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Abstract

This paper discusses inference in self exciting threshold autoregressive (SETAR) mod-

els. Of main interest is inference for the threshold parameter. It is well-known that the

asymptotics of the corresponding estimator depend upon whether the SETAR model is

continuous or not. In the continuous case, the limiting distribution is normal and standard

inference is possible. In the discontinuous case, the limiting distribution is non-normal and

cannot be estimated consistently. We show valid inference can be drawn by the use of the

subsampling method. Moreover, the method can even be extended to situations where the

(dis)continuity of the model is unknown. In this case, also the inference for the regression

parameters of the model becomes difficult and subsampling can be used again. In addi-

tion, we consider an hypothesis test for the continuity of a SETAR model. A simulation

study examines small sample performance and an application illustrates how the proposed

methodology works in practice.

SOME KEY WORDS: Confidence intervals; Continuity; Regime shifts; Subsampling; Thresh-

old autoregressive models.
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1 Introduction

Over the last two decades, there has been an increasing interest in non-linear time series anal-

ysis; for example, see Tong (1990) as a general reference. One of the most popular non-linear

time series models is the self exciting threshold autoregressive (SETAR) model or sometimes

just called the threshold autoregressive (TAR) model. A two-regime SETAR model is defined

as

Xt =

{

φ10 + φ11Xt−1 + . . . + φ1pXt−p + σ1εt if Xt−d ≤ r

φ20 + φ21Xt−1 + . . . + φ2pXt−p + σ2εt if Xt−d > r
. (1)

Here, d ≤ p is a positive integer referred to as the threshold lag, r is the threshold, and

{εt} is a sequence of independent and identically distributed (i.i.d.) variables with mean zero

and unit variance; also, εt is assumed to be independent of the past Xt−1, Xt−2, . . .. The

positive constants σ1 and σ2 allow the innovations to have different standard deviations in

the two regimes. Throughout the paper, it will be assumed that {Xt} is stationary ergodic,

having finite second moments, and that the stationary distribution of (X1, X2, . . . , Xp)
′ admits

a density positive everywhere.

Heuristically speaking, Xt is generated by one of two distinct autoregressive models accord-

ing to the level of Xt−d. This model can be generalized to have more than two distinct regimes

and/or to depend on the levels of more than one lagged variable. SETAR models are popular

because they can exhibit many non-linear phenomena such as limit cycles, chaos, harmonic

distortion, jump phenomena, and time irreversibility. They can be used as a general, parsimo-

nious strategy for modeling nonlinear economic time series. For a number of applications, see

Tong (1990), Tiao and Tsay (1994), Potter (1995), and Chan and Tsay (1998), among others.

It is important to distinguish between discontinuous and continuous SETAR models. Let

Φi = (φi0, φi1, . . . , φip)
′ be the autoregressive coefficient vector of model (1) in regime i.

Then the model is said to have a discontinuous autoregressive function if there exists Z∗ =

(1, zp−1, . . . , z0)
′, where zp−d = r, such that (Φ1−Φ2)

′Z∗ 6= 0. In this case, the threshold r con-

stitutes the jump point of the autoregressive function. Otherwise, that is, if (Φ1 − Φ2)
′Z∗ = 0

for all Z∗ satisfying the above condition, the model has a continuous autoregressive func-

tion. It is easy to see that the latter case is equivalent to the requirement that φ1j = φ2j for

1 ≤ j 6= d ≤ p and that φ10 +rφ1d = φ20 +rφ2d. Therefore, in the continuous case, the SETAR

model can be written as

Xt = φ0 +

p
∑

j=1,j 6=d

φjXt−j +

{

φd−(Xt−d − r) + σ1εt if Xt−d ≤ r

φd+(Xt−d − r) + σ2εt if Xt−d > r
, (2)

where φ0 = φ10 + rφ1d, φd− = φ1d, φd+ = φ2d and φj = φ1j for j 6= d. The importance of dis-

tinguishing between discontinuous and the continuous SETAR models stems from the fact that

the asymptotics of the (conditional) least squares estimator of the parameter ϑ = (Φ ′
1,Φ

′
2, r, d)′

are different in the two cases. While Φ̂i,n always converges to a normal distribution with mean

zero at rate square root of n, with n being the sample size, the asymptotic covariance matrix

depends upon whether the model is continuous or not. For discontinuous models, r̂n con-

verges to a nonstandard distribution at rate n and is asymptotically independent of Φ̂i,n. But

for continuous models, r̂n converges to a normal distribution at rate square root of n and is

asymptotically correlated with Φ̂i,n. See Chan (1993) and Chan and Tsay (1998) for the re-
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sults concerning the discontinuous and the continuous case, respectively. It should be pointed

out that Chan and Tsay (1998) base the estimation of ϑ on the restricted model (2), thereby

enforcing the estimated model to be continuous.

A main goal of this paper is to construct asymptotically valid confidence intervals for the

threshold parameter r. In principle, the inference problem can be considered solved when it is

known that the SETAR model is continuous. In this case, Chan and Tsay (1998) show that

n1/2(r̂n − r) converges weakly to a normal distribution with mean zero and a variance that

can be estimated consistently. On the other hand, the discontinuous case remains without a

satisfactory solution. While Chan (1993) demonstrates that n(r̂n − r) converges weakly to a

nondegenerate distribution, the limiting distribution depends in a very complicated way on

the underlying probability mechanism and apparently cannot be estimated consistently. It is

not known whether a bootstrap approach would work. Under more restrictive conditions, such

as i.i.d. normal innovations and the threshold effect vanishing asymptotically, the method of

Hansen (2000) can be employed; see § 4. In case it is unknown whether the SETAR model is

continuous or not, an additional complication arises; this case has not been studied so far.

As will be demonstrated, one can solve the inference problem for the threshold parameter r

by the use of the subsampling method dating back to Politis and Romano (1994); for a broader

reference, see Politis, Romano, and Wolf (1999), abbreviated by PRW (1999) in the sequel.

We will first discuss the case when the (dis)continuity of the SETAR model is known and then

focus on the general case when it is unknown. Moreover, the subsampling method can also

be used to make inference for a regression parameters φij . This is especially interesting in

the general case, since the form of the limiting variance of of φ̂ij,n depends upon whether the

SETAR model is continuous or not and hence cannot be estimated consistently by standard

methods (unless the (dis)continuity of the model is known).

