLL/pLH > δ/² ≥ 0 and ²0(0) > 0.22
One might argue that the principal might ask the agents for the information that

they may have learned during the course of coalition formation. But then the third-party

could react by inducing further manipulations of those reports of the learned information.

These reactions and counter-reactions lead naturally to a problem of inÞnite regress. By

restricting the principal to use grand-mechanisms only contingent on the agents� types,

we cut arbitrarily this process in favor of colluding agents and give collusive behavior its

best chance. The restriction strengthens our main result since we show that the optimal

mechanism without side-contracting can be implemented in a collusion-proof way.

5 Failure to collude under asymmetric information:
Bayesian implementation

We study, in this section, the impact of asymmetric information on collusion under

Bayesian implementation (i.e. when the grand-mechanism offered by the principal should

satisfy the Bayesian individual incentive constraints (1) and (2)). For this purpose, we

Þrst examine whether the optimal grand-mechanism without side-contracting exhibits

any room for collusion when collusion takes place under complete information between

the agents. After identifying the case in which the agents can realize gains from collusion

in the absence of transaction costs, we analyze how the principal can exploit asymmetric

information between the agents to make the collusion inefficient.

5.1 Collusion under complete information

Suppose that collusion takes place under complete information between the agents. We

examine below whether or not the optimal grand-mechanism without side-contracting

exhibits any room for collusion. When collusion takes place under complete information,

the grand-mechanism should satisfy the following coalition incentive constraints:

(CICLL,LH) 2uLL ≥ uLH +∆θbq∗; (11)

(CICLL,HH) uLL ≥ ∆θq∗; (12)

22See the proof of proposition 3.
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(CICLH,LL) uLH ≥ 2uLL −∆θq∗; (13)

(CICLH,HH) uLH ≥ ∆θq∗; (14)

(CICHH,LL) ∆θq∗ ≥ uLL; (15)

(CICHH,LH) ∆θbq∗ ≥ uLH . (16)

We distinguish below two cases: when the optimal quantity schedule without side-contracting

is monotonic (ρ ≤ ρ∗) and non-monotonic (ρ > ρ∗).
Consider Þrst the case in which the optimal quantity schedule without side-contracting

is monotonic. In this case, the principal can satisfy these coalition incentive constraints

without additional loss. For example, consider the following rent scheme:

uLL =
(pLL + pLH)bq∗ + pLHq∗

pLL + 2pLH
∆θ, uLH =

pLLbq∗ + 2pLHq∗
pLL + 2pLH

∆θ, uHL = uHH = 0.

Under the scheme, the L-type�s incentive compatibility constraint is binding and all the

coalition incentive constraints are satisÞed.

Consider now the case in which the optimal quantity schedule without side-contracting

is not monotonic: q∗ > q∗ > bq∗. In this case, the principal cannot implement the schedule
in a collusion-proof way. To show this, we sum up (14) and (16) and obtain bq∗ ≥ q∗,
which is contradictory. Hence, the optimal grand-mechanism exhibits room for collusion.

More generally, proposition 4(ii) below states that whatever the sign and the degree of

correlation, the principal can never implement a non-monotonic quantity schedule in a

collusion-proof way if collusion takes place under complete information. The intuition

for the result is simple. Since, in the absence of asymmetric information, there exists

no transaction cost in side-contracting, the situation is similar to the case in which the

principal deals with one consolidated agent who has three different types: (θL + θL),

(θL + θH), (θH + θH). Thus, the monotonicity condition has to be satisÞed as it does in

the one-agent case. Summarizing, we have:

Proposition 4 If collusion takes place under complete information,
(i) When there is negative or weak positive correlation (ρ ≤ ρ∗), the principal can

implement the optimal grand-mechanism without side-contracting in a collusion-proof way

(ii) The principal can never implement a non-monotonic quantity schedule in a collusion-

proof way. Therefore, when there is strong positive correlation (ρ > ρ∗), the principal can-
not implement the optimal grand-mechanism without side-contracting in a collusion-proof

way.
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5.2 Collusion under asymmetric information

In this section, we assume that collusion takes place under asymmetric information be-

tween the agents. Since we have seen in the previous section that there is no room for

collusion when the optimal quantity schedule is monotonic and the third-party can always

implement the null side-contract, we focus on the case of strong positive correlation in

which the optimal schedule is not monotonic.

From Proposition 1, the set of the rent schemes which implement the optimal mecha-

nism without side-contracting is given by:

{uLL ≥ 0, uLH ≥ 0, uHL = 0, uHH = 0,

pLLuLL + pLHuLH = pLL∆θbq∗ + pLH∆θq∗,
pLH∆θq

∗ + pHH∆θbq∗ ≥ pLHuLL + pHHuLHo .
When collusion takes place under asymmetric information, from proposition 3, the

coalition incentive constraints are given as follows:

(CICLL,LH) 2uLL ≥ uLH +∆θbq∗; (17)

(CICLL,HH) uLL ≥ ∆θq∗; (18)

(CICLH,LL) uLH ≥ 2uLL −∆θq∗ − δ
²
∆θ(q∗ − bq∗); (19)

(CICLH,HH) uLH ≥ ∆θq∗ − δ
²
∆θ(q∗ − bq∗); (20)

(CICHH,LL) ∆θq∗ ≥ uLL − δ

²0
∆θ(q∗ − q∗); (21)

(CICHH,LH) ∆θbq∗ ≥ uLH + 2 δ
²0
∆θ(q∗ − bq∗); (22)

where for the last two constraints, we suppose that ²0 > 0.23 We note in particular that a
positive ² relaxes the two incentive constraints for the coalition composed of one L-type

and one H-type (i.e. (19) and (20)).