A problem that has not been discussed in the literature yet is the construction of a hypoth-

esis test for the continuity of a SETAR model. As will be shown, the subsampling method can

be employed to this end as well.

The remainder of the paper is organized as follows. In § 2, we provide some key facts of

the subsampling method to make the exposition self-complete. In § 3, we discuss how to use

subsampling to compute confidence intervals for SETAR model parameters. In § 4, we compare

our method to that of Hansen (2000). In § 5, we present a hypothesis test for the continuity of

the SETAR model. In § 6, we discuss the choice of the block size, which is an important model

parameter of the subsampling method. In § 7, we conduct some simulation studies to examine

finite-sample properties. In § 8, we provide an empirical application to unemployment data.

In § 9, we provide a discussion. The mathematical details are postponed to an Appendix.

2 Subsampling in a Nutshell

In this section, the subsampling method for dependent data is briefly reviewed. We consider

the construction of confidence intervals for real-valued parameters and the construction of

hypothesis test for general null hypotheses.
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2.1 Confidence Intervals for a Parameter

Consider the case of a time series {X1, X2, X3, . . .} governed by a probability law P . The goal

is to construct asymptotically valid confidence intervals for a real-valued parameter θ = θ(P )

on the basis of observing the finite segment X1, . . . , Xn. For brevity we only consider two-

sided symmetric confidence intervals; one-sided confidence intervals and two-sided equal-tailed

intervals are treated similarly. The existence of an estimator θ̂n = θ̂(X1, . . . , Xn) is assumed.

The basis of constructing confidence intervals for θ is the estimation of the two-sided sampling

distribution of θ̂n, properly normalized. To this end let

Jn(x, P ) = ProbP{τn|θ̂n − θ| ≤ x},

where {τn} is a normalizing sequence. We shall assume here that τn = nβ for some positive

real number β.

The subsampling approximation to Jn(x, P ) is defined by

Ln,b(x) =
1

n − b + 1

n−b+1
∑

a=1

1{τb|θ̂b,a − θ̂n| ≤ x},

where the integer 1 < b < n is referred to as the block size, θ̂b,a = θ̂(Xa, . . . , Xa+b−1) is

the estimator of θ computed on the block (or subsample) of data {Xa, . . . , Xa+b−1}. The

quantiles of the subsampling distribution Ln,b can then be used to construct asymptotically

valid confidence intervals for θ. To be more specific, let cn,b(1 − α) be an (1 − α) quantile

of Ln,b. The symmetric subsampling interval is then given as

Isym = [θ̂n − τ−1
n cn,b(1 − α), θ̂n + τ−1

n cn,b(1 − α)]. (3)

This interval can be shown to have the right coverage probability asymptotically under very

weak conditions. Specifically, a set of sufficient conditions is that Jn(P ) converges to a non-

degenerate limiting distribution, that the sequence {Xt} is strong mixing, and that b → ∞,

b/n → 0, τb → ∞ and τb/τn → 0 as n → ∞; e.g., see PRW (1999, Corollary 3.2.1).

To use this construction, one has to know the rate of convergence τn. For our application

of the threshold parameter r, this would be n1/2 for a continuous SETAR model and n for a

discontinuous SETAR model. Therefore, in the general case, when the (dis)continuity of the

model is unknown, the standard subsampling method is not applicable. One can get around

this problem by using subsampling in conjunction with an estimated rate of convergence.

Assume an estimator of the rate denoted by τ̂n is available. Then one simply uses the standard

method with τn replaced by τ̂n. Let

L̂n,b(x) =
1

n − b + 1

n−b+1
∑

a=1

1{τ̂b|θ̂b,a − θ̂n| ≤ x}.

Denoting an (1−α) quantile of L̂n,b by ĉn,b(1−α), the symmetric subsampling interval based

on the estimated rate of convergence is then given as

Îsym = [θ̂n − τ̂−1
n ĉn,b,|·|(1 − α), θ̂n + τ̂−1

n ĉn,b,|·|(1 − α)]. (4)
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2.2 General Hypothesis Tests

Sometimes an inference problem cannot be formulated in terms of a univariate, or multivariate,

parameter of the underlying law P . A classical example is the null hypothesis that a marginal

distribution belongs to a parametric family of distributions, such as the family of normal

distributions. More generally, assume that the unknown law P is assumed to belong to a

certain class of laws P. The null hypothesis H0 asserts P ∈ P0, and the alternative hypothesis

H1 is P ∈ P1, where Pi ⊂ P and P0

⋃

P1 = P . The goal is to construct an asymptotically

valid test based on a given test statistic,

Wn = τnwn = τnwn(X1, . . . , Xn),

where τn is a normalizing sequence. Let

Gn(x, P ) = ProbP{τnwn ≤ x}.

It will be assumed that Gn(·, P ) converges in distribution, at least for P ∈ P0. Of course,

this would imply (as long as τn → ∞) that wn → 0 in probability for P ∈ P0. Naturally,

wn should somehow be designed to distinguish between the competing hypotheses. The method

we describe assumes wn is constructed to satisfy the following: wn → w(P ) in probability,

where w(P ) is a constant which satisfies w(P ) = 0 if P ∈ P0 and w(P ) > 0 if P ∈ P1.

To describe the test construction, let wb,a be equal to the statistic wb evaluated at the block

of data {Xa, . . . , Xa+b−1}. The sampling distribution of Wn is then approximated by

Ĝn,b(x) =
1

n − b + 1

n−b+1
∑

a=1

1{τbwb,a ≤ x}.

Using this estimated sampling distribution, the critical value for the test is obtained as the

1 − α quantile of Ĝn,b(·); specifically, define

gn,b(1 − α) = inf{x : Ĝn,b(x) ≥ 1 − α}.

Finally, the nominal level α test rejects H0 if and only if

Wn > gn,b(1 − α). (5)

Remark 1 Alternatively, one could compute a subsampling P -value given as

PVn,b =
1

n − b + 1

n−b+1
∑

a=1

1{τbwb,a ≥ Wn}.

In this case, the nominal level α test rejects H0 if and only if

PVn,b < α.
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3 Confidence Intervals for SETAR Model Parameters

This section describes how to use subsampling to construct confidence intervals for SETAR

model parameters. The (joint) estimation of the parameter vector ϑ is carried out by the

method of conditional least squares (CLS); see Chan (1993) and Chan and Tsay (1998). Note

that in many applications the lag parameter d is assumed to be known and is thus not estimated

from the data.

3.1 Confidence Intervals for the Threshold Parameter r

First, consider the continuous case. Chan and Tsay (1998), basing the estimation on model (2),

construct normal theory confidence intervals for r. A simulation study in their paper shows

that this method tends to undercover quite a bit. As an alternative, the subsampling method

can be used.

Theorem 1 Base the estimation of r on estimating model (2). Assume the regularity condi-

tions of Theorem 2.2 of Chan and Tsay (1998). Let θ = r and τn = n1/2. Further, assume

that b → ∞ and b/n → 0 as n → ∞.

Then the confidence interval (3) has asymptotic coverage probability 1 − α.

Next, consider the discontinuous case. Chan (1993) proves the strong consistency and

the limiting distribution of r̂n. However, the distribution is nonstandard and depends in a

very complicated way on the underlying probability mechanism. Indeed, n(r̂n − r) converges

weakly to a random variable M−, where [M−,M+) is the unique random interval over which a

compound Poisson process attains its global minimum. Even though the underlying probability

mechanism arguably can be estimated consistently, it is not clear how one could go from there

to consistently estimate the distribution of M− as a basis for asymptotic inference for r. The

subsampling method can be used to construct valid confidence intervals.

Theorem 2 Base the estimation of r on estimating model (1). Assume the regularity condi-

tions of Theorem 2 of Chan (1993). Let θ = r and τn = n. Further, assume that b → ∞ and

b/n → 0 as n → ∞.

Then the confidence interval (3) has asymptotic coverage probability 1 − α.

Finally, consider the general case. We apply subsampling in conjunction with an estimated

rate of convergence. It is known that τn = nβ, where β is equal to either 0.5 (if the model

is continuous) or to 1 (if the model is discontinuous). So if one can estimate β from the

data, an obvious choice for τ̂n is nβ̂. The following theorem demonstrates that the asymptotic

validity of subsampling confidence intervals is not affected as long as the estimator of β satisfies

β̂ = β + oP ((log n)−1).
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Theorem 3 Base the estimation of r on estimating model (1). Assume regularity conditions

C1–C3 of Theorem 2 of Chan (1993) and that the the stationary probability density function

of Xt is bounded over a neighborhood of the true threshold parameter. Let θ = r and τ̂n = nβ̂,

where β̂ = β + oP ((log n)−1). Further, assume that b → ∞ and b/n → 0 as n → ∞.

Then the confidence interval (4) has asymptotic coverage probability 1 − α.

Remark 2 The key ingredients of the theorem are that in both the continuous and the dis-

continuous case τn(r̂n − r) has a proper limiting distribution, that the rate τn is allowed to

depend on the case, and that it can be estimated consistently satisfying a certain regularity

condition. In the discontinuous case, the convergence of n(r̂n − r) to a proper, albeit non-

standard limiting distribution is proved in Chan (1993). While Chan and Tsay (1998) discuss

continuous SETAR models, their results cannot be used for our theorem because they consider

a restricted fit based on model (2). What is needed instead is the asymptotic distribution of

r̂n when the model is continuous but the unrestricted model (1) is estimated. A corresponding

result is stated as Theorem 6 in the appendix.

The applicability of the suggested method now hinges on an estimator of β, the power

of n in the rate of convergence. Indeed, subsampling can be applied to this end as well. The

basic idea is the following. Since τn|r̂n − r| converges to a nondegenerate distribution, loosely

speaking, |r̂n − r| converges to the point mass zero at rate τn. Therefore, by comparing a

number of subsampling distributions, based on distinct block sizes b1 . . . bI , which estimate

the sampling distribution of the un-scaled statistic |r̂n − r|, one can consistently estimate the

rate τn. In the interest of space, we can only present the formula of the resulting estimator;

for a detailed discussion, the reader is referred to PRW (1999, Section 8.2). Define

Kn,b(x) =
1

n − b + 1

n−b+1
∑

a=1

1{|r̂b,a − r̂n| ≤ x},

and denote by K−1

n,b(t) a t-quantile of Kn,b. Now, let bi = bnγic, for constants 0 < γ1 < . . . < γI ,

let tj , for j = 1, . . . , J , be some points in (0.5, 1), and let

yi,j = log
(

K−1

n,bi
(tj)

)

.

The following estimator of β then satisfies β̂I,J = β + oP ((log n)−1):

β̂I,J = −

∑I
i=1

(yi,. − ȳ)(log bi − log)
∑I

i=1
(log bi − log)2

, (6)

where

yi,. = J−1

J
∑

j=1

yi,j, y = (IJ)−1

I
∑

i=1

J
∑

j=1

yi,j, and log = I−1

I
∑

i=1

log(bi).

3.2 Confidence Intervals for Regression Parameters φij

It is also of interest to make inference for the regression parameters φij . On grounds of

consistency, the problem can be considered solved when it is known whether the SETAR
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model is continuous or not. In both cases, n1/2(φ̂ij,n − φij) converges to normal distribution

with mean zero and a variance that can be consistently estimated. The result for the continuous

case is given by Chan and Tsay (1998) and the one for the discontinuous case by Chan (1993).

It should be mentioned, though, that the method of Chan (1993) tends to undercover in finite

samples because it does not take the estimation uncertainty about r̂n into account (e.g., Hansen,

2000). When the (dis)continuity of the model is unknown, standard inference is rendered

infeasible, since the form of the limiting variance is different in the two cases. Instead, the

subsampling method can be used. Given that the rate of convergence of φ̂ij,n does not depend

on the continuity of the SETAR model, the complication of the rate estimation does not occur.

The following theorem shows that when the estimation is based on model (1) subsampling

confidence intervals for φi,j will always have asymptotically correct coverage probability. The

validity of this approach when the true model is continuous again hinges on Theorem 6.

Theorem 4 Base the estimation of φij on estimating model (1). Assume regularity conditions

C1–C3 of Chan (1993) and that the the stationary probability density function of Xt is bounded

over a neighborhood of the true threshold parameter. Let θ = φij and τn = n1/2. Further,

assume that b → ∞ and b/n → 0 as n → ∞.

Then the confidence interval (3) has asymptotic coverage probability 1 − α.