From the incentive constraint which prevents the coalition composed of two L-types

from pretending to be the coalition composed of two H-types (18), we obtain a lower

bound for uLL. From the incentive constraint which prevents the coalition composed of

23As explained in the proof of proposition 3, when the grand-mechanism is collusion-proof, the principal
has certain degree of freedom in choosing the values of some multipliers in the third-party�s program such
that she can make ²0 strictly positive.
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one L-type and one H-type from pretending to be the coalition composed of two H-types

(20), we obtain a lower bound for uLH . The lower bound for uLH is the smallest when δ/²

is the largest. Since we want to obtain the supremum of the principal�s payoff, we allow

δ/² to take pLL/pLH .24 Therefore, we obtain the following rent scheme from the two lower

bounds:

uLL = ∆θq
∗, uLH = ∆θq∗ − pLL

pLH
∆θ(q∗ − bq∗), uHL = uHH = 0.

Under this scheme, the L-type�s incentive compatibility constraint is binding and the H-

type�s one is slack if pLL > pLH holds and if ∆θ is small enough. The L-type�s ex post

participation constraint when the other reports H-type is slack if ∆θ is small enough. We

assume in what follows that pLL > pLH holds and ∆θ is small enough.25

When the principal offers the above rent scheme, there exists room for collusion only

for the coalition composed of one L-type and one H-type. First, the coalition always has

the incentive to manipulate its report to (θH , θH). The manipulation does not affect the

H-type�s rent since his ex post participation constraint always binds while it increases the

L-type�s rent since the following inequality holds:

uLH < ∆θq
∗. (23)

Second, the coalition may have the incentive to manipulate its report to (θL, θL) since,

when correlation is very strong, the following inequality can hold:

uLH < 2uLL −∆θq∗. (24)

However, in the presence of asymmetric information, when δ/² is equal to pLL/pLH ,

the above rent scheme satisÞes the two incentive constraints for the coalition composed

of one L-type and one H-type:

uLH ≥ ∆θq∗ − pLL
pLH

∆θ(q∗ − bq∗). (25)

uLH ≥ 2uLL −∆θq∗ − pLL
pLH

∆θ(q∗ − bq∗), (26)

Hence, asymmetric information allows the principal to implement the optimal grand-

mechanism without side-contracting in a collusion-proof way. Therefore, we have:

24In the proof of proposition 5, for any given ε > 0, we Þnd a collusion-proof grand-mechanism which
gives the principal a payoff which is ε-close to the payoff obtained by taking δ/² equal to pLL/pLH .
25We note that we already assumed that ∆θ is small enough for ρ > ρ∗ in Proposition 1.
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Proposition 5 Suppose that for ρ > ρ∗, pLL > pLH holds and ∆θ is small enough and

collusion takes place under asymmetric information between the agents.

(i) In the case of strong positive correlation (ρ > ρ∗),the principal can implement the
optimal grand-mechanism without side-contracting which exhibits a non-monotonic quan-

tity schedule in a collusion-proof way without additional loss.

(ii) Therefore, the principal can implement the optimal grand-mechanism without side-

contracting in a collusion-proof way without additional loss regardless of the sign and the

degree of correlation.

Proposition 5(ii) results from proposition 4(i)and proposition 5(ii). The intuition of

the result that asymmetric information can make collusion fail can be given as follows. We

Þrst note that in order to realize the gains from collusion, the third-party should require

an H-type to produce more quantity than the quantity he would produce in the absence

of collusion. Since the rent that an L-type can obtain by pretending to have an H-type to

the third-party is increasing in the quantity produced by an H-type, an L-type� incentive

to pretend to have an H-type is higher in the presence of collusion than in the absence

of collusion. As a consequence, the third-party must concede to an L-type a rent larger

than the one he would obtain in the absence of collusion. This increase in the rent is the

transaction costs in side-contracting generated by asymmetric information, which makes

collusion fail.

To illustrate our point, we consider the case in which the third-party implements

the manipulation of report from (θL, θH) and (θH , θL) to (θH , θH) given that the principal

offers the rent scheme previously described. The expected gains from this manipulation of

report is given by pLL∆θ(q∗−bq∗). Suppose now that agent i has the L-type and pretends to
have an H-type when he reports to the third-party while j (with j 6= i) reports truthfully
regardless of his type. Then, regardless of j�s type, the third-party will ask the agents

to report (θH , θH) to the principal and consequently the agents will always produce q∗.
Hence, an L-type can have a rent equal to ∆θq∗ by pretending to have an H-type, which is
strictly larger than the rent he would obtain in the absence of the manipulation of report,

pLL
pLL+pLH

∆θbq∗ + pLH
pLL+pLH

∆θq∗. Hence, the expected increase in the L-type�s rent is given
by pLL∆θ(q∗ − bq∗), which represents the transaction costs in side-contracting generated
by asymmetric information. Therefore, the transaction costs are as large as the gains

from collusion. In the proof of proposition 5, we show that the principal can make the

transaction costs strictly larger than the gains from collusion by increasing uLL and uHL by

ε (> 0) which is small enough. Increasing uLL and uHL by the same amount is necessary

to keep the L-type�s Bayesian incentive constraint binding. Under the modiÞed scheme,
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the expected gains from collusion are reduced by ε2pLH while the transaction costs are not

affected by ε. Therefore, the third-party cannot implement the manipulation of report.

Since ε can be chosen close to zero, the principal can implement the optimal schedule in a

collusion-proof way without additional cost. We note that in the case of manipulation of

report from (θL, θH) and (θH , θL) to (θL, θL), the transaction costs are much lager since an

L-type can have an informational rent equal to pLL
pLL+pLH

∆θq∗+ pLH
pLL+pLH

∆θq∗ by pretending
to have an H-type.26

In summary, asymmetric information puts restrictions on the plausible rules to share

the gains from collusion such that only the rules that give an L-type more than the

gains from collusion are incentive compatible, which makes collusion fail. The sufficient

condition pLL > pLH is easily satisÞed for ρ > ρ∗ if the probability of having two H-types
is close to the probability of having two L-types since, when pLL = pHH , the condition

holds if ρ > 0. Laffont and Martimort (2000) show that, in the polar case of almost perfect

correlation, the principal can achieve an almost Þrst-best outcome by implementing a non-

monotonic quantity schedule. Therefore, proposition 5 extends their result to the case of

ρ > ρ∗.

6 Failure to collude under asymmetric information:
dominant-strategy implementation

In this section, we study the impact of asymmetric information on collusion under dominant-

strategy implementation (i.e. each agent is induced to tell the truth whatever the other

agent�s report). Since dominant-strategy mechanisms are not sensitive to beliefs that

agents have about each other, the principal might prefer these mechanisms to Bayesian

mechanisms. However, focusing on dominant-strategy mechanisms considerably restricts

the set of mechanisms. This restriction in turn can create room for collusive behavior.

Here, we study how asymmetric information helps the principal to implement the opti-

mal mechanism without side-contracting in dominant strategies and in a collusion-proof

way. As in the previous section, we Þrst examine whether the optimal mechanism without

side-contracting exhibits any room for collusion when collusion takes place under com-

plete information. Second, we study how asymmetric information affects collusion. We

26Since the H-type�s ex post participation constraint has to be satisÞed in a side-contract, the third-
party has to give at least a transfer equal to θHq∗ to an H-type when he implements the manipulation
from (θL, θH) and (θH , θL) to (θL, θL). Hence, by pretending to have an H-type, an L-type will have at
least a rent equal to ∆θq∗ with probability pLL

pLL+pLH
.
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continue to assume that the third-party can use Bayesian mechanisms.27

The transfer scheme which implements the optimal grand-mechanism without side-

contracting in dominant strategies is uniquely given by:n
tLL = θLq

∗ +∆θbq∗, tLH = θLbq∗ +∆θq∗, tHL = θH bq∗, tHH = θHq∗o .
When the optimal schedule is not monotonic, the above transfer scheme does not satisfy

the H-type�s incentive compatibility constraint when the other agent reports θH (10).

Therefore, in this section, we focus on the case in which the schedule is monotonic. For

expositional facility, we introduce some deÞnitions.

DeÞnition 4 The quantity schedule is called I-decreasing if q∗ > bq∗ ≥ q∗ and q∗ − bq∗ <bq∗ − q∗ hold and D-decreasing if q∗ > bq∗ ≥ q∗ and q∗ − bq∗ ≥ bq∗ − q∗hold.
The above distinction turns out to be useful when we study collusion.

6.1 Collusion under complete information

Suppose that collusion takes place under complete information between the agents. When

the optimal quantity schedule is monotonic, it is easy to see that only one manipulation of

report can be proÞtable under the above transfer scheme: the coalition composed of one

L-type and one H-type will have the incentive to pretend to be the coalition composed

of two L-types if the optimal quantity schedule is I-decreasing: q∗ − bq∗ < bq∗− q∗. To give
the intuition about why this manipulation generates gains from collusion, we consider

the case in which the degree of negative correlation is so strong (for example, pLL and

pHH are very small) that q∗ is close to bq∗ while q∗ is almost equal to zero. Then, if the
coalition composed of one L-type and one H-type announces the truth or pretends to be

the coalition composed of two H-types, its rent is equal to ∆θq∗ ≈ 0. On the contrary,
if the coalition pretends to be the coalition composed of two L-types, its rent is equal to

∆θ(2bq∗ − q∗) ≈ ∆θbq∗ À 0. Summarizing, we have:

Proposition 6 Suppose that collusion takes place under complete information between
the agents. The optimal grand-mechanism without side-contracting can be implemented

in a collusion-proof way and in dominant strategies if and only if the optimal quantity

schedule is D-decreasing.