4 Comparison with a Related Method

To construct confidence intervals for SETAR parameters in discontinuous models, also the

approach of Hansen (2000) could be adopted. Note that Hansen’s framework is richer, since

it allows general regression models where the predictor variables do not have to be lagged

variables of the response. In what follows, we will discuss how his method is applied to

SETAR models as a special case. To circumvent the nonstandard and difficult asymptotics of

r̂n in discontinuous models, Hansen (2000) assumes that the “threshold effect”, that is, the

difference between the two regression coefficient parameters, shrinks to zero as the sample size

increases:

Φ1 − Φ2 = ∆n−α with ∆ 6= 0 and 0 ≤ α < 0.5.

Under the assumption that σ1 = σ2, Hansen (2000) is able to construct confidence intervals

for r by inverting a likelihood ratio test for r. The ensuing intervals are asymptotically correct

when α > 0. In the case of a fixed, non-vanishing threshold effect (that is, when α = 0), the

intervals are shown to be asymptotically conservative under the additional assumption that

the innovations are Gaussian.

The method has a number of problems. First, it is doubtful that it can be extended to non-

Gaussian innovations because the proof relies heavily on the Gaussian innovation structure.

Second, it is assumed that σ1 = σ2, so that the innovation terms are required to have the same

variance in the two regimes. Third, the confidence intervals are conservative when α = 0 and

the simulations in Hansen (2000) show that unless Φ1 − Φ2 is close to zero and n is small,

the intervals over-cover significantly. Fourth, the method cannot be extended to continuous

SETAR models, so it would not work in the general case.
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We can also compare inference for regression parameters φij. Hansen (2000) shows that, as

in Chan (1993) also in his model, n1/2(φ̂ij,n−φij) converges to a normal distribution with mean

zero and that the limiting variance is the same as when r is known. He argues correctly that “in

finite samples, this procedure seems likely to under-represent the true sampling uncertainty,

since it is not the case that r̂n = r in any given sample”. Therefore, he suggests a Bonferroni-

type bound in the following way. First, one constructs a 1 − % level confidence interval for r.

Next, for each r† contained in that interval, one constructs a 1 − α level confidence interval

for φij, acting as if r† were the true parameter. Finally, one takes the union over r† of all the

1 − α intervals for φij. The question is how to choose the model parameter %; note that the

choice % = 1 would correspond to treating r̂n as the true parameter, that is, the approach of

Chan (1993). Based on some simulations, Hansen (2000) suggests to use % = 0.2. Obviously,

this is an ad hoc method whose asymptotic properties are not clear. On the other hand, the

subsampling inference for φij yields confidence intervals with asymptotically correct coverage

probability. It does not under-represent the true sampling uncertainty, since r is also estimated

from the subsamples.

5 A Test for Continuity

An important issue that has not been explored in the literature is to test whether a SETAR

model is continuous or not. Chan and Tsay (1998) apply both a continuous and a discontinuous

model to quarterly U.S. unemployment rates and note that the two estimated models are close

to each other, “which is indicative of using a continuous model”. But they are not able to test

whether this hypothesis may be violated. We will now describe how the general subsampling

hypothesis testing approach of § 2.2 can be adopted to this end. As was noted earlier on, a

necessary and sufficient condition for a SETAR model to be continuous is that φ1j = φ2j for

1 ≤ j 6= d ≤ p and that φ10 + rφ1d = φ20 + rφ2d. Obviously, this is equivalent to h(ϑ) = 0,

with

h(ϑ) = |φ10 + rφ1d − φ20 − rφ2d| +
∑

1≤j 6=d≤p

|φ1j − φ2j |.

Hence, it seems plausible to choose

wn = wn(X1, . . . , Xn) = h(ϑ̂n)

as the test statistic, where the estimation of ϑ is based on model (1). The following theorem

shows that this idea indeed leads to a test with asymptotically correct level. Moreover, as it

should be, under the alternative hypothesis the power tends to 1.

Theorem 5 Base the estimation of ϑ on estimating model (1). Assume regularity conditions

C1–C3 of Chan (1993) and that the the stationary probability density function of Xt is bounded

over a neighborhood of the true threshold parameter. Denote by P0 the class of continuous

SETAR models and by P1 the class of discontinuous SETAR models. Let wn = h(ϑ̂n) and

τn = n1/2. Further, assume that b → ∞ and b/n → 0 as n → ∞.

(i) If the underlying SETAR model is continuous, then the subsampling test based on (5) has

asymptotic size equal to α.
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(ii) If the underlying SETAR model is discontinuous, then the subsampling test based on (5)

has asymptotic power equal to 1.

6 Choice of the Block Size

The application of the subsampling method requires a choice of the block size b; the problem

is very similar to the choice of the bandwidth in applying smoothing or kernel methods. Un-

fortunately, the asymptotic requirements b → ∞ and b/n → ∞ as n → ∞ give little guidance

when faced with a finite sample. Instead, we propose to exploit the semi-parametric nature

of SETAR models to estimate a ‘good’ block size in practice. The approach will be detailed

for the use of subsampling for confidence interval construction. An analogous approach can be

used when hypothesis tests are to be constructed; see Remark 3.

To illustrate the idea, assume the goal is to construct a 1 − α confidence interval for

the univariate parameter of interest θ (the threshold parameter r or one of the regression

parameters φij). In finite samples, a subsampling interval will typically not exhibit coverage

probability exactly equal to 1−α; moreover, the actual coverage probability generally depends

on the block size b. Indeed, one can think of the actual coverage level 1 − λ of a subsampling

confidence interval as a function of the block size b, conditional on the underlying probability

mechanism P—that is, the fully specified SETAR model in our application—and the nominal

confidence level 1 − α. The idea is now to adjust the ‘input’ b in order to obtain the actual

coverage level close to the nominal one. Hence, one can consider the block size calibration

function g : b → 1 − λ. If g(·) were known, one could construct an ‘optimal’ confidence

interval by finding b̃ that minimizes |g(b) − (1 − α)| and use b̃ as the block size; note that

|g(b) − (1 − α)| = 0 may not always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is

therefore unknown. We now propose a semi-parametric bootstrap method to estimate it. The

idea is that in principle we could simulate g(·) if P were known by generating data of size n

according to P and computing subsampling confidence intervals for θ for a number of different

block sizes b. This process is then repeated many times and for a given b one estimates g(b) as

the fraction of the corresponding intervals that contain the true parameter. The method we

propose is identical except that P is replaced by an estimate P̂n.