Example 1 When ∆θ is small enough, the optimal quantity schedule is D-decreasing for
ρ with 0 ≤ ρ ≤ ρ∗.
27We can also require the third-party to use dominant-strategy mechanisms. Then, collusion will be

even more inefficient.
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6.2 Failure to collude under asymmetric information

We now consider the case in which collusion takes place under asymmetric information

between the agents. The incentive constraint for the coalition made of one L-type and

one H-type not to pretend the coalition made of two L-types is given as follows:

(q∗ − bq∗)− (bq∗ − q∗) ≥ −δ
²
(q∗ − q∗). (27)

Since the L-type�s Bayesian incentive constraint is binding when the principal offers MD,

we know that the H-type�s virtual cost can be superior to his real cost. In other words,

δ/² can be strictly positive. A positive δ/² relaxes the above coalition incentive constraint.

The constraint is the most relaxed when δ/² is equal to pLL/pLH .28 Summarizing, we have:

Proposition 7 In the presence of asymmetric information between the agents, the op-
timal grand-mechanism without side-contracting can be implemented in a collusion-proof

way and in dominant strategies if the quantity schedule is decreasing and satisÞes the

following inequality:

(q∗ − bq∗)− (bq∗ − q∗) > − pLL
pLH

(q∗ − bq∗).
Example 2 Suppose that ∆θ is small enough. Then, in the presence of asymmetric

information, the optimal grand-mechanism without side-contracting can be implemented

in a collusion-proof way and in dominant strategies for ρ with −ρ0 < ρ ≤ ρ∗ where ρ0 is
given by:

ρ0 =
pLLpHH
2

[1 +
pLL
pLH

].

We know from example 1 that when∆θ is small enough, there exists room for collusion

whenever correlation is negative. Example 2 states that when the degree of negative

correlation is not very strong, asymmetric information makes the agents unable to realize

the gains from collusion.

The intuition for the result derived in this section is similar to the one given in the

previous section. What is important in both sections is that in order to realize the gains

from collusion, the third-party has to require an H-type to produce more quantity than

he would produce in the absence of collusion. Laffont and Martimort (1997) show that in

the case of no correlation, the optimal contract can be implemented in a collusion-proof

way and in dominant strategies. We generalize their result to the case of weak positive

and weak negative correlation.
28Again, to focus on the supremum of the principal�s payoff, we allow δ/² to be equal to pLL/pLH . In

the proof of proposition 7, we use a different approach to obtain the result that we Þnd by taking δ/²
equal to pLL/pLH .
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7 Concluding remarks

We studied collusion in a setting in which the agents have correlated types and produce

complementary inputs such that an agent inßicts information and production externalities

on the other agent when he makes a report to the principal. Hence, the agents have the

incentive to coordinate their reports in order to internalize the externalities. We found

that when the agents collude under asymmetric information, they fail to realize the gains

from collusion because of the incentive problem within the coalition and that the principal

can implement the optimal mechanism without side-contracting in a collusion-proof way

by judiciously exploiting the transaction costs in coalition formation.

In our model, participation constraints should be satisÞed ex post since we assume

that the principal cannot force the agents to bear losses. Therefore, our result implies that

when participation constraints should be satisÞed ex post, only the individual incentive

constraints matter and the coalition incentive constraints are irrelevant. In contrast,

Laffont and Martimort (2000) show that when participation constraints should be satisÞed

in expected terms, only the coalition incentive constraints matter and the individual

incentive constraints are irrelevant. Since zero-liability and unlimited liability represent

two extreme cases, it would be interesting to study the intermediate case.

Although our setting is simple29, the insight we derive about the transaction costs in

coalition formation has general implication. What is crucial for asymmetric information

to create the transaction costs in our model is that in order to realize the gains from

collusion, the third-party has to require an H-type to produce more quantity than he

would produce in the absence of collusion. This makes the third-party, in order to induce

truth-telling, give an L-type more rent than he would obtain in the absence of collusion and

therefore creates the transaction costs. In contrast, if we interpret Laffont and Martimort

(2000)�s weak correlation case from the point of view of our setting,30 in order to realize

the gains from collusion, the third-party should require anH-type to produce less quantity

than he would have produced in the absence of collusion. Thus, an L-type would have

less incentive to pretend to be an H-type to the third-party in the presence of collusion

than in its absence. This is why they Þnd asymmetric information does not create any

29Extention to the case with more than two agents raises the question of how to deal with subcoalitions.
Extention to the case with more than two types can be done at the cost of complexity since in this case,
collusion problem becomes a sort of multi-dimensional screening problem in terms of the coaltion incentive
constraints.
30In fact, they consider a public good provision problem. Therefore, their high-valuation type (low-

valuation type) corresponds to the L-Type (H-type) in our model.
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transaction cost.

The above comparison shows that, from the point of view of collusion, asymmetric

information can create either conßict of interest between the agents as in our case or con-

gruence of interest as in their case. With future research, we hope to Þnd the fundamental

factors that make asymmetric information create either conßict or congruence of interest

between the agents.

Finally, the stark contrast between complete information case (proposition 4(ii)) and

asymmetric information case (proposition 5(i)) suggests a question for future research:

it would be interesting to study the intermediate information structure in terms of each

agent� knowledge about the other�s type in order to see whether there is a continuity

of the optimal collusion-proof mechanism with respect to the superiority of the agents�

internal information.
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Appendix
Proof of proposition 1

Let

f(·) = pLL[S(q)− 2tLL] + 2pLH [S(bq)− tLH − tHL] + pHH [S(q)− 2tHH ],
g1(·) = pLL(tLL − θL q) + pLH(tLH − θLbq)− pLL(tHL − θLbq)− pLH(tHH − θLq),
g2(·) = pLH(tHL − θH bq) + pHH(tHH − θHq)− pLH(tLL − θHq)− pHH(tLH − θH bq),

g3(·) = tLL − θL q,
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g4(·) = tLH − θLbq,
g5(·) = tHL − θH bq,
g6(·) = tHH − θHq.

Then, the principal�s problem is given by:

max f(·)

subject to

gi(·) ≥ 0, for i = 1, . . . , 6.
DeÞne the Lagrangian as follows:

L(· : µ1, . . . , µ6) = f(·) +
6X
i=1

µigi(·).

Since f(·) is concave and gi(·) is linear, the Kuhn-Tucker condition is sufficient. It is easy
to verify that the following candidate satisÞes the Kuhn-Tucker condition:

t∗HL = θH bq∗, t∗HH = θHq∗,
when ρ ≤ ρ∗, t∗LL = θL q∗ +∆θbq∗12, t∗LH = θLbq∗ +∆θq∗,

when ρ > ρ∗, t∗LL = θL q
∗ +∆θbq∗12 + pLHpLL∆θq∗, t∗LH = θLbq∗,
S0(q∗) = 2θL,

S 0(bq∗) = θL + θH + pLL
pLH

∆θ,

S 0(q∗) = 2θH + 2
pLH
pHH

∆θ,

µ1 = 2, µ2 = µ3 = µ4 = 0, µ5 = 2(pLL + pLH), µ6 = 2(pLH + pHH).

When ρ ≤ ρ∗, the optimal quantity schedule is monotonic in the sum of the agents� cost

parameters (q∗ > bq∗ ≥ q∗) and when ρ > ρ∗, it is not monotonic (q∗ > q∗ > bq∗).
Our candidate is the solution if (t∗LL, t

∗
LH , t

∗
HL, t

∗
HH , q

∗, bq∗, q∗) satisÞes the H-type�s
Bayesian incentive constraint. First, when the optimal quantity schedule is monotonic (i.e.

ρ ≤ ρ∗), it is manifest that the candidate satisÞes strictly the H-type�s Bayesian incentive
constraint. Hence, the principal has a residual degree of freedom in choosing (tLL, tLH):

a small change from the transfer scheme speciÞed in the above candidate, keeping the L-

type�s Bayesian incentive constraint binding, can satisfy the H-type�s Bayesian incentive

constraint.
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Second, when the optimal quantity schedule is not monotonic (i.e. ρ > ρ∗), the
transfer scheme in which the principal gives rent only when both agents have an L-type

maximizes the chance to satisfy the H-type�s Bayesian incentive constraint. We show

below that when ∆θ is small enough, the above candidate strictly satisÞes the H-type�s

Bayesian incentive constraint.

The H-type�s Bayesian incentive constraint is satisÞed when the following inequality

holds:

pLH(∆θbq + pLH
pLL

∆θq −∆θq)− pHH∆θbq ≤ 0.
It can be equivalently written as follows:

−(pLLpHH − (pLH)2)bq − pLLpLH(q − bq) + (pLH)2 (q − bq) ≤ 0,
which holds when ∆θ is small enough, since the Þrst term dominates the last two terms.

Since the inequality is strictly satisÞed, the principal has a residual degree of freedom in

choosing (tLL, tLH).

Regardless of the sign and the degree of correlation, the set of the transfers which

implement the optimal mechanism without side-contracting is given by:n
tLL ≥ θLq∗, tLH ≥ θLbq∗, tHL = θH bq∗, tHH = θHq∗,

pLL
³
tLL − θLq∗

´
+ pLH (tLH − θLbq∗) = pLL∆θbq∗ + pLH∆θq∗,

pLH∆θq
∗ + pHH∆θbq∗ ≥ pLH ³tLL − θLq∗´+ pHH (tLH − θLbq∗)o .