For our application, P is the completely specified SETAR model. It depends on ϑ, σ1, σ2,

and the marginal distribution of εt. The natural estimator of ϑ is ϑ̂n—either based on estimat-

ing model (2) in case the model is known to be continuous or based on estimating model (1)

otherwise. In principle, the remaining components could be estimated explicitly as well. In-

stead, we opt for an ‘implicit estimation’ by bootstrapping the residuals from the two distinct

regimes. To this end, define, for t = p + 1, . . . , n,

ût,n =

{

Xt − φ̂10,n − φ̂11,nXt−1 − . . . − φ̂1p,nXt−p if Xt−d ≤ r̂n

Xt − φ̂20,n − φ̂21,nXt−1 − . . . − φ̂2p,nXt−p if Xt−d > r̂n
,

Û1 = {ût,n : Xt−d ≤ r̂n}, nÛ1
= |Û1|,

and

Û2 = {ût,n : Xt−d > r̂n}, nÛ2
= |Û2|,
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where, necessarily, nÛ1
+ nÛ2

= n − p. Now, the estimated SETAR model, denoted by P̂n,

gives rise to a sequence X∗
1 , . . . , X∗

n in the following manner

Algorithm 1 (Sampling from estimated SETAR model)

1. Generate sequences u∗
i1, . . . , u

∗
in by sampling with replacement from Ûi, for i = 1, 2.

2. X∗
t = Xt for t = 1, . . . , p.

3. X∗
t =

{

φ̂10,n + φ̂11,nX∗
t−1 + . . . + φ̂1p,nX∗

t−p + u∗
1t if X∗

t−d ≤ r̂n

φ̂20,n + φ̂21,nX∗
t−1 + . . . + φ̂2p,nX∗

t−p + u∗
2t if X∗

t−d > r̂n
for t = p + 1, . . . , n.

Having specified how to generate data from estimated SETAR model, we next detail the

algorithm to determine the block size b.

Algorithm 2 (Choice of the Block Size)

1. Fix a selection of reasonable block sizes b between limits blow and bup.

2. Generate K pseudo sequences X∗
k1

, . . . , X∗
kn, k = 1, . . . ,K, according Algorithm 1. For

each sequence, k = 1, . . . ,K, and for each b, compute a subsampling confidence interval

CIk,b for θ.

3. Compute ĝ(b) = #{θ̂n ∈ CIk,b}/K.

4. Find the value b̃ that minimizes |ĝ(b) − (1 − α)|.

Remark 3 If subsampling is used to construct hypothesis tests rather than confidence inter-

vals, then an analogous algorithm can be used by focusing on the size of the test rather than

the confidence level of the interval. Of course, in doing so it is important that the estimated

SETAR model P̂n satisfy the null hypothesis. For example, for the continuity test of § 5, one

needs to base the estimation of P on estimating model (2).

Remark 4 Strictly speaking, the Theorems of § 3 require an a priori determined sequence of

block sizes b as n → ∞. In practice, however, the choice of b will typically be data-dependent,

such as given by Algorithm 2. As discussed in PRW (1999, Section 3.6), this does not affect

the asymptotic validity of subsampling inference with strong mixing data as long as b low → ∞

and bup/n
1/2 → 0 as n → ∞. This result also implies the consistency of the subsampling

inference for r when the true model is continuous but a discontinuous model is estimated in

practice. While P̂n will be discontinuous with probability one, the data-dependent choice of

block size will result in confidence intervals with asymptotically correct coverage probability

as long as the before-mentioned conditions on blow and bup are satisfied.
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7 Simulation Evidence

The goal of this section is to examine the small sample performance of our methods via a

simulation study. To reduce the computational burden, we consider the simplest case d = p = 1.

The following two SETAR models are included in the study

Xt =

{

0.52 + 0.6Xt−1 + εt if Xt−d ≤ 0.8

1.48 − 0.6Xt−1 + 2εt if Xt−d > 0.8
(7)

and

Xt =

{

0.7 − 0.5Xt−1 + εt if Xt−d ≤ 0

−1.8 + 0.7Xt−1 + εt if Xt−d > 0
, (8)

where the εt are i.i.d. N(0, 1). Model (7) is the continuous model used in Chan and Tsay

(1998). The discontinuous model (8) is taken from Tong (1990, Subsubsection 5.5.3). Since

it would be cumbersome to simulate X1 directly from the stationary distribution of Xt, we

start the simulations at X−99 = 0 and then discard the first 100 observations to avoid start-up

effects. Figure 1 shows 500 data points from the two models, where Xt−1 is plotted against Xt

and the true autoregressive functions are overlaid.

7.1 Confidence Intervals for SETAR Model Parameters

Performance of confidence intervals is judged by estimated coverage probabilities of nominal

90% and 95% two-sided symmetric subsampling intervals. The parameters of interest are r

and φ11. When intervals for r are constructed, we use both the true and the estimated rate

of convergence. The former corresponds to knowing the (dis)continuity of the model while the

latter corresponds to the general case. The three sample sizes considered are n = 100, 200,

and 500.

Some words about the rate estimation are in order. We started out with the estimator β̂I,J

defined in (6), using I = J = 4. The quantiles tj were evenly distributed between 0.7 and 0.99.

The block sizes bi were chosen according to the rule

bi = bnγic with γi = κ ∗ [1 + log((i + 1)/(I + 1))/ log 100], i = 1, . . . , I, (9)

where 0 < κ < 1 is a model parameter. In small to moderate samples, this produced ‘over-

dispersed’ estimates. This means that in the continuous model, β̂I,J tended to be less than 0.5

and in the discontinuous model, β̂I,J tended to be bigger than 1. We therefore switch to the

truncated estimator

β̂Trunc
I,J =

{

0.5 if β̂I,J ≤ 0.75

1 if β̂I,J > 0.75
.