Proof of proposition 2

Let M∗ be an initial grand-mechanism offered by the principal, which satisÞes the

incentive compatibility and ex post participation constraints. Let S∗ be a coalition-
interim-efficient side-contract with regard to the reservation utilities given by Vi(θi), the

payoff of agent i when each agent plays non-cooperatively M∗. Suppose that the side-
contract S∗ contingent on the offer of the grand-mechanism M∗ gives a payoff Ui(θi) for
each agent. Then, from the interim-efficiency of the side-contract S∗, we know that it
satisÞes the incentive compatibility, acceptance, budget balance and ex post participation

constraints.

DeÞne now a new grand-mechanism M∗∗ by M∗ ◦ S∗. We note that from the interim-
efficiency of the side-contract S∗, the new grand-mechanism satisÞes the incentive com-

patibility and ex post participation constraints. We can show that this grand-mechanism
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is collusion-proof. Equivalently, it is optimal for the third-party to offer the null side-

contract.

Suppose not, then there exists an interim-efficient side-contract S 0 different from the

null side-contract, which gives a sum of expected utilities strictly higher than the one

achieved by the null side-contract. But this contradicts the coalition-interim-efficiency of

S∗. Suppose that the side-contract S0 contingent on the offer of the grand-mechanism
M∗∗ gives a payoff U 0i(θi) for each agent. Then, from the interim-efficiency of the side-

contract S 0, it satisÞes the incentive compatibility, acceptance, budget balance and ex
post participation constraints. In particular, the following inequality should hold for each

agent: U 0i(θi) ≥ Ui(θi). Consider now the side-contract S∗ ◦ S 0 contingent on the offer
of the grand-mechanism M∗. Since we have that U 0i(θi) ≥ Ui(θi) ≥ Vi(θi), S∗ ◦ S 0 can
be implemented by the third-party. Moreover, it should guarantee strictly higher utility

at least for one agent without reducing the other�s utility. This contradicts the interim-

efficiency of the side-contract S∗.

Proof of proposition 3

We are interested in grand-mechanisms such that the H-type�s incentive constraint is

not binding. The third-party�s problem is given by:

max
φ,y1,y2

pLL[t1(φLL) + t2(φLL)− 2θLq(φLL)] + pLH [t1(φLH) + t2(φLH)− (θL + θH)q(φLH)]

+pLH [t1(φHL) + t2(φHL)− (θH + θL)q(φHL)] + pHH [t1(φHH) + t2(φHH)− 2θHq(φHH)]
subject to

� Budget balance constraint:
2X
k=1

yk(θi, θj) = 0, ∀(θi, θj) ∈ Θ2, (28)

� L-type�s Bayesian incentive constraint for agent 1:

pLL[t1(φLL)− y1(θL, θL)− θLq(φLL)] + pLH [t1(φLH)− y1(θL, θH)− θLq(φLH)]

≥ pLL[t1(φHL)− y1(θH , θL)− θLq(φHL)] + pLH [t1(φHH)− y1(θH , θH)− θLq(φHH)], (29)
� L-type�s Bayesian incentive constraint for agent 2 :

pLL[t2(φLL)− y2(θL, θL)− θLq(φLL)] + pLH [t2(φHL)− y2(θH , θL)− θLq(φHL)]

≥ pLL[t2(φLH)− y2(θL, θH)− θLq(φLH)] + pLH [t2(φHH)− y2(θH , θH)− θLq(φHH)], (30)
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� L-type�s acceptance constraint for agent 1:

pLL[t1(φLL)−y1(θL, θL)−θLq(φLL)]+pLH [t1(φLH)−y1(θL, θH)−θLq(φLH)] ≥ (pLL+pLH)V (θL),
(31)

� L-type�s acceptance constraint for agent 2 :

pLL[t2(φLL)−y2(θL, θL)−θLq(φLL)]+pLH [t2(φHL)−y2(θH , θL)−θLq(φHL)] ≥ (pLL+pLH)V (θL),
(32)

� H-type�s acceptance constraint for agent 1:

pLH [t1(φHL)−y1(θH , θL)−θHq(φHL)]+pHH [t1(φHH)−y1(θH , θH)−θHq(φHH)] ≥ (pLH+pHH)V (θH),
(33)

� H-type�s acceptance constraint for agent 2 :

pLH [t2(φLH)−y2(θL, θH)−θHq(φLH)]+pHH [t2(φHH)−y2(θH , θH)−θHq(φHH)] ≥ (pLH+pHH)V (θH),
(34)

� Ex post participation constraints for agent 1: Þrst, when he has an L-type and the
other also has an L-type,

t1(φLL)− y1(θL, θL)− θLq(φLL) ≥ 0, (35)

second, when he has an L-type while the other has an H-type,

t1(φLH)− y1(θL, θH)− θLq(φLH) ≥ 0, (36)

third, when he has an H-type while the other has an L-type,

t1(φHL)− y1(θH , θL)− θHq(φHL) ≥ 0, (37)

last, when he has an H-type and the other also has an H-type,

t1(φHH)− y1(θH , θH)− θHq(φHH) ≥ 0, (38)

� Ex post participation constraints for agent 2:

t2(φLL)− y2(θL, θL)− θLq(φLL) ≥ 0, (39)

t2(φHL)− y2(θH , θL)− θLq(φHL) ≥ 0, (40)

t2(φLH)− y2(θL, θH)− θHq(φLH) ≥ 0, (41)

t2(φHH)− y2(θH , θH)− θHq(φHH) ≥ 0. (42)
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We introduce the following multipliers:

� ρ(θ1, θ2) for the budget-balance constraint in state (θ1, θ2),
� δi for the L-type�s Bayesian incentive constraint concerning agent i,
� vLi for the L-type�s acceptance constraint concerning agent i,
� vHi for the H-type�s acceptance constraint concerning agent i,
� λi(θ1, θ2) for the ex post participation constraint in state (θ1, θ2) concerning agent i.