For an application, the model parameter κ in (9) has to be chosen. Table 1 reports how often

the correct rate was identified in the two models for the parameters κ = 0.7, 0.8, and 0.9 and

the sample sizes considered in our simulation study. It is seen that the method is not very

reliable for n = 100 but that starting at n = 200, the choice κ = 0.8 yields a quite good

estimator. In the simulations that follow, we employ the choice κ = 0.8 throughout.
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For all scenarios, we include three fixed block sizes in addition to the ‘optimal’ block size

chosen according to Algorithm 2. Since this algorithm is computationally rather expensive, we

had to limit the input block sizes to the corresponding three fixed block sizes; note that in a

concrete application a finer grid should be chosen. Also, for the parameter K of the algorithm,

K = 200 is employed; in a concrete application, we suggest to employ K = 1, 000. Due to

the computational expense, the results for the adaptive choice of block size are only available

for the sample sizes n = 100 and n = 200. All estimated coverage probabilities are based on

1,000 repetitions. The results are presented in Tables 2 and 3.

First we discuss the confidence intervals for the threshold parameter r. In the continuous

model, the results for fixed block sizes (columns 2 to 4) and the first results for the data-

dependent choice of block size (column 5) are based on estimating model (2) and hence should

be compared to the simulations of Chan and Tsay (1998). It is seen that the intervals un-

dercover. Still, our results for n = 100 are comparable to those of Chan and Tsay (1998) for

n = 200; and our results for n = 200 are comparable to those of Chan and Tsay (1998) for

n = 1, 000. Hence, in this context, subsampling offers improved finite sample performance

compared to the asymptotic method based on normality. The alternative results for the data-

dependent choice of block size (column 6) are based on estimating model (1) in conjuction with

estimating the rate of convergence; this approach corresponds to the general case. The results

are certainly disappointing, though they get less disappointing as the sample size n increases.

Part of the reason seems to be the distinct innovation standard deviations in model (7) that

was used to generate the data. If the standard deviation in the second regime is also taken

equal to one, the estimated coverage probabilities increase to 0.76 and 0.82 (for n = 100) and

to 0.84 and 0.90 (for n = 200), respectively. Our numbers confirm the finding that inference

for r in continuous models is a difficult problem and that large sample sizes seem required for a

trustworthy inference. The story is different for the discontinuous model. In the discontinuous

model, all results are based on estimating model (1). It is seen that the intervals tend to

perform well, even with data-dependent choice of block size and estimated rate of convergence.

They compare favorably to the simulations of Hansen (2000).

Next we discuss the intervals for the regression parameter φ11. In both models, the results

are always based on estimating model (1). The data-dependent choice of block size works quite

satisfactorily, though the intervals undercover somewhat in the continuous model. (While not

reported, estimated coverage probabilities in the continuous model improve if model (2) is

estimated.) The results for the discontinuous model compare favorably to the ad hoc method

of Hansen (2000) who employs a Bonferroni-type method (see § 4).

7.2 Test for Continuity

A similar simulation set-up is used to judge the performance of the subsampling test for the

null hypothesis of a continuous SETAR model; see Remark 3 for the data-dependent choice of

the block size. The results are presented in Table 4. Note that the test over-rejects for small

sample sizes but as the sample size increases, the actual level tends to the nominal level and

the power tends to one in accordance with the theory. Moreover, the data-dependent choice

of the block size performs well.
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8 Empirical Application

Chan and Tsay (1998) fitted the following continuous SETAR(2) model to the first differences

of the quarterly U.S. unemployment rates from 1948 to 1993 (T = 184):

X̂t = 0.0888 + 0.7870Xt−1 +

{

0.1060 (Xt−2 − r) if Xt−2 ≤ 0.134

−0.5582 (Xt−2 − r) if Xt−2 > 0.134
, (10)

where the sample sizes for the two regimes are 130 and 52, respectively. As a comparison,

they also employed a discontinuous SETAR(2) model to the same data. The following is the

estimated model:

X̂t =

{

0.0207 + 0.6011Xt−1 + 0.0801Xt−2 if Xt−2 ≤ 0.034

0.2280 + 0.8815Xt−1 − 0.6903Xt−2 if Xt−2 > 0.034
, (11)

where the sample sizes for the two regimes are 115 and 67, respectively. Comparing with the

continuous model in (10), Chan and Tsay (1998) observed that the two models are similar but

were not able to formally test the null hypothesis of a continuous model.

We now apply the test of Section 5. Table 5 presents the estimated rejection probabilities

of the test under the null for various block sizes and nominal levels. (The smallest block size

includes is b = 30, since for values smaller than that the estimation of a SETAR(2) model

becomes problematic.) The numbers in the table indicate that the test tends to over-reject.

Given the relatively small sample size of n = 184, this is is consistent with the simulation study

in the previous section. For example, according to the estimation, a test with nominal level

α = 0.025 and block size b = 30 has an actual level of about 0.05. And a test with nominal

level α = 0.05 and block size b = 30 has an actual level of about 0.09. Table 6 presents the

subsampling P -values for the null hypothesis of a continuous model and various block sizes. All

the P -values are well above 0.1. This fact together with test being somewhat anticonservative

implies that we cannot reject the null hypothesis of a continuous SETAR(2) model.

9 Discussion

We have proposed the subsampling methodology as a unified inference method in SETAR

models. It solves several problems that had not been solved before: consistent confidence

intervals for the threshold parameter r when the model is discontinuous; and consistent confi-

dence intervals for r and for regression parameters φij when the (dis)continuity of the model

is unknown. Second, it improves the finite sample performance of some previous approaches:

confidence intervals for r when the model is continuous (Chan and Tsay, 1998); and confidence

intervals for φij when the model is discontinuous (Chan, 1993; Hansen, 2000). Third, it con-

siders and solves a problem that had been neglected so far: a hypothesis test for the continuity

of a SETAR model.
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A Proofs of Technical Results

Proof of Theorem 1: The weak convergence of n1/2(r̂n − r) to a normal distribution follows

from Theorem 2.2 of Chan and Tsay (1998). One of the regularity conditions of the theorem

is that the underlying sequence {Xt} is β-mixing, which in return implies that {Xt} is strong

mixing (Doukhan, 1994). The proof of the Theorem now easily follows from Corollary 3.2.1 of

PRW (1999).

Proof of Theorem 2: The weak convergence of n(r̂n − r) to a nondegenerate limiting distri-

bution follows from Theorem 2 of Chan (1993). Next, consider Z t = (Xt, Xt−1, . . . , Xt−p+1)
′.