We deÞne the Lagrangian as follows:

L = E(U1 + U2) +
X
i=1,2

δi(BIC)i(θL) +
X
i=1,2

vLi(BIR)i(θL) +
X
i=1,2

vHi(BIR)i(θH)

+
X
θ1,θ2

ρ(θ1, θ2)(BB)(θ1, θ2) +
X
θ1,θ2

X
i=1,2

λi(θ1, θ2)(ExPostIR)(θ1, θ2).

Starting from a symmetric equilibrium of the grand-mechanism, the solution to (T ) is

symmetric and we have:

δi = δ, vLi = vL, vHi = vH ,

λLL = λ1(θL, θL) = λ2(θL, θL), λLH = λ1(θL, θH) = λ2(θH , θL),

λHL = λ1(θH , θL) = λ2(θL, θH),λHH = λ1(θH , θH) = λ2(θH , θH).

� Optimizing with respect to φLL yields:

φ∗LL ∈ argmax
φLL

[t1(φLL) + t2(φLL)− 2θLq(φLL)].

� Optimizing with respect to φLH yields:

φ∗LH ∈ argmax
φLH

[t1(φLH) + t2(φLH)− (θL + θH +
δ

²
∆θ)q(φLH)],

where
1

²
=

pLL
pLH(1 + δ + vL) + λLH

.

� Optimizing with respect to φHH yields:
When pHH(1 + vH) + λHH > δpLH ,

φ∗HH ∈ argmax
φHH

[t1(φHH) + t2(φHH)− 2(θH +
δ

²0
∆θ)q(φHH)],

where
1

²0
=

pLH
pHH(1 + vH) + λHH − δpLH .
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When pHH(1 + vH) + λ22 < δpLH ,

φ∗HH ∈ argmin
φHH

[t1(φHH) + t2(φHH)− 2(θH +
δ

²0
∆θ)q(φHH)].

When pHH(1 + vH) + λ22 = δpLH ,

φ∗HH ∈ argmax
φHH

−δq(φHH).

� After optimizing with respect to side-transfers, we obtain some relationships between
multipliers, which allow us to write ²0 equivalently as follows:

1

²0
=

pLH

pHH(1 + δ + vL) + δ(
pLLpHH−p2LH

pLH
) + pHH

pLH
(λLH − λHL) + λHH

.

� Note that (31) to (34) are binding for a collusion-proof mechanism. Hence, for such
a mechanism, the slackness conditions obtained from the Lagrangian optimization do not

give any information on the multipliers vL and vH . Furthermore, if the H-type�s incentive

constraint and the L-type�s ex post participation constraints are binding in a grand-

mechanism which is collusion-proof, the slackness conditions do not give any information

on the multipliers δ, λHL and λHH either. Hence, the principal has some ßexibility in

choosing
δ

²
∈
h
0, pLL

pLH

´
and

δ

²0
.31

Proof of proposition 4

Since (i) is proved in the main texts, we only need to prove (ii). The proof is based

on a standard revealed preference argument. Let φLH (respectively, φHH) the optimal

manipulation of report for the coalition (θL, θH) or (θH , θL) (respectively, (θH , θH)). Then,

the following inequalities should be satisÞed: for the coalition composed of one L-type

and one H-type,

t1(φLH) + t2(φLH)− (θL + θH)q(φLH) ≥ t1(φHH) + t2(φHH)− (θL + θH)q(φHH);
for the coalition composed of two H-types,

t1(φHH) + t2(φHH)− 2θHq(φHH) ≥ t1(φLH) + t2(φLH)− 2θHq(φLH).
After summing the two inequalities, we obtain q(φLH) ≥ q(φHH).
Using the same kind of argument, we can obtain q(φLL) ≥ q(φLH). Hence, only a

monotonic quantity schedule (q(φLL) ≥ q(φLH) ≥ q(φHH)) can be implemented in a

collusion-proof way when collusion takes place under complete information.
31To obtain our results, we just need that the principal can choose the value of some multipliers to

make
δ

²0
strictly positive.
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Proof of proposition 5

We only need to prove (i). Suppose that the principal offers the optimal grand-

mechanism without side-contracting with the following transfer scheme:

tLL = θLq
∗ +∆θq∗, tLH = θLbq∗ +∆θq∗ − pLL

pLH
∆θ(q∗ − bq∗),

tHL = θH bq∗, tHH = θHq∗.
First, we show that the coalition composed of one L-type and one H-type has the

incentive to manipulate its reports in the absence of transaction costs. The coalition has

the incentive to announce (θH , θH) if the following inequality holds:

uLH < ∆θq
∗,

which is the case since we have uLH = ∆θq∗ − pLL
pLH

∆θ(q∗ − bq∗).
The coalition has the incentive to announce (θL, θL), if the following inequality holds:

uLH < 2uLL −∆θq∗,

which is the case if ρ ≥ (2pLH
pLL

+ 1)ρ∗.
It is easy to see that there does not exist any room for collusion for the other coalitions.