Then {Zt} is a Markov Chain. The regularity conditions of Theorem 2 of Chan (1993) im-

ply that the chain is geometrically ergodic (Chan, 1993), which in return implies that {Z t} is

β-mixing (Chan and Tsay, 1998), which in return implies that {Xt} is strong mixing (Doukhan,

1994). The proof of the Theorem now easily follows from Corollary 3.2.1 of PRW (1999).

Proof of Theorem 3: It suffices to show that both in the discontinuous and in the continuous

case the assumptions of Theorem 8.3.1 of PRW (1999) are satisfied. In the continuous case,

this follows from Theorem 6 at the end of this appendix and the fact that {Xt} is strong

mixing, as discussed in the proof of Theorem 2. In the discontinuous case, this follows from

Theorem 2 of Chan (1993) and the fact that {Xt} is strong mixing.

Proof of Theorem 4: It suffices to show that both in the discontinuous and in the continuous

case the assumptions of Corollary 3.2.1 of PRW (1999) are satisfied. In the continuous case,

this follows from Theorem 6 and the fact that {Xt} is strong mixing, as discussed in the proof

of Theorem 2. In the discontinuous case, this follows from Theorem 2 of Chan (1993) and the

fact that {Xt} is strong mixing.

Proof of Theorem 5: The almost sure convergence of wn to w(P ) = h(ϑ) both under the null

and under the alternative hypothesis follows immediately from Theorem 1 of Chan (1993). Ob-

viously, under the null hypothesis h(ϑ) is equal to zero and under the alternative it is positive.

The convergence in distribution of n1/2 wn under the null hypothesis to a normal distribu-

tion with mean zero follows from Theorem 6 and the Delta Method. Finally, as discussed

in the proof of Theorem 2, the sequence {Xt} is strong mixing. The result now is a simple

consequence of Theorem 3.5.1 of PRW (1999).
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Theorem 6 Base the estimation of ϑ on estimating model (1). Assume regularity conditions

C1–C3 of Chan (1993) and that the stationary probability density function of Xt is bounded

over a neighborhood of the true threshold parameter.

If the true model is continuous, then n1/2((Φ̂′
1,n, Φ̂′

2,n, r̂n)′ − (Φ′
1,Φ

′
2, r)

′) converges weakly to a

normal distribution with mean zero.

Proof: Without loss of generality d is assumed known. We proceed by mimicking/extending

the proof of Theorem 2.2 of Chan and Tsay (1998), abbreviated by CT henceforth. To this

end, write the general model (1) in the equivalent form of model (2) plus an extra intercept

term for the second regime.

Xt = φ0 + φ001{Xt−d > r} +

p
∑

j=1,j 6=d

φjXt−j +

{

φd−(Xt−d − r) + σ1εt if Xt−d ≤ r

φd+(Xt−d − r) + σ2εt if Xt−d > r
. (12)

To match the notation of the proof of CT, introduce the parameter

θ = (φ0, . . . , φd−1, φd−, φd+, ..., φp, r, φ00)
′

and denote the true parameter by θ∗. We assume that the true model is continuous, that is,

φ∗
00 = 0. It is obviously sufficient for our purposes to demonstrate the asymptotic normality

of n1/2(θ̂n − θ∗). Next, introduce the error term

et(θ) = Xt − E(Xt|Ft−1; θ)

= Xt − φ0 − φ001{Xt−d > r} −

p
∑

j=1,j 6=d

φjXt−j −

{

φd−(Xt−d − r) if Xt−d ≤ r

φd+(Xt−d − r) if Xt−d > r

and let et = et(θ
∗). Finally, Ht(θ) is the vector of partial derivatives of et(θ) with respect to

the elements of θ and Ht = Ht(θ
∗).

Now consider the original proof of CT (given in their Appendix). We shall indicate all

quantities that appear in CT by the subscript CT . Since they consider continuous models only

and do not have the extra parameter φ00, their terms are “smaller”; for example, θ = (θ ′
CT , φ00)

′

and Ht(θ) = (H ′
t,CT (θCT ),−1{Xt−d > r})′.

As do CT, we can decompose

et(θ) = et + H ′
t(θ − θ∗) + |θ − θ∗|Rt(θ),

where our remainder term Rt(θ) is related to the one in CT in the following fashion:

Rt(θ) =
|θCT − θ∗CT |Rt,CT (θCT ) + φ001{r

∗ < Xt−d ≤ r}

|θ − θ∗|
.

Next, the decomposition of e2
t (θ) and the definition of Wt(θ) are exactly as in CT.

To show asymptotic normality now, we need to check conditions (i)–(iii) of CT. The verifi-

cations of (ii) and (iii) are analogous to those in CT and hold no matter what the value of φ∗
00.

On the other hand, the verification of (i) requires that φ∗
00 = 0, that is, that the true model

be continuous. To see why, note that in a continuous model φ00 tends to zero as |θ − θ∗| tends
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to zero and so the verification of (i) in CT goes through. On the other hand, if the model is

discontinuous, φ00 is bounded away from zero as as |θ − θ∗| tends to zero and the verification

of (i) in CT no longer holds; for example, Rt(θ) no longer is a bounded function over a bounded

neighborhood of θ∗.

Remark 5 More specifically, it follows from the extension of the proof of CT that the limiting

covariance matrix of n1/2(θ̂n − θ∗) is given by U−1V U−1 where U = E(HtH
′
t) and V =

E(e2
t HtH

′
t), which is a (p+3)×(p+3) matrix. Since the last element of Ht is non-deterministic,

the upper (p + 2) × (p + 2) block of this matrix is ‘larger’ than U−1

CT VCT U−1

CT , the limiting

(p + 2) × (p + 2) covariance matrix of CT. (This is easiest to see in the when σ1 = σ2 and

the limiting covariance matrices simplify to σ2U−1 and σ2U−1

CT , respectively, but is also true

in the general case.) The implication is that when the true model is continuous but the

general, discontinuous model is estimated, then one pays a price in terms of the efficiency of

the estimator. This finding is not surprising and in agreement with the conjecture of CT in

their § 5:

“In practice, it may not be known that the autoregressive function is continuous. Instead

of fitting model (2), one may fit the more general model (1) to the data. It is then interesting

to investigate the asymptotics of the conditional LS estimators of a general [SE]TAR model

when the true autoregressive function is continuous everywhere. Preliminary study suggests

that the asymptotics depend on whether or not the estimation scheme assumes the a priori

information that the autoregressive function is continuous.”
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Figure 1: 500 data points were generated from models (7) and (8), respectively. The plots
show Xt−1 against Xt, with the true autoregressive functions overlaid.
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Table 1: Proportions of times the estimator β̂Trunc
I,J selected the correct rate as a function of the

model parameter κ and the sample size n. The continuous model is (7) and the discontinuous
model is (8). The estimation is based on model (1) always. The results are based on 1,000
replications.