Second, we examine the third-party�s problem: whether or not the third-party can

successfully implement the manipulation of report from (θL, θH) and (θH , θL) to (θL, θL)

or (θH , θH). Since the two agents are perfectly symmetric, without loss of generality, we

focus on the set of symmetric side-contracts. Consider the stochastic manipulation from

(θL, θH) and (θH , θL) to (θL, θL) with probability p (0 ≤ p ≤ 1) and from (θL, θH) and

(θH , θL) to (θH , θH) with probability 1−p. Let by the transfer from the L-type to theH-type
when the agents announce (θL, θH) or (θH , θL). To show that it is strictly impossible for

the third-party to implement the above stochastic manipulation, we consider the following

ε-close optimal scheme:

uLL = ∆θq
∗ + ε, uLH = ∆θq∗ − pLL

pLH
∆θ(q∗ − bq∗), uHL = ε, uHH = 0,

where ε(> 0) is small enough in order not to create any other room for collusion. It is easy

to check, under the above scheme, that the individual incentive constraints and the ex

post participation constraints are satisÞed and that there exists no other stake of collusion

except the manipulation of report from (θL, θH) and (θH , θL) to (θL, θL) or (θH , θH).
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Suppose that the principal proposes the above scheme and the third-party wants to

implement the stochastic manipulation using by.
Then the side-contract should satisfy the L-type�s Bayesian incentive constraint, which

is given by:

pLLuLL + pLH [puLL + (1− p)∆θq∗ − by] ≥ pLL[puLL + (1− p)∆θq∗ + by] + pLH∆θq∗. (43)
It gives an upper bound for by:

pLL(1− p) + pLHp
pLL + pLH

(uLL −∆θq∗) ≥ by. (44)

The side-contract should satisfy the H-type�s acceptance constraint, which is given

by:

pLH [p(uLL −∆θq∗) + (1− p)uHH + by] + pHHuHH
≥ pLHuHL + pHHuHH .

It gives a lower bound for by:
by ≥ uHL + p(∆θq∗ − uLL). (45)

Hence, for the third-party to implement the stochastic manipulation, there should be

a transfer by which satisÞes the following constraints:
pLL(1− p) + pLHp

pLL + pLH
ε ≥ by ≥ ε+ p(∆θq∗ − uLL).

Since the L.H.S. is strictly smaller than ε while the R.H.S. is greater than ε, we have

shown that the third-party cannot implement the stochastic manipulation.

The same kind of argument can be applied when we consider only the manipulation

from (θL, θH) and (θH , θL) to (θL, θL) (or from (θL, θH) and (θH , θL) to (θH , θH)). Since we

can choose ε arbitrarily small, the principal can implement the optimal grand-mechanism

without side-contracting in a collusion-proof way without additional loss.

Proof of proposition 7

Here, we use a different approach to obtain the result that we found by taking δ
²

equal to pLL
pLH
. Suppose that the principal proposes MD. We investigate whether or not

the third-party can successfully implement the manipulation from (θL, θH) and (θH , θL)

to (θL, θL) by examining the third-party�s problem. Hence, when the agents announce
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to the third-party either (θL, θL) or (θH , θH), there is no manipulation of report and no

side-transfer. Because the two agents are perfectly symmetric, without loss of generality,

we focus on the set of symmetric side-contracts. Let by the transfer from the L-type to

the H-type when the agents announce (θL, θH) or (θH , θL).

The L-type�s Bayesian incentive constraint is given by:

pLL(tLL − θ q∗) + pLH(tLL − by − θq∗) ≥ pLL(tLL + by − θq∗) + pLH(tHH − θq∗). (46)

After some calculations, it can be simpliÞed as follows:

pLH
pLL + pLH

(bq∗ − q∗)∆θ ≥ by. (47)

The H-type�s ex post participation constraint when the other agent has an L-type is

given by:

tLL + by − θHq∗ ≥ 0. (48)

After some calculations, it can be simpliÞed as follows:

by ≥ (q∗ − bq∗)∆θ. (49)

Hence, the third-party cannot successfully implement the manipulation of report, if

the following inequality holds:

(q∗ − bq∗)∆θ > pLH
pLL + pLH

(bq∗ − q∗)∆θ, (50)

which is equivalent to the following inequality:

(q∗ − bq∗)− (bq∗ − q∗) > − pLL
pLH

(q∗ − bq∗). (51)
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