Continuous Model

n κ = 0.7 κ = 0.8 κ = 0.9
100 0.82 0.82 0.73
200 0.95 0.95 0.86
500 1.00 0.99 0.98

Discontinuous Model

n κ = 0.7 κ = 0.8 κ = 0.9
100 0.25 0.63 0.89
200 0.55 0.92 0.97
500 0.96 1.00 0.99
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Table 2: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence
intervals for the threshold parameter r based on 1,000 replications. The continuous model is (7)
and the discontinuous model is (8). Columns 2 to 4 list the results for fixed block sizes using
the true rate τn, column 5 lists the results for the adaptive choice of block size in conjunction
with the true rate τn, and column 6 is the same as column 5 except that the estimated rate τ̂n

is used. In the continous model, the estimation is based on model (2), except for column 6,
where it is based on model (1). In the discontinous model, the estimation is based on model (1)
always. The symbol NA denotes “not available” (because of too high computational cost).

Continuous Model, n = 100

Target b = 15 b = 25 b = 35 b̃ b̃ & τ̂n

0.90 0.77 0.82 0.80 0.81 0.51
0.95 0.83 0.86 0.84 0.86 0.61

Continuous Model, n = 200

Target b = 30 b = 45 b = 60 b̃ b̃ & τ̂n

0.90 0.88 0.89 0.87 0.88 0.55
0.95 0.82 0.93 0.91 0.92 0.67

Continuous Model, n = 500

Target b = 70 b = 100 b = 130 b̃ b̃ & τ̂n

0.90 0.93 0.91 0.88 NA NA
0.95 0.97 0.95 0.92 NA NA

Discontinuous Model, n = 100

Target b = 10 b = 20 b = 30 b̃ b̃ & τ̂n

0.90 0.89 0.94 0.87 0.91 0.92
0.95 0.93 0.97 0.92 0.95 0.96

Discontinuous Model, n = 200

Target b = 10 b = 25 b = 40 b̃ b̃ & τ̂n

0.90 0.87 0.95 0.86 0.89 90
0.95 0.91 0.98 0.92 0.95 95

Discontinuous Model, n = 500

Target b = 10 b = 25 b = 40 b̃ b̃ & τ̂n

0.90 0.87 0.95 0.86 NA NA
0.95 0.91 0.98 0.92 NA NA
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Table 3: Estimated coverage probabilities of nominal 90% and 95% subsampling confidence
intervals for the regression parameter φ11 based on 1,000 replications. The continuous model
is (7) and the discontinuous model is (8). Columns 2 to 4 list the results for fixed block
sizes and column 5 lists the results for the adaptive choice of block size. The estimation is
based on model (1) always. The symbol NA denotes “not available” (because of too high
computational cost).

Continuous Model, n = 100

Target b = 15 b = 25 b = 35 b̃
0.90 0.95 0.90 0.85 0.87
0.95 0.98 0.95 0.90 0.92

Continuous Model, n = 200

Target b = 20 b = 35 b = 50 b̃
0.90 0.95 0.91 0.87 0.88
0.95 0.98 0.96 0.92 0.93

Continuous Model, n = 500

Target b = 50 b = 80 b = 110 b̃
0.90 0.92 0.89 0.87 NA
0.95 0.97 0.95 0.92 NA

Discontinuous Model, n = 100

Target b = 20 b = 25 b = 30 b̃
0.90 0.94 0.91 0.87 0.91
0.95 0.96 0.94 0.92 0.95

Discontinuous Model, n = 200

Target b = 30 b = 40 b = 50 b̃
0.90 0.92 0.88 0.84 0.89
0.95 0.96 0.93 0.89 0.94

Discontinuous Model, n = 500

Target b = 40 b = 60 b = 80 b̃
0.90 0.94 0.90 0.86 NA
0.95 0.97 0.94 0.92 NA
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Table 4: Estimated rejection probabilities of nominal 10% and 5% subsampling hypothesis
tests for the null hypothesis of a continuous SETAR model based on 1,000 replications. The
continuous model is (7) and the discontinuous model is (8). Columns 2 to 4 list the results
for fixed block sizes and column 5 lists the results for the adaptive choice of block size. The
symbol NA denotes “not available” (because of too high computational cost).

Continuous Model, n = 100

Target b = 20 b = 30 b = 40 b̃
0.10 0.20 0.18 0.21 0.18
0.05 0.12 0.12 0.15 0.12

Continuous Model, n = 200

Target b = 20 b = 40 b = 60 b̃
0.10 0.14 0.13 0.13 0.12
0.05 0.07 0.07 0.08 0.07

Continuous Model, n = 500

Target b = 90 b = 120 b = 150 b̃
0.10 0.08 0.09 0.11 NA
0.05 0.04 0.05 0.06 NA

Discontinuous Model, n = 100

b = 20 b = 30 b = 40 b̃
0.89 0.90 0.91 0.91
0.96 0.96 0.94 0.96

Discontinuous Model, n = 200

b = 20 b = 40 b = 60 b̃
0.98 0.99 0.99 0.99
1.00 1.00 1.00 1.00

Discontinuous Model, n = 500

b = 30 b = 60 b = 90 b̃
1.00 1.00 1.00 NA
1.00 1.00 1.00 NA
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Table 5: Estimated rejection probabilities of the subsampling test for continuity for the un-
employment data of Section 8 as a function of the nominal level α and the block size b. The
probabilities are estimated using the calibration method of Section 6.

α b = 30 b = 40 b = 50
0.025 0.05 0.1 0.12
0.05 0.09 0.14 0.15
0.1 0.14 0.18 0.20

Table 6: Subsampling P -values for the null hypothesis of a continuous SETAR(2) model for the
unemployment data of Section 8 as a function of the block size b. The P -values are computed
as described in Remark 1.

b = 30 b = 40 b = 50
0.37 0.25 0.16
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